1
|
Paranamana N, El Rassi Z. Precursor carboxy-silica for functionalization with interactive ligands. III. Carbodiimide assisted preparation of immobilized lectin stationary phases for high performance lectin affinity chromatography of sub-glycoproteomics from cancer and disease free human sera. J Chromatogr B Analyt Technol Biomed Life Sci 2024; 1233:123992. [PMID: 38199060 DOI: 10.1016/j.jchromb.2023.123992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/18/2023] [Accepted: 12/30/2023] [Indexed: 01/12/2024]
Abstract
In this study, a precursor carboxy-silica support was demonstrated in the immobilization of two different lectins, namely concanavalin A (Con A) and wheat germ agglutinin (WGA) for use in high performance lectin affinity chromatography (LAC) for the selective capturing and enrichment of glycoproteins from healthy/disease free and cancer human sera. The lectin columns thus obtained (i.e., Con A- and WGA-columns) showed no nonspecific interactions toward some chosen standard glycoproteins and non-glycoproteins. Both columns were shown in sub-glycoproteomics enrichment from human sera including disease free and adenocarcinoma cancer sera. The collected fractions were subjected to LC-MS/MS for identification of the captured glycoproteins, whereby the total number of identified proteins using Con A column from disease-free and cancer sera were 164 and 188, respectively while 133 and 103 proteins were identified in the fractions captured by the WGA column from disease-free and cancer sera samples, respectively. Differentially expressed proteins (DEPs) between the disease free and cancer sera in both the Con A and WGA column fractions were identified via the plot of the abundance vs. the protein ratio whereby the binary logarithm of average intensities of cancer and disease free sera were plotted against the binary logarithm of cancer/disease free sera ratios. The proteins that exhibit log 2 (cancer/healthy) ratio values greater than +2 and less than -2 in both categories are considered as DEPs. Furthermore, for visualization of the data arrangement, Q-Q scatterplot were also used whereby the binary logarithm of cancer serum was plotted against the binary logarithm of disease-free serum for both Con A and WGA. For Con A column, 28 up-regulated and 10 down regulated proteins were identified with a total of 38 DEPs while only two being non-glycoproteins. Furthermore, the up-regulated, and down regulated proteins recorded for WGA column are 14 and 6, respectively, totaling 20 proteins including 3 non-glycoproteins. Some of the non-specific binding to lectin are most likely due to protein-protein interactions.
Collapse
Affiliation(s)
- Nilushi Paranamana
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States.
| |
Collapse
|
2
|
Bertok T, Pinkova Gajdosova V, Bertokova A, Svecova N, Kasak P, Tkac J. Breast cancer glycan biomarkers: their link to tumour cell metabolism and their perspectives in clinical practice. Expert Rev Proteomics 2021; 18:881-910. [PMID: 34711108 DOI: 10.1080/14789450.2021.1996231] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Breast cancer (BCa) is the most common cancer type diagnosed in women and 5th most common cause of deaths among all cancer deaths despite the fact that screening program is at place. This is why novel diagnostics approaches are needed in order to decrease number of BCa cases and disease mortality. AREAS COVERED In this review paper, we aim to cover some basic aspects regarding cellular metabolism and signalling in BCa behind altered glycosylation. We also discuss novel exciting discoveries regarding glycan-based analysis, which can provide useful information for better understanding of the disease. The final part deals with clinical usefulness of glycan-based biomarkers and the clinical performance of such biomarkers is compared to already approved BCa biomarkers and diagnostic tools based on imaging. EXPERT OPINION Recent discoveries suggest that glycan-based biomarkers offer high accuracy for possible BCa diagnostics in blood, but also for better monitoring and management of BCa patients. The review article was written using Web of Science search engine to include articles published between 2019 and 2021.
Collapse
Affiliation(s)
- Tomas Bertok
- Glycanostics Ltd., Bratislava, Slovak Republic.,Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Veronika Pinkova Gajdosova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | | | - Natalia Svecova
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| | - Peter Kasak
- Center for Advanced Materials, Qatar University, Doha, Qatar
| | - Jan Tkac
- Glycanostics Ltd., Bratislava, Slovak Republic.,Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovak Republic
| |
Collapse
|
3
|
Goumenou A, Delaunay N, Pichon V. Recent Advances in Lectin-Based Affinity Sorbents for Protein Glycosylation Studies. Front Mol Biosci 2021; 8:746822. [PMID: 34778373 PMCID: PMC8585745 DOI: 10.3389/fmolb.2021.746822] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/23/2021] [Indexed: 01/29/2023] Open
Abstract
Glycosylation is one of the most significant post-translational modifications occurring to proteins, since it affects some of their basic properties, such as their half-life or biological activity. The developments in analytical methodologies has greatly contributed to a more comprehensive understanding of the quantitative and qualitative characteristics of the glycosylation state of proteins. Despite those advances, the difficulty of a full characterization of glycosylation still remains, mainly due to the complexity of the glycoprotein and/or glycopeptide mixture especially when they are present in complex biological samples. For this reason, various techniques that allow a prior selective enrichment of exclusively glycosylated proteins or glycopeptides have been developed in the past and are coupled either on- or off- line with separation and detection methods. One of the most commonly implemented enrichment methods includes the use of lectin proteins immobilized on various solid supports. Lectins are a group of different, naturally occurring proteins that share a common characteristic, which concerns their affinity for specific sugar moieties of glycoproteins. This review presents the different formats and conditions for the use of lectins in affinity chromatography and in solid phase extraction, including their use in dispersive mode, along with the recent progress made on either commercial or home-made lectin-based affinity sorbents, which can lead to a fast and automated glycosylation analysis.
Collapse
Affiliation(s)
- Anastasia Goumenou
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France
| | - Nathalie Delaunay
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France
| | - Valérie Pichon
- Department of Analytical, Bioanalytical Sciences and Miniaturization (LSABM), UMR 8231 Chemistry, Biology and Innovation (CBI), ESPCI Paris, CNRS, PSL University, Paris, France.,Sorbonne University, Paris, France
| |
Collapse
|
4
|
Núñez C. Blood-based protein biomarkers in breast cancer. Clin Chim Acta 2018; 490:113-127. [PMID: 30597138 DOI: 10.1016/j.cca.2018.12.028] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023]
Abstract
Breast cancer (BCa) is a significant healthcare problem on women worldwide. Thus, early detection is very important to reduce mortality. Furthermore, better BCa prognosis could improve selection of patients eligible for adjuvant therapy. New markers for early diagnosis, accurate prognosis and prediction of response to treatment are necessary to improve BCa care. The present review summarizes important aspects of the potential usefulness of modern technologies, strategies, and scientific findings in proteomic research for discovery of breast cancer-associated blood-based protein biomarkers in the clinic.
Collapse
Affiliation(s)
- Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain.
| |
Collapse
|
5
|
Gökaltun A, Tuncel A. Post-polymerization modification of a new reactive monolith for reversed phase and hydrophilic interaction capillary electrochromatography of neutral, polar, and biologically active compounds. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4320] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Aslıhan Gökaltun
- Hacettepe University; Chemical Engineering Department; Ankara 06532 Turkey
| | - Ali Tuncel
- Hacettepe University; Chemical Engineering Department; Ankara 06532 Turkey
| |
Collapse
|
6
|
Jonnada M, El Rassi Z. Poly (N-acryloxysuccinimide-co-ethylene glycol dimethacrylate) precursor monolith and its post polymerization modification with alkyl ligands, trypsin and lectins for reversed-phase chromatography, miniaturized enzyme reactors and lectin affinity chromato. Electrophoresis 2017; 38:2870-2879. [DOI: 10.1002/elps.201700221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/03/2017] [Accepted: 08/01/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Murthy Jonnada
- Department of chemistry; Oklahoma State University; Stillwater OK USA
| | - Ziad El Rassi
- Department of chemistry; Oklahoma State University; Stillwater OK USA
| |
Collapse
|
7
|
Hashim OH, Jayapalan JJ, Lee CS. Lectins: an effective tool for screening of potential cancer biomarkers. PeerJ 2017; 5:e3784. [PMID: 28894650 PMCID: PMC5592079 DOI: 10.7717/peerj.3784] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/18/2017] [Indexed: 12/13/2022] Open
Abstract
In recent years, the use of lectins for screening of potential biomarkers has gained increased importance in cancer research, given the development in glycobiology that highlights altered structural changes of glycans in cancer associated processes. Lectins, having the properties of recognizing specific carbohydrate moieties of glycoconjugates, have become an effective tool for detection of new cancer biomarkers in complex bodily fluids and tissues. The specificity of lectins provides an added advantage of selecting peptides that are differently glycosylated and aberrantly expressed in cancer patients, many of which are not possibly detected using conventional methods because of their low abundance in bodily fluids. When coupled with mass spectrometry, research utilizing lectins, which are mainly from plants and fungi, has led to identification of numerous potential cancer biomarkers that may be used in the future. This article reviews lectin-based methods that are commonly adopted in cancer biomarker discovery research.
Collapse
Affiliation(s)
- Onn Haji Hashim
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia.,University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Jaime Jacqueline Jayapalan
- University of Malaya Centre for Proteomics Research, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Cheng-Siang Lee
- Department of Molecular Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
8
|
Khadka S, El Rassi Z. Postpolymerization modification of a hydroxy monolith precursor. Part I. Epoxy alkane and octadecyl isocyanate modified poly (hydroxyethyl methacrylate-co-pentaerythritol triacrylate) monolithic capillary columns for reversed-phase capillary electrochroma. Electrophoresis 2016; 37:3160-3171. [DOI: 10.1002/elps.201600321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 08/31/2016] [Accepted: 09/02/2016] [Indexed: 11/11/2022]
Affiliation(s)
| | - Ziad El Rassi
- Department of Chemistry; Oklahoma State University; Stillwater OK USA
| |
Collapse
|
9
|
Yazawa S, Takahashi R, Yokobori T, Sano R, Mogi A, Saniabadi AR, Kuwano H, Asao T. Fucosylated Glycans in α1-Acid Glycoprotein for Monitoring Treatment Outcomes and Prognosis of Cancer Patients. PLoS One 2016; 11:e0156277. [PMID: 27295180 PMCID: PMC4905682 DOI: 10.1371/journal.pone.0156277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 05/11/2016] [Indexed: 12/13/2022] Open
Abstract
One standard treatment option for advanced-stage cancer is surgical resection of malignant tumors following by adjuvant chemotherapy and chemoradiotherapy. Additionally, neoadjuvant chemotherapy may be applied if required. During the time course of treatments, patients are generally followed by computed tomography (CT) surveillance, and by tumor marker diagnosis. However, currently, early evidence of recurrence and/or metastasis of tumors with a clinically relevant biomarker remains a major therapeutic challenge. In particular, there has been no validated biomarker for predicting treatment outcomes in therapeutic settings. Recently, we have looked at glycoforms of serum α1-acid glycoprotein (AGP) by using a crossed affinoimmunoelectrophoresis with two lectins and an anti-AGP antibody. The primary glycan structures of AGP were also analyzed by a mass spectrometer and a novel software in a large number of patients with various cancers. Accordingly, the relative abundance of α1,3fucosylated glycans in AGP (FUCAGP) was found to be significantly high in cancer patients as compared with the healthy controls. Further, strikingly elevated levels of FUCAGP were found in patients with poor prognosis but not in patients with good prognosis. In the current study, levels of FUCAGP in serum samples from various cancer patients were analyzed and 17 patients including 13 who had undergone chemotherapy were followed for several years post operation. FUCAGP level determined diligently by using a mass spectrometer was found to change along with disease prognosis as well as with responses to treatments, in particular, to various chemotherapies. Therefore, FUCAGP levels measured during following-up of the patients after operation appeared to be clinically relevant biomarker of treatment intervention.
Collapse
Affiliation(s)
- Shin Yazawa
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
- * E-mail:
| | - Ryo Takahashi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takehiko Yokobori
- Department of Molecular and Cellular Pharmacology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Rie Sano
- Department of Legal Medicine, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Akira Mogi
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Abby R. Saniabadi
- Department of Pharmacology, Hamamatsu University School of Medicine, Hamamatsu, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takayuki Asao
- Department of Oncology Clinical Development, Gunma University Graduate School of Medicine, Maebashi, Japan
- Big Data Center for Integrative Analysis, Gunma University Initiative for Advance Research, Maebashi, Japan
| |
Collapse
|
10
|
Puangpila C, El Rassi Z. Capturing and identification of differentially expressed fucome by a gel free and label free approach. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 989:112-21. [PMID: 25817263 PMCID: PMC4385428 DOI: 10.1016/j.jchromb.2015.03.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2014] [Revised: 02/28/2015] [Accepted: 03/06/2015] [Indexed: 12/12/2022]
Abstract
This research reports a proof-of-concept that describes an instrumental approach that is gel free and label free at both the separation and mass spectrometry ends for the capturing and identification of differentially expressed proteins (DEPs) in diseases, e.g., cancers. The research consists of subjecting/processing equalized and non-equalized (i.e., untreated) disease-free and hepatocellular carcinoma (HCC) human sera via a multicolumn platform for capturing/fractionating human serum fucome. The equalization was performed via the combinatorial peptide ligand library (CPLL) beads technology that ensured narrowing the protein concentration range, thus allowing the detection of low abundance proteins. The equalized and non-equalized disease-free and HCC sera were first fractionated online onto two lectin columns specific to fucose, namely Aleuria aurantia lectin (AAL) and Lotus tetragonolobus agglutinin (LTA) followed by the online fractionation of the lectin captured fucome by reversed phase chromatography. The online desalted fractions were first subjected to trypsinolysis and then to liquid chromatography-mass spectrometry (LC-MS/MS) analysis. In comparison with untreated serum, the CPLL treated serum is superior in terms of the total number of identified DEPs, which reflected an increased number of DEPs in a wide abundance range. The DEPs in HCC serum were found to be 70 and 40 in both LTA and AAL fractions for the serum treated by CPLL and untreated serum, respectively. In addition, the platform combined with the CPLL treatment was accomplished with virtually no sample loss and dilution as well as with no experimental biases and sample labeling when comparing the diseased-free and cancer sera using LC-MS/MS.
Collapse
Affiliation(s)
- Chanida Puangpila
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States.
| |
Collapse
|
11
|
Puangpila C, Mayadunne E, El Rassi Z. Liquid phase based separation systems for depletion, prefractionation, and enrichment of proteins in biological fluids and matrices for in-depth proteomics analysis-An update covering the period 2011-2014. Electrophoresis 2015; 36:238-52. [PMID: 25287967 PMCID: PMC4485988 DOI: 10.1002/elps.201400434] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 09/25/2014] [Accepted: 09/26/2014] [Indexed: 11/07/2022]
Abstract
This review article expands on the previous one (S. Selvaraju and Z. El Rassi, Electrophoresis 2012, 33, 74-88) by reviewing pertinent literature in the period extending from early 2011 to present. As the previous review article, the present one is concerned with proteomic sample preparation (e.g., depletion of high-abundance proteins, reduction of the protein dynamic concentration range, enrichment of a particular subproteome), and the subsequent chromatographic and/or electrophoretic prefractionation prior to peptide separation and identification by LC-MS/MS. This review article, however, is distinguished from its earlier version by expanding on capturing/enriching subphosphoproteomes by immobilized metal affinity chromatography and metal oxide affinity chromatography. Seventy-seven papers published in the period extending from mid-2011 to the present have been reviewed. By no means this review article is exhaustive, given the fact that its aim is to give a concise treatment of the latest developments in the field.
Collapse
Affiliation(s)
- Chanida Puangpila
- Department of Chemistry, Oklahoma State University, Stillwater, OK, USA
| | | | | |
Collapse
|
12
|
Ziad El Rassi - Happy 65 thBirthday. Electrophoresis 2014. [DOI: 10.1002/elps.201470134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
13
|
Selvaraju S, El Rassi Z. Targeting deeper the human serum fucome by a liquid-phase multicolumn platform in combination with combinatorial peptide ligand libraries. J Chromatogr B Analyt Technol Biomed Life Sci 2014; 951-952:135-42. [PMID: 24556279 PMCID: PMC3959646 DOI: 10.1016/j.jchromb.2014.01.037] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 01/15/2014] [Accepted: 01/23/2014] [Indexed: 12/25/2022]
Abstract
Combinatorial peptide ligand library (CPLL) was evaluated as an off line step to narrow the differences of protein concentration in human serum prior to the capturing of human fucome from disease-free and breast cancer sera by a multicolumn platform via lectin affinity chromatography (LAC) followed by the fractionation of the captured glycoproteins by reversed phase chromatography (RPC). Two monolithic lectin columns specific to fucose, namely Aleuria aurantia lectin (AAL) and Lotus tetragonolobus agglutinin (LTA) columns were utilized to capture the fucome, which was subsequently fractionated by RPC yielding desalted fractions in volatile acetonitrile-rich mobile phase, which after vacuum evaporation were subjected to tryptic digestion prior to LC-MS/MS analysis. AAL has a strong affinity towards core fucosylated N-glycans and has a weak binding towards fucose in the outer arm while LTA can bind to glycans having fucose present in the outer arm. The combined strategy consisting of the CPLL, multicolumn platform and LC-MS/MS analysis permitted the identification of the differentially expressed proteins (DEPs) in breast cancer serum yielding 58 DEPs in both the LTA and AAL fractions with 6 DEPs common to both lectins. 17 DEPs were of the low abundance type, 16 DEPs of the borderline abundance type, 4 DEPs of the medium abundance type and 15 DEPs of the high abundance type. The remaining 6 DEPs are of unknown concentration. Only proteins exhibiting 99.9% protein identification probability, 95% peptide identification probability, and a minimum of 5 unique peptides were considered in finding the DEPs via scatterplots.
Collapse
Affiliation(s)
- Subhashini Selvaraju
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States
| | - Ziad El Rassi
- Department of Chemistry, Oklahoma State University, Stillwater, OK 74078-3071, United States.
| |
Collapse
|
14
|
Chen CC, Su WC, Huang BY, Chen YJ, Tai HC, Obena RP. Interaction modes and approaches to glycopeptide and glycoprotein enrichment. Analyst 2014; 139:688-704. [DOI: 10.1039/c3an01813j] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|