1
|
Li Q, Armstrong Z, MacRae A, Ugrinov A, Feng L, Chen B, Huang Y, Li H, Pan Y, Yang Z. Metal-Organic Materials (MOMs) Enhance Proteolytic Selectivity, Efficiency, and Reusability of Trypsin: A Time-Resolved Study on Proteolysis. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8927-8936. [PMID: 36757369 DOI: 10.1021/acsami.2c19873] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Proteases are involved in essential biological functions in nature and have become drug targets recently. In spite of the promising progress, two challenges, (i) the intrinsic instability and (ii) the difficulty in monitoring the catalytic process in real time, still hinder the further understanding and engineering of protease functionalities. These challenges are caused by the lack of proper materials/approaches to stabilize proteases and monitor proteolytic products (truncated polypeptides) in real time in a highly heterogeneous reaction mixture. This work combines metal-organic materials (MOMs), site-directed spin labeling-electron paramagnetic resonance (SDSL-EPR) spectroscopy, and mass spectrometry (MS) to overcome both barriers. A model protease, trypsin, which cleaves the peptide bonds at lysine or arginine residues, was immobilized on a Ca-MOM via aqueous-phase, one-pot cocrystallization, which allows for trypsin protection and ease of separation from its proteolytic products. Time-resolved EPR and MS were employed to monitor the populations, rotational motion, and sequences of the cleaved peptide truncations of a model protein substrate as the reaction proceeded. Our data suggest a significant (at least 5-10 times) enhancement in the catalytic efficiency (kcat/km) of trypsin@Ca-MOM and excellent reusability as compared to free trypsin in solution. Surprisingly, entrapping trypsin in Ca-MOMs results in cleavage site/region selectivity against the protein substrate, as compared to the near nonselective cleavage of all lysine and arginine residues of the substrate in solution. Remarkably, immobilizing trypsin allows for the separation and, thus, MS study on the sequences of truncated peptides in real time, leading to a time-resolved "movie" of trypsin proteolysis. This work demonstrates the use of MOMs and cocrystallization to enhance the selectivity, catalytic efficiency, and stability of trypsin, suggesting the possibility of tuning the catalytic performance of a general protease using MOMs.
Collapse
Affiliation(s)
- Qiaobin Li
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Zoe Armstrong
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Austin MacRae
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Angel Ugrinov
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Li Feng
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Bingcan Chen
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Ying Huang
- Department of Civil, Construction, and Environmental Engineering, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Hui Li
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota 58102, United States
| | - Yanxiong Pan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Changchun 130022, China
| | - Zhongyu Yang
- Department of Chemistry and Biochemistry, North Dakota State University, Fargo, North Dakota 58102, United States
| |
Collapse
|
2
|
Rohweder PJ, Jiang Z, Hurysz BM, O'Donoghue AJ, Craik CS. Multiplex substrate profiling by mass spectrometry for proteases. Methods Enzymol 2022; 682:375-411. [PMID: 36948708 PMCID: PMC10201391 DOI: 10.1016/bs.mie.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Proteolysis is a central regulator of many biological pathways and the study of proteases has had a significant impact on our understanding of both native biology and disease. Proteases are key regulators of infectious disease and misregulated proteolysis in humans contributes to a variety of maladies, including cardiovascular disease, neurodegeneration, inflammatory diseases, and cancer. Central to understanding a protease's biological role, is characterizing its substrate specificity. This chapter will facilitate the characterization of individual proteases and complex, heterogeneous proteolytic mixtures and provide examples of the breadth of applications that leverage the characterization of misregulated proteolysis. Here we present the protocol of Multiplex Substrate Profiling by Mass Spectrometry (MSP-MS), a functional assay that quantitatively characterizes proteolysis using a synthetic library of physiochemically diverse, model peptide substrates, and mass spectrometry. We present a detailed protocol as well as examples of the use of MSP-MS for the study of disease states, for the development of diagnostic and prognostic tests, for the generation of tool compounds, and for the development of protease-targeted drugs.
Collapse
Affiliation(s)
- Peter J Rohweder
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States
| | - Zhenze Jiang
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States
| | - Brianna M Hurysz
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States
| | - Anthony J O'Donoghue
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, San Diego, CA, United States.
| | - Charles S Craik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA, United States.
| |
Collapse
|
3
|
Hu L, Hu P, Luo X, Yuan X, You ZH. Incorporating the Coevolving Information of Substrates in Predicting HIV-1 Protease Cleavage Sites. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:2017-2028. [PMID: 31056514 DOI: 10.1109/tcbb.2019.2914208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Human immunodeficiency virus 1 (HIV-1) protease (PR) plays a crucial role in the maturation of the virus. The study of substrate specificity of HIV-1 PR as a new endeavor strives to increase our ability to understand how HIV-1 PR recognizes its various cleavage sites. To predict HIV-1 PR cleavage sites, most of the existing approaches have been developed solely based on the homogeneity of substrate sequence information with supervised classification techniques. Although efficient, these approaches are found to be restricted to the ability of explaining their results and probably provide few insights into the mechanisms by which HIV-1 PR cleaves the substrates in a site-specific manner. In this work, a coevolutionary pattern-based prediction model for HIV-1 PR cleavage sites, namely EvoCleave, is proposed by integrating the coevolving information obtained from substrate sequences with a linear SVM classifier. The experiment results showed that EvoCleave yielded a very promising performance in terms of ROC analysis and f-measure. We also prospectively assessed the biological significance of coevolutionary patterns by applying them to study three fundamental issues of HIV-1 PR cleavage site. The analysis results demonstrated that the coevolutionary patterns offered valuable insights into the understanding of substrate specificity of HIV-1 PR.
Collapse
|
4
|
Peptidomics Analysis Reveals Peptide PDCryab1 Inhibits Doxorubicin-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:7182428. [PMID: 33110475 PMCID: PMC7582065 DOI: 10.1155/2020/7182428] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/01/2020] [Accepted: 09/20/2020] [Indexed: 12/14/2022]
Abstract
Doxorubicin (DOX) is limited due to dose-dependent cardiotoxicity. Peptidomics is an emerging field of proteomics that has attracted much attention because it can be used to study the composition and content of endogenous peptides in various organisms. Endogenous peptides participate in various biological processes and are important sources of candidates for drug development. To explore peptide changes related to DOX-induced cardiotoxicity and to find peptides with cardioprotective function, we compared the expression profiles of peptides in the hearts of DOX-treated and control mice by mass spectrometry. The results showed that 236 differential peptides were identified upon DOX treatment, of which 22 were upregulated and 214 were downregulated. Next, we predicted that 31 peptides may have cardioprotective function by conducting bioinformatics analysis on the domains of each precursor protein, the predicted score of peptide biological activity, and the correlation of each peptide with cardiac events. Finally, we verified that a peptide (SPFYLRPPSF) from Cryab can inhibit cardiomyocyte apoptosis, reduce the production of reactive oxygen species, improve cardiac function, and ameliorate myocardial fibrosis in vitro and vivo. In conclusion, our results showed that the expression profiles of peptides in cardiac tissue change significantly upon DOX treatment and that these differentially expressed peptides have potential cardioprotective functions. Our study suggests a new direction for the treatment of DOX-induced cardiotoxicity.
Collapse
|
5
|
Román-Meléndez GD, Venkataraman T, Monaco DR, Larman HB. Protease Activity Profiling via Programmable Phage Display of Comprehensive Proteome-Scale Peptide Libraries. Cell Syst 2020; 11:375-381.e4. [PMID: 33099407 DOI: 10.1016/j.cels.2020.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/10/2020] [Accepted: 08/18/2020] [Indexed: 12/28/2022]
Abstract
Endopeptidases catalyze the internal cleavage of proteins, playing pivotal roles in protein turnover, substrate maturation, and the activation of signaling cascades. A broad range of biological functions in health and disease are controlled by proteases, yet assays to characterize their activities at a proteomic scale do not exist. To address this unmet need, we developed Sensing EndoPeptidase Activity via Release and recapture using flAnking Tag Epitopes (SEPARATE), which uses a monovalent phage display of the human proteome at a 90-aa peptide resolution. We demonstrate that SEPARATE is compatible with several human proteases from distinct catalytic classes, including caspase-1, ADAM17, and thrombin. Both well-characterized and newly identified substrates of these enzymes were detected in the assay. SEPARATE was used to discover a non-canonical caspase-1 substrate, the E3 ubiquitin ligase HUWE1, a key mediator of apoptotic cell death. SEPARATE enables efficient, unbiased assessment of endopeptidase activity by using a phage-displayed proteome. A record of this paper's Transparent Peer Review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Gabriel D Román-Meléndez
- Institute for Cell Engineering, Immunology Division, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA 21205
| | - Thiagarajan Venkataraman
- Institute for Cell Engineering, Immunology Division, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA 21205
| | - Daniel R Monaco
- Institute for Cell Engineering, Immunology Division, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA 21205
| | - H Benjamin Larman
- Institute for Cell Engineering, Immunology Division, Department of Pathology, Johns Hopkins University, Baltimore, MD, USA 21205.
| |
Collapse
|
6
|
Howard CJ, Floyd BM, Bardo AM, Swaminathan J, Marcotte EM, Anslyn EV. Solid-Phase Peptide Capture and Release for Bulk and Single-Molecule Proteomics. ACS Chem Biol 2020; 15:1401-1407. [PMID: 32363853 DOI: 10.1021/acschembio.0c00040] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The field of proteomics has expanded recently with more sensitive techniques for the bulk measurement of peptides as well as single-molecule techniques. One limiting factor for some of these methods is the need for multiple chemical derivatizations and highly pure proteins free of contaminants. We demonstrate a solid-phase capture-release strategy suitable for the proteolysis, purification, and subsequent chemical modification of peptides. We use this resin on an HEK293T cell lysate and perform one-pot proteolysis, capture, and derivatization to survey peptide capture biases from over 40 000 unique peptides from a cellular proteome. We also show that this capture can be reversed in a traceless manner, such that it is amenable for single-molecule proteomics techniques. With this technique, we perform a fluorescent labeling and C-terminal derivatization on a peptide and subject it to fluorosequencing, demonstrating that washing the resin is sufficient to remove excess dyes and other reagents prior to single-molecule protein sequencing.
Collapse
Affiliation(s)
- Cecil J. Howard
- Department of Chemistry, University of Texas at Austin, 100 E. 24th Street, Austin, Texas 78712, United States
| | - Brendan M. Floyd
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, Texas 78712, United States
| | - Angela M. Bardo
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, Texas 78712, United States
| | - Jagannath Swaminathan
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, Texas 78712, United States
| | - Edward M. Marcotte
- Department of Molecular Biosciences, University of Texas at Austin, 2500 Speedway, Austin, Texas 78712, United States
| | - Eric V. Anslyn
- Department of Chemistry, University of Texas at Austin, 100 E. 24th Street, Austin, Texas 78712, United States
| |
Collapse
|
7
|
Zhang H, Liu H, Zhang Y, Sun T, Wu G, Zhou C, Wu X, Zhang J, Yue R, Wang H, Dai Y, Liu F, Lu F. Engineered variants of a lipase from Yarrowia lipolytica with improved trypsin resistance for enzyme replacement therapy. Protein Eng Des Sel 2020; 32:375-383. [DOI: 10.1093/protein/gzaa001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/15/2019] [Accepted: 01/10/2020] [Indexed: 01/16/2023] Open
Abstract
Abstract
To improve the proteolytic stability of the lipase LIP2 from Yarrowia lipolytica, the peptide bonds susceptible to trypsin in LIP2 were analyzed by tandem mass spectrometry and redesigned by site-directed mutagenesis. Different variants of the enzyme were expressed in Pichia pastoris GS115 and their biochemical properties were subsequently investigated. Although most of the variants were still cleaved by trypsin, some of them did show an evident increase of resistance against proteolytic degradation. The most stable mutant was LIP2-C5, in which five trypsin-cleavage sites were replaced by non-preferred amino acids. Upon incubation with human trypsin for 80 min at 37°C, the mutant LIP2-C5 was found to retain >70% of its initial activity, compared to only 10% for the wild-type.
Collapse
Affiliation(s)
- Huitu Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Zone, Tianjin 300457, PR China
| | - Huan Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Zone, Tianjin 300457, PR China
| | - Ying Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Zone, Tianjin 300457, PR China
| | - Tongwei Sun
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Zone, Tianjin 300457, PR China
| | - Guoguo Wu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Zone, Tianjin 300457, PR China
| | - Cuixia Zhou
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Zone, Tianjin 300457, PR China
| | - Xiaonong Wu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Zone, Tianjin 300457, PR China
| | - Jing Zhang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Zone, Tianjin 300457, PR China
| | - Rong Yue
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Zone, Tianjin 300457, PR China
| | - Haikuan Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Zone, Tianjin 300457, PR China
| | - Yujie Dai
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Zone, Tianjin 300457, PR China
| | - Fufeng Liu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Zone, Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education, College of Bioengineering, Tianjin University of Science & Technology, No. 29, 13 Main Street, Tianjin Economic and Technological Development Zone, Tianjin 300457, PR China
| |
Collapse
|
8
|
Wang HB, Zeng F, Wang YY, Li X, S. H., Li YM, Wang YF, Liu YH, Lu FP. Evaluation of the site-unspecified peptide identification method for proteolytic peptide mapping. RSC Adv 2020; 10:37182-37186. [PMID: 35521240 PMCID: PMC9057140 DOI: 10.1039/d0ra04226a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 09/18/2020] [Indexed: 11/21/2022] Open
Abstract
The site-unspecific method could successfully identify most of the peptides from tryptic hydrolysates revealed by site-specific identification.
Collapse
Affiliation(s)
- H. B. Wang
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin Key Laboratory of Industrial Microbiology
- National Engineering Laboratory for Industrial Enzymes
- The College of Biotechnology
| | - F. Zeng
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin Key Laboratory of Industrial Microbiology
- National Engineering Laboratory for Industrial Enzymes
- The College of Biotechnology
| | - Y. Y. Wang
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin Key Laboratory of Industrial Microbiology
- National Engineering Laboratory for Industrial Enzymes
- The College of Biotechnology
| | - X. Li
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin Key Laboratory of Industrial Microbiology
- National Engineering Laboratory for Industrial Enzymes
- The College of Biotechnology
| | - S. H.
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin Key Laboratory of Industrial Microbiology
- National Engineering Laboratory for Industrial Enzymes
- The College of Biotechnology
| | - Y. M. Li
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin Key Laboratory of Industrial Microbiology
- National Engineering Laboratory for Industrial Enzymes
- The College of Biotechnology
| | - Y. F. Wang
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin Key Laboratory of Industrial Microbiology
- National Engineering Laboratory for Industrial Enzymes
- The College of Biotechnology
| | - Y. H. Liu
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin Key Laboratory of Industrial Microbiology
- National Engineering Laboratory for Industrial Enzymes
- The College of Biotechnology
| | - F. P. Lu
- Key Laboratory of Industrial Fermentation Microbiology
- Ministry of Education
- Tianjin Key Laboratory of Industrial Microbiology
- National Engineering Laboratory for Industrial Enzymes
- The College of Biotechnology
| |
Collapse
|
9
|
Pan F, He X, Feng J, Cui W, Gao L, Li M, Yang H, Wang C, Hu Y. Peptidome analysis reveals the involvement of endogenous peptides in mouse pancreatic dysfunction with aging. J Cell Physiol 2019; 234:14090-14099. [PMID: 30618084 DOI: 10.1002/jcp.28098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 12/13/2018] [Indexed: 01/15/2023]
Abstract
Type 2 diabetes (T2D) is a glucose regulation disorder that has significantly enhanced mortality and the global disease burden. The prevalence of T2D has increased worldwide and is higher in the elderly. The function of pancreatic islets decreases with age, which is one important reason for the occurrence of diabetes in the elderly. Recently, peptidome analysis has attracted attention. However, the role of age-related peptides in pancreatic dysfunction has not been investigated extensively. Here, we conducted a comparison of endogenous peptides between pancreas from adult and aging mice by liquid chromatography tandem mass spectrometry (LC-MS/MS). A total of 2,089 peptides originating from 1,280 protein precursors were identified, of which 232 were upregulated and 183 were downregulated in the aging mice (fold change ≥ 2 and p < 0.05), suggesting that the expression of pancreatic peptides in mice varied with age. The molecular weight of most peptides was <3.0 kDa, and the isoelectric point distribution had a bimodal characteristic. Further analysis of cleavage site patterns indicated that proteases cleaved pancreatic proteins according to their rules. Moreover, Gene Ontology and pathway analyses showed that the differentially expressed peptides potentially had specific effects on pancreatic dysfunction. Some differential peptides were located within the domains of precursor proteins that were closely associated with the development of diabetes. We believe that our research may advance the current understanding of pancreas-derived peptides and that certain peptides may be involved in the etiology of diabetes.
Collapse
Affiliation(s)
- Fenghui Pan
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xuan He
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jie Feng
- Department of Laboratory and Inspection Center, Jiangsu Institute of Planned Parenthood Research, Nanjing, Jiangsu, China
| | - Wenxia Cui
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lei Gao
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Man Li
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Haiyan Yang
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chun Wang
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Hu
- Division of Geriatrics, Drum Tower Clinical Medical College of Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Chemistry, State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing, China
| |
Collapse
|
10
|
Madzharova E, Sabino F, Auf dem Keller U. Exploring Extracellular Matrix Degradomes by TMT-TAILS N-Terminomics. Methods Mol Biol 2019; 1944:115-126. [PMID: 30840238 DOI: 10.1007/978-1-4939-9095-5_8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Global characterization of protein N termini provides valuable information on proteome dynamics and diversity in health and disease. Driven by the progress in mass spectrometry-based proteomics, novel approaches for the dedicated investigation of protein N termini and protease substrates have been recently developed. Terminal amine isotopic labeling of substrates (TAILS) is a quantitative proteomics approach suitable for high-throughput and system-wide profiling of protein N termini in complex biological matrices. TAILS employs isotopic labeling of primary amines of intact proteins in combination with an amine-reactive high molecular weight polymer (HPG-ALD) for depletion of internal tryptic peptides and high enrichment of protein N termini by negative selection. Thereby, TAILS allows simultaneous identification of the natural N termini, protease-generated neo-N termini, and endogenously modified (e.g., acetylated) N termini. In this chapter, we provide a protocol for tandem mass tag (TMT)-TAILS analysis and further discuss specific considerations regarding N-terminome data interpretation using Proteome Discoverer™ software.
Collapse
Affiliation(s)
- Elizabeta Madzharova
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Fabio Sabino
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulrich Auf dem Keller
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark.
| |
Collapse
|
11
|
He D, Xie X, Yang F, Zhang H, Su H, Ge Y, Song H, Chen PR. Quantitative and Comparative Profiling of Protease Substrates through a Genetically Encoded Multifunctional Photocrosslinker. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201708151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Dan He
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Xiao Xie
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Fan Yang
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Heng Zhang
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Haomiao Su
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Yun Ge
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Haiping Song
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Peng R. Chen
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| |
Collapse
|
12
|
He D, Xie X, Yang F, Zhang H, Su H, Ge Y, Song H, Chen PR. Quantitative and Comparative Profiling of Protease Substrates through a Genetically Encoded Multifunctional Photocrosslinker. Angew Chem Int Ed Engl 2017; 56:14521-14525. [DOI: 10.1002/anie.201708151] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 09/14/2017] [Indexed: 11/11/2022]
Affiliation(s)
- Dan He
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Xiao Xie
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Fan Yang
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Heng Zhang
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Haomiao Su
- College of Chemistry and Molecular Sciences; Wuhan University; Wuhan 430072 China
| | - Yun Ge
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Haiping Song
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
| | - Peng R. Chen
- Synthetic and Functional Biomolecules Center; Beijing National Laboratory for Molecular Sciences; Department of Chemical Biology; College of Chemistry and Molecular Engineering; Peking University; Beijing 100871 China
- Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| |
Collapse
|
13
|
Tholey A, Becker A. Top-down proteomics for the analysis of proteolytic events - Methods, applications and perspectives. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:2191-2199. [PMID: 28711385 DOI: 10.1016/j.bbamcr.2017.07.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 02/06/2023]
Abstract
Mass spectrometry based proteomics is an indispensable tool for almost all research areas relevant for the understanding of proteolytic processing, ranging from the identification of substrates, products and cleavage sites up to the analysis of structural features influencing protease activity. The majority of methods for these studies are based on bottom-up proteomics performing analysis at peptide level. As this approach is characterized by a number of pitfalls, e.g. loss of molecular information, there is an ongoing effort to establish top-down proteomics, performing separation and MS analysis both at intact protein level. We briefly introduce major approaches of bottom-up proteomics used in the field of protease research and highlight the shortcomings of these methods. We then discuss the present state-of-the-art of top-down proteomics. Together with the discussion of known challenges we show the potential of this approach and present a number of successful applications of top-down proteomics in protease research. This article is part of a Special Issue entitled: Proteolysis as a Regulatory Event in Pathophysiology edited by Stefan Rose-John.
Collapse
Affiliation(s)
- Andreas Tholey
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Alexander Becker
- Systematic Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| |
Collapse
|
14
|
Coradin M, Karch KR, Garcia BA. Monitoring proteolytic processing events by quantitative mass spectrometry. Expert Rev Proteomics 2017; 14:409-418. [PMID: 28395554 DOI: 10.1080/14789450.2017.1316977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Protease activity plays a key role in a wide variety of biological processes including gene expression, protein turnover and development. misregulation of these proteins has been associated with many cancer types such as prostate, breast, and skin cancer. thus, the identification of protease substrates will provide key information to understand proteolysis-related pathologies. Areas covered: Proteomics-based methods to investigate proteolysis activity, focusing on substrate identification, protease specificity and their applications in systems biology are reviewed. Their quantification strategies, challenges and pitfalls are underlined and the biological implications of protease malfunction are highlighted. Expert commentary: Dysregulated protease activity is a hallmark for some disease pathologies such as cancer. Current biochemical approaches are low throughput and some are limited by the amount of sample required to obtain reliable results. Mass spectrometry based proteomics provides a suitable platform to investigate protease activity, providing information about substrate specificity and mapping cleavage sites.
Collapse
Affiliation(s)
- Mariel Coradin
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Kelly R Karch
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| | - Benjamin A Garcia
- a Epigenetics Program, Department of Biochemistry and Biophysics, Perelman School of Medicine , University of Pennsylvania , Philadelphia , PA , USA
| |
Collapse
|
15
|
Abou-El-Hassan H, Sukhon F, Assaf EJ, Bahmad H, Abou-Abbass H, Jourdi H, Kobeissy FH. Degradomics in Neurotrauma: Profiling Traumatic Brain Injury. Methods Mol Biol 2017; 1598:65-99. [PMID: 28508358 DOI: 10.1007/978-1-4939-6952-4_4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Degradomics has recently emerged as a subdiscipline in the omics era with a focus on characterizing signature breakdown products implicated in various disease processes. Driven by promising experimental findings in cancer, neuroscience, and metabolomic disorders, degradomics has significantly promoted the notion of disease-specific "degradome." A degradome arises from the activation of several proteases that target specific substrates and generate signature protein fragments. Several proteases such as calpains, caspases, cathepsins, and matrix metalloproteinases (MMPs) are involved in the pathogenesis of numerous diseases that disturb the physiologic balance between protein synthesis and protein degradation. While regulated proteolytic activities are needed for development, growth, and regeneration, uncontrolled proteolysis initiated under pathological conditions ultimately culminates into apoptotic and necrotic processes. In this chapter, we aim to review the protease-substrate repertoires in neural injury concentrating on traumatic brain injury. A striking diversity of protease substrates, essential for neuronal and brain structural and functional integrity, namely, encryptic biomarker neoproteins, have been characterized in brain injury. These include cytoskeletal proteins, transcription factors, cell cycle regulatory proteins, synaptic proteins, and cell junction proteins. As these substrates are subject to proteolytic fragmentation, they are ceaselessly exposed to activated proteases. Characterization of these molecules allows for a surge of "possible" therapeutic approaches of intervention at various levels of the proteolytic cascade.
Collapse
Affiliation(s)
- Hadi Abou-El-Hassan
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon.
| | - Fares Sukhon
- Faculty of Medicine, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Edwyn Jeremy Assaf
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Hisham Bahmad
- Faculty of Medical, Neuroscience Research Center, Beirut Arab University, Beirut, Lebanon
- Faculty of Medicine, Department of Anatomy, Cell Biology and Physiological Sciences, American University of Beirut, Beirut, Lebanon
| | - Hussein Abou-Abbass
- Faculty of Medical Sciences, Neuroscience Research Center, Lebanese University, Beirut, Lebanon
- Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon
| | - Hussam Jourdi
- Faculty of Science¸ Department of Biology, University of Balamand, Souk-el-Gharb Campus, Aley, Lebanon
| | - Firas H Kobeissy
- Faculty of Medicine, Department of Biochemistry and Molecular Genetics, American University of Beirut, Beirut, Lebanon.
- Department of Psychiatry, Center for Neuroproteomics and Biomarkers Research, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
16
|
Pethe MA, Rubenstein AB, Khare SD. Large-Scale Structure-Based Prediction and Identification of Novel Protease Substrates Using Computational Protein Design. J Mol Biol 2016; 429:220-236. [PMID: 27932294 DOI: 10.1016/j.jmb.2016.11.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/23/2016] [Accepted: 11/30/2016] [Indexed: 12/16/2022]
Abstract
Characterizing the substrate specificity of protease enzymes is critical for illuminating the molecular basis of their diverse and complex roles in a wide array of biological processes. Rapid and accurate prediction of their extended substrate specificity would also aid in the design of custom proteases capable of selectively and controllably cleaving biotechnologically or therapeutically relevant targets. However, current in silico approaches for protease specificity prediction, rely on, and are therefore limited by, machine learning of sequence patterns in known experimental data. Here, we describe a general approach for predicting peptidase substrates de novo using protein structure modeling and biophysical evaluation of enzyme-substrate complexes. We construct atomic resolution models of thousands of candidate substrate-enzyme complexes for each of five model proteases belonging to the four major protease mechanistic classes-serine, cysteine, aspartyl, and metallo-proteases-and develop a discriminatory scoring function using enzyme design modules from Rosetta and AMBER's MMPBSA. We rank putative substrates based on calculated interaction energy with a modeled near-attack conformation of the enzyme active site. We show that the energetic patterns obtained from these simulations can be used to robustly rank and classify known cleaved and uncleaved peptides and that these structural-energetic patterns have greater discriminatory power compared to purely sequence-based statistical inference. Combining sequence and energetic patterns using machine-learning algorithms further improves classification performance, and analysis of structural models provides physical insight into the structural basis for the observed specificities. We further tested the predictive capability of the model by designing and experimentally characterizing the cleavage of four novel substrate motifs for the hepatitis C virus NS3/4 protease using an in vivo assay. The presented structure-based approach is generalizable to other protease enzymes with known or modeled structures, and complements existing experimental methods for specificity determination.
Collapse
Affiliation(s)
- Manasi A Pethe
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Aliza B Rubenstein
- Computational Biology & Molecular Biophysics Program, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
| | - Sagar D Khare
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Center for Integrative Proteomics Research, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Computational Biology & Molecular Biophysics Program, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA.
| |
Collapse
|
17
|
Cacidases: caspases can cleave after aspartate, glutamate and phosphoserine residues. Cell Death Differ 2016; 23:1717-26. [PMID: 27367566 DOI: 10.1038/cdd.2016.62] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2016] [Revised: 05/16/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022] Open
Abstract
Caspases are a family of proteases found in all metazoans, including a dozen in humans, that drive the terminal stages of apoptosis as well as other cellular remodeling and inflammatory events. Caspases are named because they are cysteine class enzymes shown to cleave after aspartate residues. In the past decade, we and others have developed unbiased proteomic methods that collectively identified ~2000 native proteins cleaved during apoptosis after the signature aspartate residues. Here, we explore non-aspartate cleavage events and identify 100s of substrates cleaved after glutamate in both human and murine apoptotic samples. The extended consensus sequence patterns are virtually identical for the aspartate and glutamate cleavage sites suggesting they are cleaved by the same caspases. Detailed kinetic analyses of the dominant apoptotic executioner caspases-3 and -7 show that synthetic substrates containing DEVD↓ are cleaved only twofold faster than DEVE↓, which is well within the 500-fold range of rates that natural proteins are cut. X-ray crystallography studies confirm that the two acidic substrates bind in virtually the same way to either caspases-3 or -7 with minimal adjustments to accommodate the larger glutamate. Lastly, during apoptosis we found 121 proteins cleaved after serine residues that have been previously annotated to be phosphorylation sites. We found that caspase-3, but not caspase-7, can cleave peptides containing DEVpS↓ at only threefold slower rate than DEVD↓, but does not cleave the unphosphorylated serine peptide. There are only a handful of previously reported examples of proteins cleaved after glutamate and none after phosphorserine. Our studies reveal a much greater promiscuity for cleaving after acidic residues and the name 'cacidase' could aptly reflect this broader specificity.
Collapse
|
18
|
Laukens K, Naulaerts S, Berghe WV. Bioinformatics approaches for the functional interpretation of protein lists: from ontology term enrichment to network analysis. Proteomics 2015; 15:981-96. [PMID: 25430566 DOI: 10.1002/pmic.201400296] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/16/2014] [Accepted: 11/24/2014] [Indexed: 12/24/2022]
Abstract
The main result of a great deal of the published proteomics studies is a list of identified proteins, which then needs to be interpreted in relation to the research question and existing knowledge. In the early days of proteomics this interpretation was only based on expert insights, acquired by digesting a large amount of relevant literature. With the growing size and complexity of the experimental datasets, many computational techniques, databases, and tools have claimed a central role in this task. In this review we discuss commonly and less commonly used methods to functionally interpret experimental proteome lists and compare them with available knowledge. We first address several functional analysis and enrichment techniques based on ontologies and literature. Then we outline how various types of network and pathway information can be used. While the problem of functional interpretation of proteome data is to an extent equivalent to the interpretation of transcriptome or other ''omics'' data, this paper addresses some of the specific challenges and solutions of the proteomics field.
Collapse
Affiliation(s)
- Kris Laukens
- Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan, Antwerp, Belgium; Biomedical Informatics Research Center Antwerp (biomina), University of Antwerp / Antwerp University Hospital, Antwerp, Belgium
| | | | | |
Collapse
|
19
|
Tanco S, Gevaert K, Van Damme P. C-terminomics: Targeted analysis of natural and posttranslationally modified protein and peptide C-termini. Proteomics 2014; 15:903-14. [PMID: 25316308 DOI: 10.1002/pmic.201400301] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/03/2014] [Accepted: 10/09/2014] [Indexed: 01/03/2023]
Abstract
The C-terminus (where C is carboxyl) of a protein can serve as a recognition signature for a variety of biological processes, including protein trafficking and protein complex formation. Hence, the identity of the in vivo protein C-termini provides valuable information about biological processes. Analysis of protein C-termini is also crucial for the study of C-terminal PTMs, particularly for monitoring proteolytic processing by endopeptidases and carboxypeptidases. Although technical difficulties have limited the study of C-termini, a range of technologies have been proposed in the last couple of years. Here, we review the current proteomics technologies for C-terminal analysis, with a focus on the biological information that can be derived from C-terminomics studies.
Collapse
Affiliation(s)
- Sebastian Tanco
- Department of Medical Protein Research, VIB, Ghent, Belgium; Department of Biochemistry, Ghent University, Ghent, Belgium
| | | | | |
Collapse
|
20
|
Ren RJ, Dammer EB, Wang G, Seyfried NT, Levey AI. Proteomics of protein post-translational modifications implicated in neurodegeneration. Transl Neurodegener 2014; 3:23. [PMID: 25671099 PMCID: PMC4323146 DOI: 10.1186/2047-9158-3-23] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 10/21/2014] [Indexed: 11/18/2022] Open
Abstract
Mass spectrometry (MS)-based proteomics has developed into a battery of approaches that is exceedingly adept at identifying with high mass accuracy and precision any of the following: oxidative damage to proteins (redox proteomics), phosphorylation (phosphoproteomics), ubiquitination (diglycine remnant proteomics), protein fragmentation (degradomics), and other posttranslational modifications (PTMs). Many studies have linked these PTMs to pathogenic mechanisms of neurodegeneration. To date, identifying PTMs on specific pathology-associated proteins has proven to be a valuable step in the evaluation of functional alteration of proteins and also elucidates biochemical and structural explanations for possible pathophysiological mechanisms of neurodegenerative diseases. This review provides an overview of methods applicable to the identification and quantification of PTMs on proteins and enumerates historic, recent, and potential future research endeavours in the field of proteomics furthering the understanding of PTM roles in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Ru-Jing Ren
- />Department of Neurology,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Eric B Dammer
- />Department of Biochemistry, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Gang Wang
- />Department of Pharmacology, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Nicholas T Seyfried
- />Department of Neurology,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
- />Department of Biochemistry, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
- />Emory Proteomics Service Center, Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| | - Allan I Levey
- />Department of Neurology,Center for Neurodegenerative Diseases, Emory University School of Medicine, Atlanta, GA 30322 USA
| |
Collapse
|
21
|
Becker-Pauly C, Broder C, Prox J, Koudelka T, Tholey A. Mapping orphan proteases by proteomics: Meprin metalloproteases deciphered as potential therapeutic targets. Proteomics Clin Appl 2014; 8:382-8. [DOI: 10.1002/prca.201300079] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/14/2013] [Accepted: 11/18/2013] [Indexed: 01/02/2023]
Affiliation(s)
- Christoph Becker-Pauly
- Institute of Biochemistry; Unit for Degradomics of the Protease Web; University of Kiel; Kiel Germany
| | - Claudia Broder
- Institute of Biochemistry; Unit for Degradomics of the Protease Web; University of Kiel; Kiel Germany
| | - Johannes Prox
- Institute of Biochemistry; Unit for Degradomics of the Protease Web; University of Kiel; Kiel Germany
| | - Tomas Koudelka
- AG Systematic Proteome Research & Bioanalytics - Institute for Experimental Medicine; Christian-Albrechts-Universität; Kiel Germany
| | - Andreas Tholey
- AG Systematic Proteome Research & Bioanalytics - Institute for Experimental Medicine; Christian-Albrechts-Universität; Kiel Germany
| |
Collapse
|
22
|
Shahinian H, Tholen S, Schilling O. Proteomic identification of protease cleavage sites: cell-biological and biomedical applications. Expert Rev Proteomics 2014; 10:421-33. [DOI: 10.1586/14789450.2013.841547] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
23
|
Belushkin AA, Vinogradov DV, Gelfand MS, Osterman AL, Cieplak P, Kazanov MD. Sequence-derived structural features driving proteolytic processing. Proteomics 2013; 14:42-50. [PMID: 24227478 DOI: 10.1002/pmic.201300416] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 10/22/2013] [Accepted: 10/28/2013] [Indexed: 12/11/2022]
Abstract
Proteolytic signaling, or regulated proteolysis, is an essential part of many important pathways such as Notch, Wnt, and Hedgehog. How the structure of the cleaved substrate regions influences the efficacy of proteolytic processing remains underexplored. Here, we analyzed the relative importance in proteolysis of various structural features derived from substrate sequences using a dataset of more than 5000 experimentally verified proteolytic events captured in CutDB. Accessibility to the solvent was recognized as an essential property of a proteolytically processed polypeptide chain. Proteolytic events were found nearly uniformly distributed among three types of secondary structure, although with some enrichment in loops. Cleavages in α-helices were found to be relatively abundant in regions apparently prone to unfolding, while cleavages in β-structures tended to be located at the periphery of β-sheets. Application of the same statistical procedures to proteolytic events divided into separate sets according to the catalytic classes of proteases proved consistency of the results and confirmed that the structural mechanisms of proteolysis are universal. The estimated prediction power of sequence-derived structural features, which turned out to be sufficiently high, presents a rationale for their use in bioinformatic prediction of proteolytic events.
Collapse
Affiliation(s)
- Alexander A Belushkin
- Faculty of Bioengineering and Bioinformatics, M.V. Lomonosov Moscow State University, Moscow, Russia
| | | | | | | | | | | |
Collapse
|
24
|
Han MH, Jiao S, Jia JM, Chen Y, Chen CY, Gucek M, Markey SP, Li Z. The novel caspase-3 substrate Gap43 is involved in AMPA receptor endocytosis and long-term depression. Mol Cell Proteomics 2013; 12:3719-31. [PMID: 24023391 DOI: 10.1074/mcp.m113.030676] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The cysteine protease caspase-3, best known as an executioner of cell death in apoptosis, also plays a non-apoptotic role in N-methyl-d-aspartate receptor-dependent long-term depression of synaptic transmission (NMDAR-LTD) and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor endocytosis in neurons. The mechanism by which caspase-3 regulates LTD and AMPA receptor endocytosis, however, remains unclear. Here, we addressed this question by using an enzymatic N-terminal peptide enrichment method and mass spectrometry to identify caspase-3 substrates in neurons. Of the many candidates revealed by this proteomic study, we have confirmed BASP1, Dbn1, and Gap43 as true caspase-3 substrates. Moreover, in hippocampal neurons, Gap43 mutants deficient in caspase-3 cleavage inhibit AMPA receptor endocytosis and LTD. We further demonstrated that Gap43, a protein well-known for its functions in axons, is also localized at postsynaptic sites. Our study has identified Gap43 as a key caspase-3 substrate involved in LTD and AMPA receptor endocytosis, uncovered a novel postsynaptic function for Gap43 and provided new insights into how long-term synaptic depression is induced.
Collapse
Affiliation(s)
- Meng-Hsuan Han
- National Institute of Mental Health, Bethesda, Maryland 20892
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Cain JA, Solis N, Cordwell SJ. Beyond gene expression: the impact of protein post-translational modifications in bacteria. J Proteomics 2013; 97:265-86. [PMID: 23994099 DOI: 10.1016/j.jprot.2013.08.012] [Citation(s) in RCA: 145] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 07/08/2013] [Accepted: 08/10/2013] [Indexed: 12/12/2022]
Abstract
The post-translational modification (PTM) of proteins plays a critical role in the regulation of a broad range of cellular processes in eukaryotes. Yet their role in governing similar systems in the conventionally presumed 'simpler' forms of life has been largely neglected and, until recently, was thought to occur only rarely, with some modifications assumed to be limited to higher organisms alone. Recent developments in mass spectrometry-based proteomics have provided an unparalleled power to enrich, identify and quantify peptides with PTMs. Additional modifications to biological molecules such as lipids and carbohydrates that are essential for bacterial pathophysiology have only recently been detected on proteins. Here we review bacterial protein PTMs, focusing on phosphorylation, acetylation, proteolytic degradation, methylation and lipidation and the roles they play in bacterial adaptation - thus highlighting the importance of proteomic techniques in a field that is only just in its infancy. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Joel A Cain
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Nestor Solis
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia
| | - Stuart J Cordwell
- School of Molecular Bioscience, School of Medical Sciences, The University of Sydney, 2006, Australia; Discipline of Pathology, School of Medical Sciences, The University of Sydney, 2006, Australia.
| |
Collapse
|
26
|
Tanco S, Lorenzo J, Garcia-Pardo J, Degroeve S, Martens L, Aviles FX, Gevaert K, Van Damme P. Proteome-derived peptide libraries to study the substrate specificity profiles of carboxypeptidases. Mol Cell Proteomics 2013; 12:2096-110. [PMID: 23620545 DOI: 10.1074/mcp.m112.023234] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Through processing peptide and protein C termini, carboxypeptidases participate in the regulation of various biological processes. Few tools are however available to study the substrate specificity profiles of these enzymes. We developed a proteome-derived peptide library approach to study the substrate preferences of carboxypeptidases. Our COFRADIC-based approach takes advantage of the distinct chromatographic behavior of intact peptides and the proteolytic products generated by the action of carboxypeptidases, to enrich the latter and facilitate its MS-based identification. Two different peptide libraries, generated either by chymotrypsin or by metalloendopeptidase Lys-N, were used to determine the substrate preferences of human metallocarboxypeptidases A1 (hCPA1), A2 (hCPA2), and A4 (hCPA4). In addition, our approach allowed us to delineate the substrate specificity profile of mouse mast cell carboxypeptidase (MC-CPA or mCPA3), a carboxypeptidase suggested to function in innate immune responses regulation and mast cell granule homeostasis, but which thus far lacked a detailed analysis of its substrate preferences. mCPA3 was here shown to preferentially remove bulky aromatic amino acids, similar to hCPA2. This was also shown by a hierarchical cluster analysis, grouping hCPA1 close to hCPA4 in terms of its P1 primed substrate specificity, whereas hCPA2 and mCPA3 cluster separately. The specificity profile of mCPA3 may further aid to elucidate the function of this mast cell carboxypeptidase and its biological substrate repertoire. Finally, we used this approach to evaluate the substrate preferences of prolylcarboxypeptidase, a serine carboxypeptidase shown to cleave C-terminal amino acids linked to proline and alanine.
Collapse
Affiliation(s)
- Sebastian Tanco
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Crawford ED, Seaman JE, Agard N, Hsu GW, Julien O, Mahrus S, Nguyen H, Shimbo K, Yoshihara HAI, Zhuang M, Chalkley RJ, Wells JA. The DegraBase: a database of proteolysis in healthy and apoptotic human cells. Mol Cell Proteomics 2012; 12:813-24. [PMID: 23264352 DOI: 10.1074/mcp.o112.024372] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteolysis is a critical post-translational modification for regulation of cellular processes. Our lab has previously developed a technique for specifically labeling unmodified protein N termini, the α-aminome, using the engineered enzyme, subtiligase. Here we present a database, called the DegraBase (http://wellslab.ucsf.edu/degrabase/), which compiles 8090 unique N termini from 3206 proteins directly identified in subtiligase-based positive enrichment mass spectrometry experiments in healthy and apoptotic human cell lines. We include both previously published and unpublished data in our analysis, resulting in a total of 2144 unique α-amines identified in healthy cells, and 6990 in cells undergoing apoptosis. The N termini derive from three general categories of proteolysis with respect to cleavage location and functional role: translational N-terminal methionine processing (∼10% of total proteolysis), sites close to the translational N terminus that likely represent removal of transit or signal peptides (∼25% of total), and finally, other endoproteolytic cuts (∼65% of total). Induction of apoptosis causes relatively little change in the first two proteolytic categories, but dramatic changes are seen in endoproteolysis. For example, we observed 1706 putative apoptotic caspase cuts, more than double the total annotated sites in the CASBAH and MEROPS databases. In the endoproteolysis category, there are a total of nearly 3000 noncaspase nontryptic cleavages that are not currently reported in the MEROPS database. These studies significantly increase the annotation for all categories of proteolysis in human cells and allow public access for investigators to explore interesting proteolytic events in healthy and apoptotic human cells.
Collapse
Affiliation(s)
- Emily D Crawford
- Department of Pharmaceutical Chemistry, University of California-San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Messana I, Cabras T, Iavarone F, Vincenzoni F, Urbani A, Castagnola M. Unraveling the different proteomic platforms. J Sep Sci 2012; 36:128-39. [PMID: 23212829 DOI: 10.1002/jssc.201200830] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 10/05/2012] [Accepted: 10/06/2012] [Indexed: 01/06/2023]
Abstract
This review is addressed to scientists working outside the field of proteomics and wishes to shed a light on the possibility offered by the latest proteomics strategies. Bottom-up and top-down platforms are critically examined outlining advantages and limitations of their application to qualitative and quantitative investigations. Discovery, directed and targeted proteomics as different options for the management of the MS instrument are defined emphasizing their integration in the experimental plan to accomplish meaningful results. The issue of data validation is analyzed and discussed. The most common qualitative proteomic platforms are described, with a particular emphasis on enrichment methods to elucidate PTMs codes (i.e. ubiquitin and histone codes). Label-free and labeled methods for relative and absolute quantification are critically compared. The possible contribution of proteomics platforms to the transition from structural proteomics to functional proteomics (study of the functional connections between different proteins) and to the challenging system biology (integrated study of all the functional cellular functions) is also briefly discussed.
Collapse
Affiliation(s)
- Irene Messana
- Dipartimento di Scienze della Vita e dell'Ambiente, Università di Cagliari, Cagliari, Italy
| | | | | | | | | | | |
Collapse
|
29
|
Jakoby T, van den Berg BHJ, Tholey A. Quantitative Protease Cleavage Site Profiling using Tandem-Mass-Tag Labeling and LC–MALDI-TOF/TOF MS/MS Analysis. J Proteome Res 2012; 11:1812-20. [DOI: 10.1021/pr201051e] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Thomas Jakoby
- AG Systematische Proteomforschung, Institut für
Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Germany
| | - Bart HJ van den Berg
- AG Systematische Proteomforschung, Institut für
Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Germany
| | - Andreas Tholey
- AG Systematische Proteomforschung, Institut für
Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Germany
| |
Collapse
|