1
|
Kim J, Jeong K, Kaulich PT, Winkels K, Tholey A, Kohlbacher O. FLASHQuant: A Fast Algorithm for Proteoform Quantification in Top-Down Proteomics. Anal Chem 2024; 96:17227-17234. [PMID: 39424290 PMCID: PMC11525931 DOI: 10.1021/acs.analchem.4c03117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 09/11/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024]
Abstract
Accurate quantification of individual proteoforms is a crucial step in identifying proteome-wide alterations in different biological conditions. Intact proteoforms have been analyzed predominantly by liquid chromatography-mass spectrometry (LC-MS)-based top-down proteomics (TDP) and quantified primarily by the label-free quantification (LFQ) method, as it requires no additional costly labeling. In TDP, due to frequent coelution and complex signal structures, overlapping signals deriving from multiple proteoforms complicate accurate quantification. Here, we introduce FLASHQuant for MS1-level LFQ analysis in TDP, which is capable of automatically resolving and quantifying coeluting proteoforms. In benchmark tests performed with both spike-in proteins and proteome-level mixture data sets, FLASHQuant was shown to perform highly accurate and reproducible quantification in short runtimes of just a few minutes per LC-MS run. In particular, it was demonstrated that resolving overlapping proteoforms boosts the quantification accuracy. FLASHQuant is publicly available as platform-independent open-source software at https://openms.org/flashquant/, accompanied by the simple alignment algorithm ConsensusFeatureGroupDetector for multiple LC-MS runs.
Collapse
Affiliation(s)
- Jihyung Kim
- Applied
Bioinformatics, Department for Computer Science, University of Tübingen, 72076 Tübingen, Germany
- Institute
for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Kyowon Jeong
- Applied
Bioinformatics, Department for Computer Science, University of Tübingen, 72076 Tübingen, Germany
- Institute
for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
| | - Philipp T. Kaulich
- Systematic
Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Konrad Winkels
- Systematic
Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Andreas Tholey
- Systematic
Proteome Research & Bioanalytics, Institute for Experimental Medicine, Christian-Albrechts-Universität zu Kiel, 24105 Kiel, Germany
| | - Oliver Kohlbacher
- Applied
Bioinformatics, Department for Computer Science, University of Tübingen, 72076 Tübingen, Germany
- Institute
for Bioinformatics and Medical Informatics, University of Tübingen, 72076 Tübingen, Germany
- Translational
Bioinformatics, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
2
|
Cao Z, Yu LR. Mass Spectrometry-Based Proteomics for Biomarker Discovery. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2486:3-17. [PMID: 35437715 DOI: 10.1007/978-1-0716-2265-0_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Proteomics plays a pivotal role in systems medicine, in which pharmacoproteomics and toxicoproteomics have been developed to address questions related to efficacy and toxicity of drugs. Mass spectrometry is the core technology for quantitative proteomics, providing the capabilities of identification and quantitation of thousands of proteins. The technology has been applied to biomarker discovery and understanding the mechanisms of drug action. Both stable isotope labeling of proteins or peptides and label-free approaches have been incorporated with multidimensional LC separation and tandem mass spectrometry (LC-MS/MS) to increase the coverage and depth of proteome analysis. A protocol of such an approach exemplified by dimethyl labeling in combination with 2D-LC-MS/MS is described. With further development of novel proteomic tools and increase in sample throughput, the full spectrum of mass spectrometry-based proteomic research will greatly advance systems medicine.
Collapse
Affiliation(s)
- Zhijun Cao
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Li-Rong Yu
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA.
| |
Collapse
|
3
|
Characterization of the AGR2 interactome uncovers new players of Protein Disulfide Isomerase network in cancer cells. Mol Cell Proteomics 2021; 21:100188. [PMID: 34929376 PMCID: PMC8816719 DOI: 10.1016/j.mcpro.2021.100188] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 12/03/2021] [Accepted: 12/14/2021] [Indexed: 12/03/2022] Open
Abstract
Anterior gradient 2 (AGR2) is an endoplasmic reticulum (ER)-resident protein disulfide isomerase (PDI) known to be overexpressed in many human epithelial cancers and is involved in cell migration, cellular transformation, angiogenesis, and metastasis. This protein inhibits the activity of the tumor suppressor p53, and its expression levels can be used to predict cancer patient outcome. However, the precise network of AGR2-interacting partners and clients remains to be fully characterized. Herein, we used label-free quantification and also stable isotope labeling with amino acids in cell culture–based LC–MS/MS analyses to identify proteins interacting with AGR2. Functional annotation confirmed that AGR2 and its interaction partners are associated with processes in the ER that maintain intracellular metabolic homeostasis and participate in the unfolded protein response, including those associated with changes in cellular metabolism, energy, and redox states in response to ER stress. As a proof of concept, the interaction between AGR2 and PDIA3, another ER-resident PDI, was studied in more detail. Pathway analysis revealed that AGR2 and PDIA3 play roles in protein folding in ER, including post-translational modification and in cellular response to stress. We confirmed the AGR2–PDIA3 complex formation in cancer cells, which was enhanced in response to ER stress. Accordingly, molecular docking characterized potential quaternary structure of this complex; however, it remains to be elucidated whether AGR2 rather contributes to PDIA3 maturation in ER, the complex directly acts in cellular signaling, or mediates AGR2 secretion. Our study provides a comprehensive insight into the protein–protein interaction network of AGR2 by identifying functionally relevant proteins and related cellular and biochemical pathways associated with the role of AGR2 in cancer cells. LC–MS/MS analysis of AGR2-interacting proteins in T47D and H1299 cells. About 15 overlapping AGR2 interactors, including PDIA3 and PDIA6, were identified in both cell lines. PDI family members represent the key part of the network. AGR2–PDIA3 interaction is even stronger under ER stress. AGR2–PDIA3 complex formation supports extracellular secretion of AGR2.
Collapse
|
4
|
Bouchal P, Schubert OT, Faktor J, Capkova L, Imrichova H, Zoufalova K, Paralova V, Hrstka R, Liu Y, Ebhardt HA, Budinska E, Nenutil R, Aebersold R. Breast Cancer Classification Based on Proteotypes Obtained by SWATH Mass Spectrometry. Cell Rep 2020; 28:832-843.e7. [PMID: 31315058 PMCID: PMC6656695 DOI: 10.1016/j.celrep.2019.06.046] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Revised: 03/06/2019] [Accepted: 06/12/2019] [Indexed: 01/10/2023] Open
Abstract
Accurate classification of breast tumors is vital for patient management decisions and enables more precise cancer treatment. Here, we present a quantitative proteotyping approach based on sequential windowed acquisition of all theoretical fragment ion spectra (SWATH) mass spectrometry and establish key proteins for breast tumor classification. The study is based on 96 tissue samples representing five conventional breast cancer subtypes. SWATH proteotype patterns largely recapitulate these subtypes; however, they also reveal varying heterogeneity within the conventional subtypes, with triple negative tumors being the most heterogeneous. Proteins that contribute most strongly to the proteotype-based classification include INPP4B, CDK1, and ERBB2 and are associated with estrogen receptor (ER) status, tumor grade status, and HER2 status. Although these three key proteins exhibit high levels of correlation with transcript levels (R > 0.67), general correlation did not exceed R = 0.29, indicating the value of protein-level measurements of disease-regulated genes. Overall, this study highlights how cancer tissue proteotyping can lead to more accurate patient stratification. Proteotyping of 96 breast tumors by SWATH mass spectrometry Three key proteins for breast tumor classification Varying degrees of heterogeneity within conventional breast cancer subtypes Generally modest correlation between protein and transcript levels in tumor tissue
Collapse
Affiliation(s)
- Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic.
| | - Olga T Schubert
- Department of Biology, Institute of Molecular Systems Biology, Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jakub Faktor
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Lenka Capkova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Hana Imrichova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic; Center for Human Genetics, University of Leuven, Leuven, Belgium
| | - Karolina Zoufalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Vendula Paralova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Roman Hrstka
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Yansheng Liu
- Department of Pharmacology, Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, CT, USA
| | - Holger Alexander Ebhardt
- Department of Biology, Institute of Molecular Systems Biology, Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland; Systems Biology Ireland, University College Dublin, Dublin, Ireland
| | - Eva Budinska
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic; Research Centre for Toxic Compounds in the Environment, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Rudolf Nenutil
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, Federal Institute of Technology (ETH) Zurich, Zurich, Switzerland; Faculty of Science, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
5
|
Dvorakova M, Lapcik P, Bouchalova P, Bouchal P. Transgelin Silencing Induces Different Processes in Different Breast Cancer Cell Lines. Proteomics 2020; 20:e1900383. [PMID: 32061197 DOI: 10.1002/pmic.201900383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/10/2020] [Indexed: 12/30/2022]
Abstract
Transgelin is a protein reported to be a marker of several cancers. However, previous studies have shown both up- and down-regulation of transgelin in tumors when compared with non-tumor tissues and the mechanisms whereby transgelin may affect the development of cancer remain largely unknown. Transgelin is especially abundant in smooth muscle cells and is associated with actin stress fibers. These contractile structures participate in cell motility, adhesion, and the maintenance of cell morphology. Here, the role of transgelin in breast cancer is focused on. Initially, the effects of transgelin on cell migration of the breast cancer cell lines, BT 549 and PMC 42, is studied. Interestingly, transgelin silencing increased the migration of PMC 42 cells, but decreased the migration of BT 549 cells. To clarify these contradictory results, the changes in protein abundances after transgelin silencing in these two cell lines are analyzed using quantitative proteomics. The results confirmed the role of transgelin in the migration of BT 549 cells and suggest the involvement of transgelin in apoptosis and small molecule biochemistry in PMC 42 cells. The context-dependent function of transgelin reflects the different molecular backgrounds of these cell lines, which differ in karyotypes, mutation statuses, and proteome profiles.
Collapse
Affiliation(s)
- Monika Dvorakova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic.,Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, 65653, Czech Republic
| | - Petr Lapcik
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | - Pavla Bouchalova
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, 61137, Czech Republic
| |
Collapse
|
6
|
Colleti C, Melo-Hanchuk TD, da Silva FRM, Saito Â, Kobarg J. Complex interactomes and post-translational modifications of the regulatory proteins HABP4 and SERBP1 suggest pleiotropic cellular functions. World J Biol Chem 2019; 10:44-64. [PMID: 31768228 PMCID: PMC6872977 DOI: 10.4331/wjbc.v10.i3.44] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 08/30/2019] [Accepted: 10/15/2019] [Indexed: 02/05/2023] Open
Abstract
The 57 kDa antigen recognized by the Ki-1 antibody, is also known as intracellular hyaluronic acid binding protein 4 and shares 40.7% identity and 67.4% similarity with serpin mRNA binding protein 1, which is also named CGI-55, or plasminogen activator inhibitor type-1-RNA binding protein-1, indicating that they might be paralog proteins, possibly with similar or redundant functions in human cells. Through the identification of their protein interactomes, both regulatory proteins have been functionally implicated in transcriptional regulation, mRNA metabolism, specifically RNA splicing, the regulation of mRNA stability, especially, in the context of the progesterone hormone response, and the DNA damage response. Both proteins also show a complex pattern of post-translational modifications, involving Ser/Thr phosphorylation, mainly through protein kinase C, arginine methylation and SUMOylation, suggesting that their functions and locations are highly regulated. Furthermore, they show a highly dynamic cellular localization pattern with localizations in both the cytoplasm and nucleus as well as punctuated localizations in both granular cytoplasmic protein bodies, upon stress, and nuclear splicing speckles. Several reports in the literature show altered expressions of both regulatory proteins in a series of cancers as well as mutations in their genes that may contribute to tumorigenesis. This review highlights important aspects of the structure, interactome, post-translational modifications, sub-cellular localization and function of both regulatory proteins and further discusses their possible functions and their potential as tumor markers in different cancer settings.
Collapse
Affiliation(s)
- Carolina Colleti
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Talita Diniz Melo-Hanchuk
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Flávia Regina Moraes da Silva
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| | - Ângela Saito
- Laboratório Nacional de Biociências, CNPEM, Campinas 13083-970, Brazil
| | - Jörg Kobarg
- Faculty of Pharmaceutical Sciences, University of Campinas, Campinas 13083-871, Brazil
- Institute of Biology, Departament of Biochemistry and Tissue Biology, University of Campinas, Campinas 13083-862, Brazil
| |
Collapse
|
7
|
Proteomics Identification and Validation of Desmocollin‐1 and Catechol‐O‐Methyltransferase as Proteins Associated with Breast Cancer Cell Migration and Metastasis. Proteomics 2019; 19:e1900073. [DOI: 10.1002/pmic.201900073] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 09/26/2019] [Indexed: 12/16/2022]
|
8
|
Arnold RJ, Saraswat S, Reilly JP. Analysis of Methylation, Acetylation, and Other Modifications in Bacterial Ribosomal Proteins. Methods Mol Biol 2019; 1934:293-307. [PMID: 31256386 DOI: 10.1007/978-1-4939-9055-9_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A wide variety of posttranslational modifications of expressed proteins are known to occur in living organisms (Krishna R, Wold F. Post-translational modification of proteins. In: Meister A (ed) Advances in enzymology and related areas of molecular biology. Wiley, New York, 1993, pp 265-296). Although their presence in an organism cannot be predicted from the genome, these modifications can play critical roles in protein structure and function. The identification of posttranslational modifications is critical to our understanding of the functions of proteins involved in important biological pathways and mass spectrometry offers a fast, accurate method for observing them. A combined top-down/bottom-up approach can be used for identification and localization of posttranslational modifications of ribosomal proteins. This chapter describes procedures for analyzing Escherichia coli ribosomal proteins and their modifications by matrix-assisted laser desorption ionization-time-of-flight (MALDI-TOF) mass spectrometry. It also covers the analysis of gram-negative Caulobacter crescentus and gram-positive Bacillus subtilis ribosomal proteins by electrospray quadrupole time-of-flight (ESI-QTOF) mass spectrometry. Confirmation of the occurrence and localization of PTMs is obtained through mass spectrometric analysis of tryptic peptides.
Collapse
Affiliation(s)
- Randy J Arnold
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - Suraj Saraswat
- Department of Chemistry, Indiana University, Bloomington, IN, USA
| | - James P Reilly
- Department of Chemistry, Indiana University, Bloomington, IN, USA.
| |
Collapse
|
9
|
Dvořáková M, Jeřábková J, Procházková I, Lenčo J, Nenutil R, Bouchal P. Transgelin is upregulated in stromal cells of lymph node positive breast cancer. J Proteomics 2015; 132:103-11. [PMID: 26639304 DOI: 10.1016/j.jprot.2015.11.025] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/12/2015] [Accepted: 11/26/2015] [Indexed: 12/20/2022]
Abstract
UNLABELLED Transgelin and transgelin-2 have been discussed as potential markers of various cancers. Here we identified increased transgelin level in lymph node positive vs. negative, low grade primary breast cancer tissues using 2-DE in the cohort of 12 patients. We further clinically validated 2-DE results in an independent cohort of 48 low grade breast cancer patients through untargeted and targeted proteomics analysis (iTRAQ-2D-LC-MS/MS, mTRAQ-SRM), at transcript level and using immunohistochemistry. Another group of 48 high grade tumors of different breast cancer subtypes was analyzed together with the low grade samples to test transgelin specificity for low grade tumors and to study transgelin relation to known molecular markers and histological features. The results confirmed transgelin connection with the lymph node metastasis. As a marker of a reactive tumor stroma, transgelin can be connected with the higher risk of metastasis development. Moreover, we observed significant down-regulation of transgelin in high vs. low grade tumors caused by decreased content of stromal cells (mainly expressing transgelin) in high grade tumor tissue. We also analyzed expression of transgelin-2 in the second cohort using proteomics and immunohistochemistry. Transgelin-2 was mainly expressed by epithelial cancer cells and its levels were increased in metastatic and poorly differentiated tumors. BIOLOGICAL SIGNIFICANCE Both transgelin and transgelin-2 have been previously described as potential markers of many types of cancer. We are specifying this connection to metastatic affection of lymph nodes and cell differentiation in breast cancer. In the wider context, the results of our study highlight tumor stroma as a source of cancer biomarkers and point out how measured levels of tissue markers can actually reflect cellular feature of cancer mass.
Collapse
Affiliation(s)
- Monika Dvořáková
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Jarmila Jeřábková
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Iva Procházková
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic
| | - Juraj Lenčo
- Institute of Molecular Pathology, Faculty of Military Health Sciences, University of Defence, Hradec Kralove, Czech Republic
| | - Rudolf Nenutil
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic
| | - Pavel Bouchal
- Masaryk Memorial Cancer Institute, Regional Centre for Applied Molecular Oncology, Brno, Czech Republic; Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
10
|
Camerini S, Mauri P. The role of protein and peptide separation before mass spectrometry analysis in clinical proteomics. J Chromatogr A 2014; 1381:1-12. [PMID: 25618357 DOI: 10.1016/j.chroma.2014.12.035] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 12/09/2014] [Accepted: 12/11/2014] [Indexed: 11/25/2022]
Abstract
The purpose of clinical proteomics is to characterise protein profiles of a plethora of diseases with the aim of finding specific biomarkers. These are particularly valuable for early diagnosis, and represent key molecules suitable to elucidate pathogenic mechanisms. Samples deriving from patients (i.e. blood, urine, cerebrospinal fluid, biopsies) are the sources for clinical proteomics. Due to the complexity of the extracted samples their direct analysis is unachievable. Any analytical clinical proteomics study should start with the choice of the optimal combination of strategies with respect to both sample preparations and MS approaches. Protein or peptide fractionation (off-line or on-line) is essential to reduce complexity of biological samples and to achieve the most complete and reproducible analysis. The aim of this review is to introduce the readers to a functional range of strategies to help scientists in their proteomics set up. In particular, the separation approaches of proteins or peptides (both gel-based and gel-free) are reviewed with special attention paid to their advantages and limitations, and to the different liquid chromatography techniques used to peptide fractionation after protein enzymatic digestion and before their detection. Finally, the role of mass spectrometry (MS) for protein identification and quantification is discussed including emerging MS data acquisition strategies.
Collapse
Affiliation(s)
- Serena Camerini
- Dept of Cell Biology and Neurosciences Higher Institute of Health (ISS), Rome, Italy
| | - Pierluigi Mauri
- Institute for Biomedical Technologies (ITB-CNR), Segrate, and Institute of Life Science - Scuola Superiore Sant'Anna, Pisa, Italy.
| |
Collapse
|
11
|
Saraygord-Afshari N, Naderi-Manesh H, Naderi M. Increasing proteome coverage for gel-based human tear proteome maps: towards a more comprehensive profiling. Biomed Chromatogr 2014; 29:1056-67. [DOI: 10.1002/bmc.3392] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 09/29/2014] [Accepted: 10/20/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Neda Saraygord-Afshari
- Department of Biophysics, Faculty of Biological Sciences; Tarbiat Modares University; Tehran Iran
| | - Hossein Naderi-Manesh
- Department of Biophysics, Faculty of Biological Sciences; Tarbiat Modares University; Tehran Iran
| | - Mostafa Naderi
- Department of Ophthalmology; Bina eye hospital; Tehran Iran
| |
Collapse
|
12
|
Wasslen KV, Tan LH, Manthorpe JM, Smith JC. Trimethylation enhancement using diazomethane (TrEnDi): rapid on-column quaternization of peptide amino groups via reaction with diazomethane significantly enhances sensitivity in mass spectrometry analyses via a fixed, permanent positive charge. Anal Chem 2014; 86:3291-9. [PMID: 24555738 DOI: 10.1021/ac403349c] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Defining cellular processes relies heavily on elucidating the temporal dynamics of proteins. To this end, mass spectrometry (MS) is an extremely valuable tool; different MS-based quantitative proteomics strategies have emerged to map protein dynamics over the course of stimuli. Herein, we disclose our novel MS-based quantitative proteomics strategy with unique analytical characteristics. By passing ethereal diazomethane over peptides on strong cation exchange resin within a microfluidic device, peptides react to contain fixed, permanent positive charges. Modified peptides display improved ionization characteristics and dissociate via tandem mass spectrometry (MS(2)) to form strong a2 fragment ion peaks. Process optimization and determination of reactive functional groups enabled a priori prediction of MS(2) fragmentation patterns for modified peptides. The strategy was tested on digested bovine serum albumin (BSA) and successfully quantified a peptide that was not observable prior to modification. Our method ionizes peptides regardless of proton affinity, thus decreasing ion suppression and permitting predictable multiple reaction monitoring (MRM)-based quantitation with improved sensitivity.
Collapse
Affiliation(s)
- Karl V Wasslen
- Department of Chemistry, Carleton University , Ottawa, Ontario K1S 5B6, Canada
| | | | | | | |
Collapse
|
13
|
Heger Z, Rodrigo MAM, Krizkova S, Zitka O, Beklova M, Kizek R, Adam V. Identification of estrogen receptor proteins in breast cancer cells using matrix-assisted laser desorption/ionization time of flight mass spectrometry (Review). Oncol Lett 2014; 7:1341-1344. [PMID: 24765135 PMCID: PMC3997732 DOI: 10.3892/ol.2014.1912] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2013] [Accepted: 12/06/2013] [Indexed: 01/03/2023] Open
Abstract
Estrogen receptors [ERs (subtypes α and β)], classified as a nuclear receptor super family, are intracellular proteins with an important biological role as the transcription factors for estrogen target genes. For ER-induced transcription, an interaction must exist between ligand and coregulators. Coregulators may stimulate (coactivators) or inhibit (corepressors) transcription, following binding with a specific region of the gene, called the estrogen response element. Misbalanced activity of coregulators or higher ligand concentrations may cause increased cell proliferation, resulting in specific types of cancer. These are exhibited as overexpression of ER proteins. Breast cancer currently ranks first in the incidence and second in the mortality of cancer in females worldwide. In addition, 70% of breast tumors are ERα positive and the importance of these proteins for diagnostic use is indisputable. Early diagnosis of the tumor and its classification has a large influence on the selection of appropriate therapy, as ER-positive tumors demonstrate a positive response to hormonal therapy. Matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI TOF MS) has been hypothesized to have great potential, as it offers reliable, robust and efficient analysis methods for biomarker monitoring and identification. The present review discusses ER protein analysis by MALDI TOF MS, including the crucial step of protein separation.
Collapse
Affiliation(s)
- Zbynek Heger
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno CZ-612 42, Czech Republic ; Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic
| | - Miguel Angel Merlos Rodrigo
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno CZ-612 42, Czech Republic
| | - Sona Krizkova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| | - Ondrej Zitka
- Department of Veterinary Ecology and Environmental Protection, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno CZ-612 42, Czech Republic ; Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| | - Miroslava Beklova
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic
| | - Rene Kizek
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| | - Vojtech Adam
- Department of Chemistry and Biochemistry, Faculty of Agronomy, Mendel University in Brno, Brno CZ-613 00, Czech Republic ; Central European Institute of Technology, Brno University of Technology, Brno CZ-616 00, Czech Republic
| |
Collapse
|
14
|
Ait-Belkacem R, Berenguer C, Villard C, Ouafik L, Figarella-Branger D, Chinot O, Lafitte D. MALDI imaging and in-source decay for top-down characterization of glioblastoma. Proteomics 2014; 14:1290-301. [PMID: 24376047 DOI: 10.1002/pmic.201300329] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Revised: 09/27/2013] [Accepted: 10/04/2013] [Indexed: 01/15/2023]
Abstract
Glioblastoma multiforme is one of the most common intracranial tumors encountered in adults. This tumor of very poor prognosis is associated with a median survival rate of approximately 14 months. One of the major issues to better understand the biology of these tumors and to optimize the therapy is to obtain the molecular structure of glioblastoma. MALDI molecular imaging enables location of molecules in tissues without labeling. However, molecular identification in situ is not an easy task. In this paper, we used MALDI imaging coupled to in-source decay to characterize markers of this pathology. We provided MALDI molecular images up to 30 μm spatial resolution of mouse brain tissue sections. MALDI images showed the heterogeneity of the glioblastoma. In the various zones and at various development stages of the tumor, using our top-down strategy, we identified several proteins. These proteins play key roles in tumorigenesis. Particular attention was given to the necrotic area with characterization of hemorrhage, one of the most important poor prognosis factors in glioblastoma.
Collapse
|
15
|
Maryáš J, Faktor J, Dvořáková M, Struhárová I, Grell P, Bouchal P. Proteomics in investigation of cancer metastasis: Functional and clinical consequences and methodological challenges. Proteomics 2014; 14:426-40. [DOI: 10.1002/pmic.201300264] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2013] [Revised: 09/16/2013] [Accepted: 10/04/2013] [Indexed: 01/05/2023]
Affiliation(s)
- Josef Maryáš
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
| | - Jakub Faktor
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Monika Dvořáková
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Iva Struhárová
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Peter Grell
- Department of Comprehensive Cancer Care; Masaryk Memorial Cancer Institute; Brno Czech Republic
| | - Pavel Bouchal
- Department of Biochemistry; Faculty of Science; Masaryk University; Brno Czech Republic
- Regional Centre for Applied Molecular Oncology; Masaryk Memorial Cancer Institute; Brno Czech Republic
| |
Collapse
|