1
|
Drongitis D, Caterino M, Verrillo L, Santonicola P, Costanzo M, Poeta L, Attianese B, Barra A, Terrone G, Lioi MB, Paladino S, Di Schiavi E, Costa V, Ruoppolo M, Miano MG. Deregulation of microtubule organization and RNA metabolism in Arx models for lissencephaly and developmental epileptic encephalopathy. Hum Mol Genet 2022; 31:1884-1908. [PMID: 35094084 PMCID: PMC9169459 DOI: 10.1093/hmg/ddac028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/10/2022] [Accepted: 01/26/2022] [Indexed: 11/18/2022] Open
Abstract
X-linked lissencephaly with abnormal genitalia (XLAG) and developmental epileptic encephalopathy-1 (DEE1) are caused by mutations in the Aristaless-related homeobox (ARX) gene, which encodes a transcription factor responsible for brain development. It has been unknown whether the phenotypically diverse XLAG and DEE1 phenotypes may converge on shared pathways. To address this question, a label-free quantitative proteomic approach was applied to the neonatal brain of Arx knockout (ArxKO/Y) and knock-in polyalanine (Arx(GCG)7/Y) mice that are respectively models for XLAG and DEE1. Gene ontology and protein-protein interaction analysis revealed that cytoskeleton, protein synthesis and splicing control are deregulated in an allelic-dependent manner. Decreased α-tubulin content was observed both in Arx mice and Arx/alr-1(KO) Caenorhabditis elegans ,and a disorganized neurite network in murine primary neurons was consistent with an allelic-dependent secondary tubulinopathy. As distinct features of Arx(GCG)7/Y mice, we detected eIF4A2 overexpression and translational suppression in cortex and primary neurons. Allelic-dependent differences were also established in alternative splicing (AS) regulated by PUF60 and SAM68. Abnormal AS repertoires in Neurexin-1, a gene encoding multiple pre-synaptic organizers implicated in synaptic remodelling, were detected in Arx/alr-1(KO) animals and in Arx(GCG)7/Y epileptogenic brain areas and depolarized cortical neurons. Consistent with a conserved role of ARX in modulating AS, we propose that the allelic-dependent secondary synaptopathy results from an aberrant Neurexin-1 repertoire. Overall, our data reveal alterations mirroring the overlapping and variant effects caused by null and polyalanine expanded mutations in ARX. The identification of these effects can aid in the design of pathway-guided therapy for ARX endophenotypes and NDDs with overlapping comorbidities.
Collapse
Affiliation(s)
- Denise Drongitis
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Lucia Verrillo
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Pamela Santonicola
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Loredana Poeta
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
- Department of Science, University of Basilicata, 85100 Potenza, Italy
| | - Benedetta Attianese
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Adriano Barra
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Gaetano Terrone
- Department of Translational Medicine, Child Neurology Unit, University of Naples “Federico II”, 80131 Naples, Italy
| | | | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, National Research Council of Italy, 80131, Naples, Italy
| | - Valerio Costa
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples “Federico II”, 80131 Naples, Italy
- CEINGE - Biotecnologie Avanzate s.c.a.r.l., 80145 Naples, Italy
| | - Maria Giuseppina Miano
- Institute of Genetics and Biophysics ``Adriano Buzzati-Traverso'', National Research Council of Italy, 80131, Naples, Italy
| |
Collapse
|
2
|
Kamaly N, Farokhzad OC, Corbo C. Nanoparticle protein corona evolution: from biological impact to biomarker discovery. NANOSCALE 2022; 14:1606-1620. [PMID: 35076049 DOI: 10.1039/d1nr06580g] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoparticles exposed to biological fluids such as blood, quickly interact with their surrounding milieu resulting in a biological coating that results in large part as a function of the physicochemical properties of the nanomaterial. The large nanoparticle surface area-to-volume ratio further augments binding of biological molecules and the resulting biomolecular or protein corona, once thought of as problematic biofouling, is now viewed as a rich source of biological information that can guide the development of nanomedicines. This review gives an overview of the utility of the protein corona in proteomic profiling and discusses how a better understanding of nano-bio interactions can accelerate the clinical translation of nanomedicines and facilitate the identification of disease-specific biomarkers. With the FDA requirement of the protein corona analysis of nanoparticles in place, it is envisaged that analyzing the protein corona of nanoparticles on a case-by-case basis can provide highly valuable nano-bio interface information that can aid and improve their clinical translation.
Collapse
Affiliation(s)
- Nazila Kamaly
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, W12 0BZ London, UK.
| | - Omid C Farokhzad
- Center for Nanomedicine and Department of Anaesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, 02115, USA.
| | - Claudia Corbo
- Department of Medicine and Surgery, Center for Nanomedicine NANOMIB, University of Milan Bicocca, Milan, Italy.
- IRCCS Istituto Ortopedico Galeazzi, Milan, Italy
| |
Collapse
|
3
|
Di Somma A, Canè C, Moretta A, Cirillo A, Cemič F, Duilio A. Characterization of the Proteins Involved in the DNA Repair Mechanism in M. smegmatis. Int J Mol Sci 2020; 21:ijms21155391. [PMID: 32751237 PMCID: PMC7432924 DOI: 10.3390/ijms21155391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 11/26/2022] Open
Abstract
Several alkylating agents that either occur in the environment or are self-produced can cause DNA-damaging injuries in bacterial cells. Therefore, all microorganisms have developed repair systems that are able to counteract DNA alkylation damage. The adaptive response to alkylation stress in Escherichia coli consists of the Ada operon, which has been widely described; however, the homologous system in Mycobacterium tuberculosis (MTB) has been shown to have a different genetic organization but it is still largely unknown. In order to describe the defense system of MTB, we first investigated the proteins involved in the repair mechanism in the homologous non-pathogenic mycobacterium M. smegmatis. Ogt, Ada-AlkA and FadE8 proteins were recombinantly produced, purified and characterized. The biological role of Ogt was examined using proteomic experiments to identify its protein partners in vivo under stress conditions. Our results suggested the formation of a functional complex between Ogt and Ada-AlkA, which was confirmed both in silico by docking calculations and by gel filtration chromatography. We propose that this stable association allows the complex to fulfill the biological roles exerted by Ada in the homologous E. coli system. Finally, FadE8 was demonstrated to be structurally and functionally related to its E. coli homologous, AidB.
Collapse
Affiliation(s)
- Angela Di Somma
- Department of Chemical Sciences, Università Federico II di, 80126 Naples, Italy; (A.D.S.); (C.C.)
- Istituto Nazionale Biostrutture Biostrumentazioni, INBB, 00136 Rome, Italy
| | - Carolina Canè
- Department of Chemical Sciences, Università Federico II di, 80126 Naples, Italy; (A.D.S.); (C.C.)
- CEINGE Biotecnologie Avanzate, 80145 Naples, Italy;
| | - Antonio Moretta
- Department of Science, Università degli Studi della Basilicata, 85100 Potenza, Italy;
| | | | - Franz Cemič
- Department of Mathematics, Natural Sciences and Computer Science, University of Applied Sciences Giessen, Wiesenstr. 14, 35390 Giessen, Germany;
| | - Angela Duilio
- Department of Chemical Sciences, Università Federico II di, 80126 Naples, Italy; (A.D.S.); (C.C.)
- Correspondence:
| |
Collapse
|
4
|
De Pasquale V, Costanzo M, Siciliano RA, Mazzeo MF, Pistorio V, Bianchi L, Marchese E, Ruoppolo M, Pavone LM, Caterino M. Proteomic Analysis of Mucopolysaccharidosis IIIB Mouse Brain. Biomolecules 2020; 10:biom10030355. [PMID: 32111039 PMCID: PMC7175334 DOI: 10.3390/biom10030355] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 02/17/2020] [Accepted: 02/24/2020] [Indexed: 02/07/2023] Open
Abstract
Mucopolysaccharidosis IIIB (MPS IIIB) is an inherited metabolic disease due to deficiency of α-N-Acetylglucosaminidase (NAGLU) enzyme with subsequent storage of undegraded heparan sulfate (HS). The main clinical manifestations of the disease are profound intellectual disability and neurodegeneration. A label-free quantitative proteomic approach was applied to compare the proteome profile of brains from MPS IIIB and control mice to identify altered neuropathological pathways of MPS IIIB. Proteins were identified through a bottom up analysis and 130 were significantly under-represented and 74 over-represented in MPS IIIB mouse brains compared to wild type (WT). Multiple bioinformatic analyses allowed to identify three major clusters of the differentially abundant proteins: proteins involved in cytoskeletal regulation, synaptic vesicle trafficking, and energy metabolism. The proteome profile of NAGLU-/- mouse brain could pave the way for further studies aimed at identifying novel therapeutic targets for the MPS IIIB. Data are available via ProteomeXchange with the identifier PXD017363.
Collapse
Affiliation(s)
- Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
| | - Michele Costanzo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
- CEINGE-Biotecnologie Avanzate scarl, 80145 Naples, Italy;
| | | | | | - Valeria Pistorio
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
| | - Laura Bianchi
- Laboratory of Functional Proteomics, Department of Life Sciences, University of Siena, 53100 Siena, Italy;
| | - Emanuela Marchese
- CEINGE-Biotecnologie Avanzate scarl, 80145 Naples, Italy;
- Department of Mental Health and Preventive Medicine, University of Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Margherita Ruoppolo
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
- CEINGE-Biotecnologie Avanzate scarl, 80145 Naples, Italy;
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
- Correspondence: ; Tel.: +39-081-7463043
| | - Marianna Caterino
- Department of Molecular Medicine and Medical Biotechnology, School of Medicine, University of Naples Federico II, 80131 Naples, Italy; (V.D.P.); (M.C.); (V.P.); (M.R.); (M.C.)
- CEINGE-Biotecnologie Avanzate scarl, 80145 Naples, Italy;
| |
Collapse
|
5
|
Orlandella FM, Mariniello RM, Iervolino PLC, Imperlini E, Mandola A, Verde A, De Stefano AE, Pane K, Franzese M, Esposito S, Basolo F, Orrù S, Salvatore G. miR-650 promotes motility of anaplastic thyroid cancer cells by targeting PPP2CA. Endocrine 2019; 65:582-594. [PMID: 30927143 DOI: 10.1007/s12020-019-01910-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 03/18/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE Aberrant expression of miRNAs is crucial in several tissues tumorigenesis including thyroid. Recent studies demonstrated that miR-650 plays different role depending on the cancer type. Herein, we investigated the role of miR-650 in thyroid carcinoma. METHODS The expression of miR-650 was analyzed in human thyroid tissues by q-RT-PCR. Anaplastic (8505C, CAL62, SW1736) and papillary (TPC-1) thyroid cancer cell lines were used to dissect the role of miR-650 on malignant hallmarks of transformation. Label-free proteomic analysis was exploited to unravel the targets of miR-650, while luciferase reporter assay and functional experiments were performed to confirm a selected target. Spearman's rank correlation test was used to assess the association between miR-650 and its target in human thyroid cancer tissues. RESULTS miR-650 is over-expressed in anaplastic (ATC) thyroid carcinoma where it enhances cell migration and invasion. Proteomic label-free and bioinformatics analysis revealed that the serine-threonine protein phosphatase 2 catalytic subunit alpha (PPP2CA) is a target of miR-650; these finding were confirmed by luciferase assay. Restoration of PPP2CA mRNA, deprived of its 3'UTR, is able to revert the malignant phenotype induced by miR-650 in HEK-293 cells. Importantly, PPP2CA is down-regulated in ATC tissues and is inversely correlated with miR-650. CONCLUSIONS miR-650 displayed oncogenic activity in ATC cells through targeting PPP2CA phosphatase. These results suggest that miR-650/PPP2CA axis could be modulated to interfere with motile ability of thyroid carcinoma cells.
Collapse
Affiliation(s)
| | - Raffaela Mariarosaria Mariniello
- CEINGE - Biotecnologie Avanzate s.c. a r.l., Via Gaetano Salvatore 486, 80145, Napoli, Italy
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133, Napoli, Italy
| | | | - Esther Imperlini
- IRCCS SDN, Napoli, Via Emanuele Gianturco 113, 80143, Napoli, Italy
| | - Annalisa Mandola
- CEINGE - Biotecnologie Avanzate s.c. a r.l., Via Gaetano Salvatore 486, 80145, Napoli, Italy
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133, Napoli, Italy
| | - Anna Verde
- CEINGE - Biotecnologie Avanzate s.c. a r.l., Via Gaetano Salvatore 486, 80145, Napoli, Italy
| | - Anna Elisa De Stefano
- CEINGE - Biotecnologie Avanzate s.c. a r.l., Via Gaetano Salvatore 486, 80145, Napoli, Italy
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133, Napoli, Italy
| | - Katia Pane
- IRCCS SDN, Napoli, Via Emanuele Gianturco 113, 80143, Napoli, Italy
| | - Monica Franzese
- IRCCS SDN, Napoli, Via Emanuele Gianturco 113, 80143, Napoli, Italy
| | - Silvia Esposito
- CEINGE - Biotecnologie Avanzate s.c. a r.l., Via Gaetano Salvatore 486, 80145, Napoli, Italy
| | - Fulvio Basolo
- Dipartimento di Patologia Chirugica, Medica, Molecolare e dell' Area Critica dell' Università di Pisa, 56126, Pisa, Italy
| | - Stefania Orrù
- IRCCS SDN, Napoli, Via Emanuele Gianturco 113, 80143, Napoli, Italy
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133, Napoli, Italy
| | - Giuliana Salvatore
- IRCCS SDN, Napoli, Via Emanuele Gianturco 113, 80143, Napoli, Italy.
- Dipartimento di Scienze Motorie e del Benessere, Università "Parthenope", Via Medina 40, 80133, Napoli, Italy.
| |
Collapse
|
6
|
Imperlini E, Gnecchi M, Rognoni P, Sabidò E, Ciuffreda MC, Palladini G, Espadas G, Mancuso FM, Bozzola M, Malpasso G, Valentini V, Palladini G, Orrù S, Ferraro G, Milani P, Perlini S, Salvatore F, Merlini G, Lavatelli F. Proteotoxicity in cardiac amyloidosis: amyloidogenic light chains affect the levels of intracellular proteins in human heart cells. Sci Rep 2017; 7:15661. [PMID: 29142197 PMCID: PMC5688098 DOI: 10.1038/s41598-017-15424-3] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 10/27/2017] [Indexed: 12/31/2022] Open
Abstract
AL amyloidosis is characterized by widespread deposition of immunoglobulin light chains (LCs) as amyloid fibrils. Cardiac involvement is frequent and leads to life-threatening cardiomyopathy. Besides the tissue alteration caused by fibrils, clinical and experimental evidence indicates that cardiac damage is also caused by proteotoxicity of prefibrillar amyloidogenic species. As in other amyloidoses, the damage mechanisms at cellular level are complex and largely undefined. We have characterized the molecular changes in primary human cardiac fibroblasts (hCFs) exposed in vitro to soluble amyloidogenic cardiotoxic LCs from AL cardiomyopathy patients. To evaluate proteome alterations caused by a representative cardiotropic LC, we combined gel-based with label-free shotgun analysis and performed bioinformatics and data validation studies. To assess the generalizability of our results we explored the effects of multiple LCs on hCF viability and on levels of a subset of cellular proteins. Our results indicate that exposure of hCFs to cardiotropic LCs translates into proteome remodeling, associated with apoptosis activation and oxidative stress. The proteome alterations affect proteins involved in cytoskeletal organization, protein synthesis and quality control, mitochondrial activity and metabolism, signal transduction and molecular trafficking. These results support and expand the concept that soluble amyloidogenic cardiotropic LCs exert toxic effects on cardiac cells.
Collapse
Affiliation(s)
- Esther Imperlini
- IRCCS SDN, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy
| | - Massimiliano Gnecchi
- Coronary Care Unit and Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, Unit of Cardiology, University of Pavia, Pavia, Italy.,Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Paola Rognoni
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Eduard Sabidò
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Maria Chiara Ciuffreda
- Coronary Care Unit and Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Giovanni Palladini
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Guadalupe Espadas
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Francesco Mattia Mancuso
- Centre for Genomic Regulation (CRG), The Barcelona Institute for Science and Technology, Barcelona, Spain.,Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Margherita Bozzola
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giuseppe Malpasso
- Coronary Care Unit and Laboratory of Experimental Cardiology for Cell and Molecular Therapy, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Veronica Valentini
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Giuseppina Palladini
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Stefania Orrù
- IRCCS SDN, Naples, Italy.,CEINGE-Biotecnologie Avanzate, Naples, Italy.,Department of Movement Sciences, "Parthenope" University, Naples, Italy
| | - Giovanni Ferraro
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Paolo Milani
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Stefano Perlini
- Department of Internal Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate, Naples, Italy. .,Department of Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", Pavia, Italy.
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy.
| | - Francesca Lavatelli
- Amyloidosis Research and Treatment Center, Department of Molecular Medicine, Fondazione IRCCS Policlinico San Matteo and University of Pavia, Pavia, Italy
| |
Collapse
|
7
|
Corbo C, Molinaro R, Taraballi F, Toledano Furman NE, Hartman KA, Sherman MB, De Rosa E, Kirui DK, Salvatore F, Tasciotti E. Unveiling the in Vivo Protein Corona of Circulating Leukocyte-like Carriers. ACS NANO 2017; 11:3262-3273. [PMID: 28264157 DOI: 10.1021/acsnano.7b00376] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Understanding interactions occurring at the interface between nanoparticles and biological components is an urgent challenge in nanomedicine due to their effect on the biological fate of nanoparticles. After the systemic injection of nanoparticles, a protein corona constructed by blood components surrounds the carrier's surface and modulates its pharmacokinetics and biodistribution. Biomimicry-based approaches in nanotechnology attempt to imitate what happens in nature in order to transfer specific natural functionalities to synthetic nanoparticles. Several biomimetic formulations have been developed, showing superior in vivo features as a result of their cell-like identity. We have recently designed biomimetic liposomes, called leukosomes, which recapitulate the ability of leukocytes to target inflamed endothelium and escape clearance by the immune system. To gain insight into the properties of leukosomes, we decided to investigate their protein corona in vivo. So far, most information about the protein corona has been obtained using in vitro experiments, which have been shown to minimally reproduce in vivo phenomena. Here we directly show a time-dependent quantitative and qualitative analysis of the protein corona adsorbed in vivo on leukosomes and control liposomes. We observed that leukosomes absorb fewer proteins than liposomes, and we identified a group of proteins specifically adsorbed on leukosomes. Moreover, we hypothesize that the presence of macrophage receptors on leukosomes' surface neutralizes their protein corona-meditated uptake by immune cells. This work unveils the protein corona of a biomimetic carrier and is one of the few studies on the corona performed in vivo.
Collapse
Affiliation(s)
- Claudia Corbo
- CEINGE-Biotecnologie Avanzate s.c.a r.l. , Via G. Salvatore 486, Naples, 80145, Italy
| | | | | | | | | | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch , Galveston, Texas 77555, United States
| | | | | | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate s.c.a r.l. , Via G. Salvatore 486, Naples, 80145, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II , Via Sergio Pansini 5, Naples, 80131, Italy
| | - Ennio Tasciotti
- Department of Orthopedics and Sports Medicine, Houston Methodist Hospital , 6565 Fannin Street, Houston, Texas 77030, United States
| |
Collapse
|
8
|
Caterino M, Chandler RJ, Sloan JL, Dorko K, Cusmano-Ozog K, Ingenito L, Strom SC, Imperlini E, Scolamiero E, Venditti CP, Ruoppolo M. The proteome of methylmalonic acidemia (MMA): the elucidation of altered pathways in patient livers. MOLECULAR BIOSYSTEMS 2016; 12:566-74. [PMID: 26672496 DOI: 10.1039/c5mb00736d] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Methylmalonic acidemia (MMA) is a heterogeneous and severe autosomal recessive inborn error of metabolism most commonly caused by the deficient activity of the vitamin B12 dependent enzyme, methylmalonyl-CoA mutase (MUT). The main treatment for MMA patients is the dietary restriction of propiogenic amino acids and carnitine supplementation. Despite treatment, the prognosis for vitamin B12 non-responsive patients remains poor and is associated with neonatal lethality, persistent morbidity and decreased life expectancy. While multi-organ pathology is a feature of MMA, the liver is severely impacted by mitochondrial dysfunction which likely underlies the metabolic instability experienced by the patients. Liver and/or combined liver/kidney transplantation is therefore sometimes performed in severely affected patients. Using liver specimens from donors and MMA patients undergoing elective liver transplantation collected under a dedicated natural history protocol (clinicaltrials.gov: NCT00078078), we employed proteomics to characterize the liver pathology and impaired hepatic metabolism observed in the patients. Pathway analysis revealed perturbations of enzymes involved in energy metabolism, gluconeogenesis and Krebs cycle anaplerosis. Our findings identify new pathophysiologic and therapeutic targets that could be valuable for designing alternative therapies to alleviate clinical manifestations seen in this disorder.
Collapse
Affiliation(s)
- Marianna Caterino
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli, "Federico II", Naples, Italy and CEINGE Biotecnologie Avanzate, Naples, Italy
| | - Randy J Chandler
- Organic Acid Research Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institute of Health, Bethesda MD 2092, USA.
| | - Jennifer L Sloan
- Organic Acid Research Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institute of Health, Bethesda MD 2092, USA.
| | - Kenneth Dorko
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - Kristina Cusmano-Ozog
- Division Genetics and Metabolism, Children's National Medical Center, Washington DC, USA
| | | | - Stephen C Strom
- Department of Laboratory Medicine, Division of Pathology, Karolinska Institutet, Stockholm, Sweden
| | | | | | - Charles P Venditti
- Organic Acid Research Section, Genetics and Molecular Biology Branch, National Human Genome Research Institute, National Institute of Health, Bethesda MD 2092, USA.
| | - Margherita Ruoppolo
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli, "Federico II", Naples, Italy and CEINGE Biotecnologie Avanzate, Naples, Italy
| |
Collapse
|
9
|
Corbo C, Parodi A, Evangelopoulos M, Engler DA, Matsunami RK, Engler AC, Molinaro R, Scaria S, Salvatore F, Tasciotti E. Proteomic Profiling of a Biomimetic Drug Delivery Platform. Curr Drug Targets 2016; 16:1540-7. [PMID: 25382209 DOI: 10.2174/1389450115666141109211413] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 10/31/2014] [Indexed: 01/01/2023]
Abstract
Current delivery platforms are typically designed for prolonged circulation that favors superior accumulation of the payload in the targeted tissue. The design of efficient surface modifications determines both a longer circulation time and targeting abilities of particles. The optimization of synthesis protocols to efficiently combine targeting molecules and elements that allow for an increased circulation time can be challenging and almost impossible when several functional elements are needed. On the other hand, in the last decade, the development of bioinspired technologies was proposed as a new approach with which to increase particle safety, biocompatibility and targeting, while maintaining the synthesis protocols simple and reproducible. Recently, we developed a new drug delivery system inspired by the biology of immune cells called leukolike vector (LLV) and formed by a nanoporous silicon core and a shell derived from the leucocyte cell membrane. The goal of this study is to investigate the protein content of the LLV. Here we report the proteomic profiling of the LLV and demonstrate that our approach can be used to modify the surface of synthetic particles with more than 150 leukocyte membrane associated proteins that determine particle safety, circulation time and targeting abilities towards inflamed endothelium.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Ennio Tasciotti
- Department of Nanomedicine, The Houston Methodist Research Institute, Houston, 6670 Bertner Avenue, Houston Texas 77030, USA.
| |
Collapse
|
10
|
Corbo C, Molinaro R, Taraballi F, Toledano Furman NE, Sherman MB, Parodi A, Salvatore F, Tasciotti E. Effects of the protein corona on liposome-liposome and liposome-cell interactions. Int J Nanomedicine 2016; 11:3049-63. [PMID: 27445473 PMCID: PMC4938145 DOI: 10.2147/ijn.s109059] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
A thorough understanding of interactions occurring at the interface between nanocarriers and biological systems is crucial to predict and interpret their biodistribution, targeting, and efficacy, and thus design more effective drug delivery systems. Upon intravenous injection, nanoparticles are coated by a protein corona (PC). This confers a new biological identity on the particles that largely determines their biological fate. Liposomes have great pharmaceutical versatility, so, as proof of concept, their PC has recently been implicated in the mechanism and efficiency of their internalization into the cell. In an attempt to better understand the interactions between nanocarriers and biological systems, we analyzed the plasma proteins adsorbed on the surface of multicomponent liposomes. Specifically, we analyzed the physical properties and ultrastructure of liposome/PC complexes and the aggregation process that occurs when liposomes are dispersed in plasma. The results of combined confocal microscopy and flow cytometry experiments demonstrated that the PC favors liposome internalization by both macrophages and tumor cells. This work provides insights into the effects of the PC on liposomes' physical properties and, consequently, liposome-liposome and liposome-cell interactions.
Collapse
Affiliation(s)
- Claudia Corbo
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
- CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
| | - Roberto Molinaro
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Francesca Taraballi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch, Galveston, TX, USA
| | - Alessandro Parodi
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Francesco Salvatore
- CEINGE-Biotecnologie Avanzate s.c.a r.l., Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Ennio Tasciotti
- Center for Biomimetic Medicine, Houston Methodist Research Institute, Houston, TX, USA
- Department of Orthopedics, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
11
|
Mass Spectrometry-Based Metabolomic and Proteomic Strategies in Organic Acidemias. BIOMED RESEARCH INTERNATIONAL 2016; 2016:9210408. [PMID: 27403441 PMCID: PMC4923558 DOI: 10.1155/2016/9210408] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 05/15/2016] [Indexed: 12/17/2022]
Abstract
Organic acidemias (OAs) are inherited metabolic disorders caused by deficiency of enzymatic activities in the catabolism of amino acids, carbohydrates, or lipids. These disorders result in the accumulation of mono-, di-, or tricarboxylic acids, generally referred to as organic acids. The OA outcomes can involve different organs and/or systems. Some OA disorders are easily managed if promptly diagnosed and treated, whereas, in others cases, such as propionate metabolism-related OAs (propionic acidemia, PA; methylmalonic acidemia, MMA), neither diet, vitamin therapy, nor liver transplantation appears to prevent multiorgan impairment. Here, we review the recent developments in dissecting molecular bases of OAs by using integration of mass spectrometry- (MS-) based metabolomic and proteomic strategies. MS-based techniques have facilitated the rapid and economical evaluation of a broad spectrum of metabolites in various body fluids, also collected in small samples, like dried blood spots. This approach has enabled the timely diagnosis of OAs, thereby facilitating early therapeutic intervention. Besides providing an overview of MS-based approaches most frequently used to study the molecular mechanisms underlying OA pathophysiology, we discuss the principal challenges of metabolomic and proteomic applications to OAs.
Collapse
|
12
|
Capobianco V, Caterino M, Iaffaldano L, Nardelli C, Sirico A, Del Vecchio L, Martinelli P, Pastore L, Pucci P, Sacchetti L. Proteome analysis of human amniotic mesenchymal stem cells (hA-MSCs) reveals impaired antioxidant ability, cytoskeleton and metabolic functionality in maternal obesity. Sci Rep 2016; 6:25270. [PMID: 27125468 PMCID: PMC4850482 DOI: 10.1038/srep25270] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 04/13/2016] [Indexed: 12/20/2022] Open
Abstract
Maternal obesity increases the risk of obesity and/or obesity-related diseases in the offspring of animal models. The aim of this study was to identify metabolic dysfunctions that could represent an enhanced risk for human obesity or obesity-related diseases in newborn or in adult life, similar to what occurs in animal models. To this aim, we studied the proteome of 12 obese (Ob-) and 6 non-obese (Co-) human amniotic mesenchymal stem cells (hA-MSCs) obtained from women at delivery by cesarean section (pre-pregnancy body mass index [mean ± SD]: 42.7 ± 7.7 and 21.3 ± 3.3 kg/m2, respectively). The proteome, investigated by two-dimensional fluorescence difference gel electrophoresis/mass spectrometry, revealed 62 differently expressed proteins in Ob- vs Co-hA-MSCs (P < 0.05), nine of which were confirmed by western blotting. Bioinformatics analysis showed that these 62 proteins are involved in several statistically significant pathways (P < 0.05), including the stress response, cytoskeleton and metabolic pathways. Oxidative stress was shown to be an early triggering factor of tissue fat accumulation and obesity-related disorders in the offspring of obese animal models. Our finding of a reduced stress response in Ob-hA-MSCs suggests that a similar mechanism could occur also in humans. Long-term follow-up studies of newborns of obese mothers are required to verify this hypothesis.
Collapse
Affiliation(s)
- Valentina Capobianco
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Marianna Caterino
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Laura Iaffaldano
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy
| | - Carmela Nardelli
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Angelo Sirico
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Via S. Pansini 5, 80131 Naples, Italy
| | - Luigi Del Vecchio
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Pasquale Martinelli
- Dipartimento di Neuroscienze e Scienze Riproduttive ed Odontostomatologiche, Via S. Pansini 5, 80131 Naples, Italy
| | - Lucio Pastore
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy.,Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Via S. Pansini 5, 80131 Naples, Italy
| | - Pietro Pucci
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy.,Dipartimento di Scienze chimiche, Via Cintia, Complesso Monte Sant'Angelo 21, 80126 Naples, Italy
| | - Lucia Sacchetti
- CEINGE-Biotecnologie Avanzate S.C.a R.L., Via Gaetano Salvatore 486, 80145 Naples, Italy
| |
Collapse
|
13
|
Caterino M, Pastore A, Strozziero MG, Di Giovamberardino G, Imperlini E, Scolamiero E, Ingenito L, Boenzi S, Ceravolo F, Martinelli D, Dionisi-Vici C, Ruoppolo M. The proteome of cblC defect: in vivo elucidation of altered cellular pathways in humans. J Inherit Metab Dis 2015; 38:969-79. [PMID: 25585586 DOI: 10.1007/s10545-014-9806-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2014] [Revised: 12/17/2014] [Accepted: 12/19/2014] [Indexed: 12/26/2022]
Abstract
Methylmalonic acidemia with homocystinuria, cobalamin deficiency type C (cblC) (MMACHC) is the most common inborn error of cobalamin metabolism. Despite a multidrug treatment, the long-term follow-up of early-onset patients is often unsatisfactory, with progression of neurological and ocular impairment. Here, the in-vivo proteome of control and MMACHC lymphocytes (obtained from patients under standard treatment with OHCbl, betaine, folate and L-carnitine) was quantitatively examined by two dimensional differential in-gel electrophoresis (2D-DIGE) and mass spectrometry. Twenty three proteins were found up-regulated and 38 proteins were down-regulated. Consistent with in vivo studies showing disturbance of glutathione metabolism, a deregulation in proteins involved in cellular detoxification, especially in glutathione metabolism was found. In addition, relevant changes were observed in the expression levels of proteins involved in intracellular trafficking and protein folding, energy metabolism, cytoskeleton organization and assembly. This study demonstrates relevant changes in the proteome profile of circulating lymphocytes isolated from treated cblC patients. Some results confirm previous observations in vivo on fibroblast, thus concluding that some dysregulation is ubiquitous. On the other hand, new findings could be tissue-specific. These observations expand our current understanding of the cblC disease and may ignite new research and therapeutic strategies to treat this disorder.
Collapse
|
14
|
Mercurio S, Aspesi A, Silengo L, Altruda F, Dianzani I, Chiabrando D. Alteration of heme metabolism in a cellular model of Diamond-Blackfan anemia. Eur J Haematol 2015; 96:367-74. [PMID: 26058344 DOI: 10.1111/ejh.12599] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/03/2015] [Indexed: 01/23/2023]
Abstract
Diamond-Blackfan anemia (DBA) is a congenital pure red cell aplasia often associated with skeletal malformations. Mutations in ribosomal protein coding genes, mainly in RPS19, account for the majority of DBA cases. The molecular mechanisms underlying DBA pathogenesis are still not completely understood. Alternative spliced isoforms of FLVCR1 (feline leukemia virus subgroup C receptor 1) transcript coding for non-functional proteins have been reported in some DBA patients. Consistently, a phenotype very close to DBA has been described in animal models of FLVCR1 deficiency. FLVCR1 gene codes for two proteins: the plasma membrane heme exporter FLVCR1a and the mitochondrial heme exporter FLVCR1b. The coordinated expression of both FLVCR1 isoforms regulates an intracellular heme pool, necessary for proper expansion and differentiation of erythroid precursors. Here, we investigate the role of FLVCR1 isoforms in a cellular model of DBA. RPS19-downregulated TF1 cells show reduced FLVCR1a and FLVCR1b mRNA levels associated with heme overload. The downregulation of FLVCR1 isoforms affects cell cycle progression and apoptosis in differentiating K562 cells, a phenotype similar to DBA. Taken together, these data suggest that alteration of heme metabolism could play a role in the pathogenesis of DBA.
Collapse
Affiliation(s)
- Sonia Mercurio
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Anna Aspesi
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Lorenzo Silengo
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Fiorella Altruda
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| | - Irma Dianzani
- Department of Health Sciences, University of Eastern Piedmont, Novara, Italy
| | - Deborah Chiabrando
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Torino, Torino, Italy
| |
Collapse
|
15
|
Imperlini E, Spaziani S, Mancini A, Caterino M, Buono P, Orrù S. Synergistic effect of DHT and IGF-1 hyperstimulation in human peripheral blood lymphocytes. Proteomics 2015; 15:1813-8. [PMID: 25669835 DOI: 10.1002/pmic.201400242] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 12/05/2014] [Accepted: 02/04/2015] [Indexed: 02/01/2023]
Abstract
The abuse of mixed or combined performance-enhancing drugs is widespread among athletes and amateurs, adults and adolescents. Clinical studies demonstrated that misuse of these doping agents is associated with serious adverse effects to many organs in human. Previously, we demonstrated in human peripheral blood lymphocytes that high doses of anabolic androgenic steroids, such as dihydrotestosterone (DHT) and growth factors, such as insulin-like growth factor-1 (IGF-1), have effects at gene and protein levels. Supraphysiological treatments of DHT and IGF-1 affected the expression of genes involved in skeletal muscle disorders as well as in cell-mediated immunological response. At protein level, DHT hyperdosage affects cell motility and apoptosis; IGF-1 hyperstimulation triggers an active cytoskeletal reorganization and an overproduction of immune response- and inflammation-related cytokines. In this study, we investigate the combined effects of DHT and IGF-1 hyperdosage in peripheral blood lymphocytes using a differential proteomic approach. DHT and IGF-1 combined treatment affects cell adhesion, migration, and survival through modulation of expression levels of cytokines and paxillin-signaling-related proteins, and activation of several pathways downstream focal adhesion kinase. Our results indicate a synergistic effect of DHT and IGF-1 which has potential implications for health risk factors.
Collapse
Affiliation(s)
| | - Sara Spaziani
- DSMB, University of Naples "Parthenope,", Naples, Italy
| | - Annamaria Mancini
- DSMB, University of Naples "Parthenope,", Naples, Italy.,CEINGE Biotecnologie Avanzate scarl, Naples, Italy
| | | | - Pasqualina Buono
- Fondazione IRCCS SDN, Naples, Italy.,DSMB, University of Naples "Parthenope,", Naples, Italy
| | - Stefania Orrù
- Fondazione IRCCS SDN, Naples, Italy.,DSMB, University of Naples "Parthenope,", Naples, Italy
| |
Collapse
|
16
|
Caterino M, Aspesi A, Pavesi E, Imperlini E, Pagnozzi D, Ingenito L, Santoro C, Dianzani I, Ruoppolo M. Analysis of the interactome of ribosomal protein S19 mutants. Proteomics 2014; 14:2286-96. [DOI: 10.1002/pmic.201300513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 06/16/2014] [Accepted: 07/24/2014] [Indexed: 02/03/2023]
Affiliation(s)
| | - Anna Aspesi
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | - Elisa Pavesi
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | | | | | | | - Claudio Santoro
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | - Irma Dianzani
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | - Margherita Ruoppolo
- CEINGE Biotecnologie Avanzate scarl; Napoli Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Universita’ di Napoli “Federico II”; Napoli Italy
| |
Collapse
|
17
|
Spaziani S, Imperlini E, Mancini A, Caterino M, Buono P, Orrù S. Insulin-like growth factor 1 receptor signaling induced by supraphysiological doses of IGF-1 in human peripheral blood lymphocytes. Proteomics 2014; 14:1623-9. [PMID: 24753496 DOI: 10.1002/pmic.201300318] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 02/18/2014] [Accepted: 04/14/2014] [Indexed: 01/08/2023]
Abstract
Insulin-like growth factor-1 (IGF-1) mediates some of growth hormone anabolic functions through its receptor, IGF-1R. Following ligand binding, intracellular signaling pathways are activated favouring proliferation, cell survival, tissue growth, development, and differentiation. IGF-1 is included in the World Anti-Doping Agency Prohibited List. While the evidence for IGF-1 as performance-enhancing substrate in healthy humans is still weak, clinical studies demonstrated that the endogenous growth hormone/IGF-1 excess is associated with cardiovascular implications. Previously, we demonstrated that human peripheral blood lymphocytes represent a suitable system to identify a gene signature, related to dihydrotestosterone or IGF-1 abuse, independent from the type of sport. In addition, in a proteomic study, we demonstrated that dihydrotestosterone hyperdosage affects cell motility and apoptosis. Here, we investigate the doping action of IGF-1 by means of a differential proteomic approach and specific protein arrays, revealing an active cytoskeletal reorganization mediated by Stat-1; moreover, IGF-1 stimulation produces a sustained activation of different signaling pathways as well as an overproduction of cytokines positively related to immune response and inflammation. In conclusion, these data indicate that, following IGF-1 hyperdosage, circulating peripheral blood lymphocytes could be more prone to transendothelial migration.
Collapse
Affiliation(s)
- Sara Spaziani
- DSMB, University of Naples "Parthenope,", Naples, Italy
| | | | | | | | | | | |
Collapse
|
18
|
Gemei M, Corbo C, D'Alessio F, Di Noto R, Vento R, Del Vecchio L. Surface proteomic analysis of differentiated versus stem-like osteosarcoma human cells. Proteomics 2013; 13:3293-7. [PMID: 24106197 DOI: 10.1002/pmic.201300170] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 07/23/2013] [Accepted: 08/21/2013] [Indexed: 01/09/2023]
Abstract
Cancer stem cell characterization represents a breakthrough in cancer research. Despite evidence showing the existence and the role of cancer stem cells in osteosarcoma (OS) onset and progression, little is known about their specific surface phenotype. To address this issue, we carried out a cytometric analysis with an antibody-array comprising 245 membrane proteins comparing the stem and differentiated OS cells. As experimental model, we chose the stem-like cell line 3aminobenzamide-OS and its parental, differentiated, cell line MG63. We identified 50 differentially expressed, 23 homogeneously expressed, and 172 not expressed proteins in the two cell line models, thus defining a surface protein signature specific for each of them. Furthermore, we selected ERK1/2 (p44/42 mitogen-activated protein kinases) as a potential pathway correlated with processes that characterize tumorigenic potential and stemness of 3aminobenzamide-OS cells.
Collapse
Affiliation(s)
- Marica Gemei
- CEINGE-Biotecnologie Avanzate s.c.a.r.l, Napoli, Italy
| | | | | | | | | | | |
Collapse
|
19
|
Imperlini E, Colavita I, Caterino M, Mirabelli P, Pagnozzi D, Vecchio LD, Noto RD, Ruoppolo M, Orrù S. The secretome signature of colon cancer cell lines. J Cell Biochem 2013; 114:2577-87. [PMID: 23744648 DOI: 10.1002/jcb.24600] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 05/29/2013] [Indexed: 01/09/2023]
|