1
|
Guesmi S, Ghedira K, Pujic P, Najjari A, Miotello G, Cherif A, Narumi I, Armengaud J, Normand P, Sghaier H. Effect of gamma irradiation on the proteogenome of cold-acclimated Kocuria rhizophila PT10. Res Microbiol 2024; 175:104230. [PMID: 39089347 DOI: 10.1016/j.resmic.2024.104230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 07/03/2024] [Accepted: 07/25/2024] [Indexed: 08/03/2024]
Abstract
The effects of ionizing radiation (IR) on the protein dynamics of cold-stressed cells of a radioresistant actinobacterium, Kocuria rhizophila PT10, isolated from the rhizosphere of the desert plant Panicum turgidum were investigated using a shotgun methodology based on nanoflow liquid chromatography coupled to tandem mass spectrometry. Overall, 1487 proteins were certified, and their abundances were compared between the irradiated condition and control. IR of cold-acclimated PT10 triggered the over-abundance of proteins involved in (1) a strong transcriptional regulation, (2) amidation of peptidoglycan and preservation of cell envelope integrity, (3) detoxification of reactive electrophiles and regulation of the redox status of proteins, (4) base excision repair and prevention of mutagenesis and (5) the tricarboxylic acid (TCA) cycle and production of fatty acids. Also, one of the more significant findings to emerge from this study is the SOS response of stressed PT10. Moreover, a comparison of top hits radio-modulated proteins of cold-acclimated PT10 with proteomics data from gamma-irradiated Deinococcus deserti showed that stressed PT10 has a specific response characterised by a high over-abundance of NemA, GatD, and UdgB.
Collapse
Affiliation(s)
- Sihem Guesmi
- National Agronomy Institute (INAT), Avenue Charles Nicolle, 1082, Tunis, Mahrajène, Tunisia; Laboratory "Energy and Matter for Development of Nuclear Sciences" (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Tunisia.
| | - Kais Ghedira
- Laboratory of Bioinformatics, Biomathematics and Biostatistics - LR16IPT09, Institut Pasteur de Tunis, 13, Place Pasteur, Tunis, 1002, Tunisia.
| | - Petar Pujic
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France; CNRS, UMR 5557, Ecologie Microbienne, 69622 Villeurbanne, Cedex, INRA, UMR1418, Villeurbanne, France.
| | - Afef Najjari
- Université de Tunis El Manar, Faculté des Sciences de Tunis, LR03ES03 Microorganismes et Biomolécules Actives, 2092, Tunis, Tunisia.
| | - Guylaine Miotello
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200, Bagnols sur Cèze, France.
| | - Ameur Cherif
- Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| | - Issay Narumi
- Radiation Microbiology Laboratory, Department of Life Sciences, Faculty of Life Sciences, Toyo University, 48-1 Oka, Asaka, Saitama, 351-8510, Japan.
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (DMTS), SPI, F-30200, Bagnols sur Cèze, France.
| | - Philippe Normand
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR Ecologie Microbienne, F-69622, Villeurbanne, France; CNRS, UMR 5557, Ecologie Microbienne, 69622 Villeurbanne, Cedex, INRA, UMR1418, Villeurbanne, France.
| | - Haïtham Sghaier
- Laboratory "Energy and Matter for Development of Nuclear Sciences" (LR16CNSTN02), National Center for Nuclear Sciences and Technology (CNSTN), Sidi Thabet Technopark, 2020, Tunisia; Univ. Manouba, ISBST, BVBGR-LR11ES31, Biotechpole Sidi Thabet, 2020, Ariana, Tunisia.
| |
Collapse
|
2
|
Yoon H, Lee HH, Noh HS, Lee SJ. Identification of genus Deinococcus strains by PCR detection using the gyrB gene and its extension to Bacteria domain. J Microbiol Methods 2024; 223:106980. [PMID: 38936431 DOI: 10.1016/j.mimet.2024.106980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/24/2024] [Accepted: 06/24/2024] [Indexed: 06/29/2024]
Abstract
In radiation-resistant bacteria belonging to the genus Deinococcus, transposition events of insertion sequences (IS elements) leading to phenotypic changes from a reddish color to white were detected following exposure to gamma irradiation and hydrogen peroxide treatment. This change resulted from the integration of IS elements into the phytoene desaturase gene, a key enzyme in the carotenoid biosynthesis pathway. To facilitate species identification and distinguish among Deinococcus strains, the gyrB gene encoding the B subunit of DNA gyrase was utilized. The s gnificance of the gyrB gene is well recognized not only in genome replication through the regulation of supercoiling but also in phylogenetic analysis providing support for 16S rRNA-based identification. Its mutation rate surpasses that of the 16S rRNA gene, offering greater resolution between closely related species, particularly those exhibiting >99% similarity. In this study, phylogenetic analysis was conducted comparing the 16S rRNA and gyrB gene sequences of Deinococcus species. Species-specific and genus-specific primers targeting Deinococcus species were designed and experimentally validated for selective amplification and rapid identification of the targeted species. This approach allows for the omission of 16S rRNA sequencing in the targeted Deinococcus species. Therefore, the gyrB gene is useful for identifying bacterial species and genus-level detection from individual microbes or microbial consortia using specialized primer sets for PCR amplification.
Collapse
Affiliation(s)
- Hyeonsik Yoon
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Hee Lee
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hee Seong Noh
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung-Jae Lee
- Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
3
|
Vauclare P, Wulffelé J, Lacroix F, Servant P, Confalonieri F, Kleman JP, Bourgeois D, Timmins J. Stress-induced nucleoid remodeling in Deinococcus radiodurans is associated with major changes in Heat Unstable (HU) protein dynamics. Nucleic Acids Res 2024; 52:6406-6423. [PMID: 38742631 PMCID: PMC11194088 DOI: 10.1093/nar/gkae379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/16/2024] Open
Abstract
Bacteria have developed a wide range of strategies to respond to stress, one of which is the rapid large-scale reorganization of their nucleoid. Nucleoid associated proteins (NAPs) are believed to be major actors in nucleoid remodeling, but the details of this process remain poorly understood. Here, using the radiation resistant bacterium D. radiodurans as a model, and advanced fluorescence microscopy, we examined the changes in nucleoid morphology and volume induced by either entry into stationary phase or exposure to UV-C light, and characterized the associated changes in mobility of the major NAP in D. radiodurans, the heat-unstable (HU) protein. While both types of stress induced nucleoid compaction, HU diffusion was reduced in stationary phase cells, but was instead increased following exposure to UV-C, suggesting distinct underlying mechanisms. Furthermore, we show that UV-C-induced nucleoid remodeling involves a rapid nucleoid condensation step associated with increased HU diffusion, followed by a slower decompaction phase to restore normal nucleoid morphology and HU dynamics, before cell division can resume. These findings shed light on the diversity of nucleoid remodeling processes in bacteria and underline the key role of HU in regulating this process through changes in its mode of assembly on DNA.
Collapse
Affiliation(s)
- Pierre Vauclare
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | - Jip Wulffelé
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| | | | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | | | - Joanna Timmins
- Univ. Grenoble Alpes, CNRS, CEA, IBS, F-38000 Grenoble, France
| |
Collapse
|
4
|
Mishra S, Tewari H, Chaudhary R, S Misra H, Kota S. Differential cellular localization of DNA gyrase and topoisomerase IB in response to DNA damage in Deinococcus radiodurans. Extremophiles 2023; 28:7. [PMID: 38062175 DOI: 10.1007/s00792-023-01323-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023]
Abstract
Topoisomerases are crucial enzymes in genome maintenance that modulate the topological changes during DNA metabolism. Deinococcus radiodurans, a Gram-positive bacterium is characterized by its resistance to many abiotic stresses including gamma radiation. Its multipartite genome encodes both type I and type II topoisomerases. Time-lapse studies using fluorescently tagged topoisomerase IB (drTopoIB-RFP) and DNA gyrase (GyrA-RFP) were performed to check the dynamics and localization with respect to DNA repair and cell division under normal and post-irradiation growth conditions. Results suggested that TopoIB and DNA gyrase are mostly found on nucleoid, highly dynamic, and show growth phase-dependent subcellular localization. The drTopoIB-RFP was also present at peripheral and septum regions but does not co-localize with the cell division protein, drFtsZ. On the other hand, DNA gyrase co-localizes with PprA a pleiotropic protein involved in radioresistance, on the nucleoid during the post-irradiation recovery (PIR). The topoIB mutant was found to be sensitive to hydroxyurea treatment, and showed more accumulation of single-stranded DNA during the PIR, compared to the wild type suggesting its role in DNA replication stress. Together, these results suggest differential localization of drTopoIB-RFP and GyrA-RFP in D. radiodurans and their interaction with PprA protein, emphasizing the functional significance and role in radioresistance.
Collapse
Affiliation(s)
- Shruti Mishra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Himani Tewari
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Reema Chaudhary
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- National Centre for Microbial Resource, National Centre for Cell Science, Sai Trinity Complex, Sus Road, Pashan, Pune, 411021, India
| | - Hari S Misra
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
- Centre of Multidisciplinary Unit of Research On Translational Initiatives and School of Science, GITAM (Deemed to Be University), Gandhinagar, Rushikonda, Visakhapatnam, 530045, India
| | - Swathi Kota
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India.
- Homi Bhabha National Institute, Mumbai, 400094, India.
| |
Collapse
|
5
|
Xiong Y, Wei L, Xin S, Min R, Liu F, Li N, Zhang Y. Comprehensive Temporal Protein Dynamics during Postirradiation Recovery in Deinococcus radiodurans. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:1622829. [PMID: 36411759 PMCID: PMC9674996 DOI: 10.1155/2022/1622829] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 09/19/2022] [Indexed: 10/15/2023]
Abstract
Deinococcus radiodurans (D. radiodurans) is an extremophile that can tolerate ionizing radiation, ultraviolet radiation, and oxidation. How D. radiodurans responds to and survives high levels of ionizing radiation is still not clear. In this study, we performed label-free proteomics to explore the proteome dynamics during postirradiation recovery (PIR). Surprisingly, proteins involved in translation were repressed during the initial hours of PIR. D. radiodurans also showed enhanced DNA repair and antioxidative response after 6 kGy of gamma irradiation. Moreover, proteins involved in sulfur metabolism and phenylalanine metabolism were enriched at 1 h and 12 h, respectively, indicating different energy and material needs during PIR. Furthermore, based on these findings, we proposed a novel model to elucidate the possible molecular mechanisms of robust radioresistance in D. radiodurans, which may serve as a reference for future radiation repair.
Collapse
Affiliation(s)
- Yan Xiong
- Analysis & Testing Center, Beijing Institute of Technology, Beijing 102488, China
| | - Linyang Wei
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Shuchen Xin
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Rui Min
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Feng Liu
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Nuomin Li
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yongqian Zhang
- School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
6
|
Gao Y, Li N, Zhou Y, Zhang Z, Zhang Y, Fan P, Zhou H, Zhang T, Chang L, Gao H, Li Y, Kang X, Xie Q, Lyu Z, Xu P. iTRAQ-based proteomic analysis of Deinococcus radiodurans in response to 12C 6+ heavy ion irradiation. BMC Microbiol 2022; 22:264. [PMID: 36333788 PMCID: PMC9635210 DOI: 10.1186/s12866-022-02676-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Background Deinococcus radiodurans (D. radiodurans) is best known for its extreme resistance to diverse environmental stress factors, including ionizing radiation (IR), ultraviolet (UV) irradiation, oxidative stress, and high temperatures. Robust DNA repair system and antioxidant system have been demonstrated to contribute to extreme resistance in D. radiodurans. However, practically all studies on the mechanism underlying D. radiodurans’s extraordinary resistance relied on the treated strain during the post-treatment recovery lag phase to identify the key elements involved. The direct gene or protein changes of D. radiodurans after stress have not yet been characterized. Results In this study, we performed a proteomics profiling on D. radiodurans right after the heavy ion irradiation treatment, to discover the altered proteins that were quickly responsive to IR in D. radiodurans. Our study found that D. radiodurans shown exceptional resistance to 12C6+ heavy ion irradiation, in contrast to Escherichia coli (E.coli) strains. By using iTRAQ (Isobaric Tags for Relative and Absolute Quantitation)-based quantitative mass spectrometry analysis, the kinetics of proteome changes induced by various dosages of 12C6+ heavy ion irradiation were mapped. The results revealed that 452 proteins were differentially expressed under heavy ion irradiation, with the majority of proteins being upregulated, indicating the upregulation of functional categories of translation, TCA cycle (Tricarboxylic Acid cycle), and antioxidation regulation under heavy ion irradiation. Conclusions This study shows how D. radiodurans reacts to exposure to 12C6+ heavy ion irradiation in terms of its overall protein expression profile. Most importantly, comparing the proteome profiling of D. radiodurans directly after heavy ion irradiation with research on the post-irradiation recovery phase would potentially provide a better understanding of mechanisms underlying the extreme radioresistance in D. radiodurans. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-022-02676-x.
Collapse
Affiliation(s)
- Yuan Gao
- grid.27871.3b0000 0000 9750 7019Central Laboratory of College of Horticulture, Nanjing Agricultural University, Nanjing, 210095 People’s Republic of China ,grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Naikang Li
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China ,School of Life Sciences, Institute of Life Science and Green DevelopmentHebei University and Key Laboratory of Microbial Diversity Research and Application of Hebei Province, 180 East Wusi Road, Baoding, 071002 People’s Republic of China
| | - Yanxia Zhou
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China ,Beijing Institute of Food Inspection and Research, Beijing Municipal Center for Food Safety Monitoring and Risk Assessment, Beijing, 102206 People’s Republic of China
| | - Zhenpeng Zhang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Yao Zhang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Pengcheng Fan
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Hangfan Zhou
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Tao Zhang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Lei Chang
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Huiying Gao
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Yanchang Li
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China
| | - Xianjiang Kang
- School of Life Sciences, Institute of Life Science and Green DevelopmentHebei University and Key Laboratory of Microbial Diversity Research and Application of Hebei Province, 180 East Wusi Road, Baoding, 071002 People’s Republic of China
| | - Qiong Xie
- grid.418516.f0000 0004 1791 7464China Astronaut Research and Training Center, Beijing, 100094 People’s Republic of China
| | - Zhitang Lyu
- School of Life Sciences, Institute of Life Science and Green DevelopmentHebei University and Key Laboratory of Microbial Diversity Research and Application of Hebei Province, 180 East Wusi Road, Baoding, 071002 People’s Republic of China
| | - Ping Xu
- grid.419611.a0000 0004 0457 9072State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences Beijing, Research Unit of Proteomics & Research and Development of New Drug of Chinese Academy of Medical Sciences, Institute of Lifeomics, 38 Science Park Road, National Center for Protein Sciences (Beijing), Changping District, Beijing, 102206 People’s Republic of China ,School of Life Sciences, Institute of Life Science and Green DevelopmentHebei University and Key Laboratory of Microbial Diversity Research and Application of Hebei Province, 180 East Wusi Road, Baoding, 071002 People’s Republic of China ,grid.186775.a0000 0000 9490 772XAnhui Medical University, Hefei, 230032 People’s Republic of China ,grid.443382.a0000 0004 1804 268XMedical School of Guizhou University, Guiyang, 550025 People’s Republic of China ,grid.411866.c0000 0000 8848 7685Second Clinical Medicine Collage, Guangzhou University Chinese Medicine, Guangzhou, 510006 People’s Republic of China
| |
Collapse
|
7
|
Banneville AS, Bouthier de la Tour C, De Bonis S, Hognon C, Colletier JP, Teulon JM, Le Roy A, Pellequer JL, Monari A, Dehez F, Confalonieri F, Servant P, Timmins J. Structural and functional characterization of DdrC, a novel DNA damage-induced nucleoid associated protein involved in DNA compaction. Nucleic Acids Res 2022; 50:7680-7696. [PMID: 35801857 PMCID: PMC9303277 DOI: 10.1093/nar/gkac563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/18/2022] [Accepted: 06/17/2022] [Indexed: 01/19/2023] Open
Abstract
Deinococcus radiodurans is a spherical bacterium well-known for its outstanding resistance to DNA-damaging agents. Exposure to such agents leads to drastic changes in the transcriptome of D. radiodurans. In particular, four Deinococcus-specific genes, known as DNA Damage Response genes, are strongly up-regulated and have been shown to contribute to the resistance phenotype of D. radiodurans. One of these, DdrC, is expressed shortly after exposure to γ-radiation and is rapidly recruited to the nucleoid. In vitro, DdrC has been shown to compact circular DNA, circularize linear DNA, anneal complementary DNA strands and protect DNA from nucleases. To shed light on the possible functions of DdrC in D. radiodurans, we determined the crystal structure of the domain-swapped DdrC dimer at a resolution of 2.5 Å and further characterized its DNA binding and compaction properties. Notably, we show that DdrC bears two asymmetric DNA binding sites located on either side of the dimer and can modulate the topology and level of compaction of circular DNA. These findings suggest that DdrC may be a DNA damage-induced nucleoid-associated protein that enhances nucleoid compaction to limit the dispersion of the fragmented genome and facilitate DNA repair after exposure to severe DNA damaging conditions.
Collapse
Affiliation(s)
| | - Claire Bouthier de la Tour
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | | | - Cécilia Hognon
- LPCT, UMR 7019, Université de Lorraine, CNRS, Vandœuvre-lès-Nancy, France
| | | | | | - Aline Le Roy
- Univ. Grenoble Alpes, CEA, CNRS, IBS, F-38000 Grenoble, France
| | | | - Antonio Monari
- LPCT, UMR 7019, Université de Lorraine, CNRS, Vandœuvre-lès-Nancy, France,Université Paris Cité, CNRS, Itodys, F-75006 Paris, France
| | - François Dehez
- LPCT, UMR 7019, Université de Lorraine, CNRS, Vandœuvre-lès-Nancy, France
| | - Fabrice Confalonieri
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Pascale Servant
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Joanna Timmins
- To whom correspondence should be addressed. Tel: +33 4 57 42 86 78;
| |
Collapse
|
8
|
Nayak T, Sengupta I, Dhal PK. A new era of radiation resistance bacteria in bioremediation and production of bioactive compounds with therapeutic potential and other aspects: An in-perspective review. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2021; 237:106696. [PMID: 34265519 DOI: 10.1016/j.jenvrad.2021.106696] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 06/13/2023]
Abstract
Microorganisms that survive in extreme environmental conditions are known as 'extremophiles'. Recently, extremophiles draw an impression in biotechnology/pharmaceutical researches/industries because of their novel molecules, known as 'extremolytes'. The intriguing phenomenon of microbial radiation resistance probably arose independently throughout their evolution of selective pressures (e.g. UV, X-ray, Gamma radiation etc.). Radiation produces multiple types of damage/oxidation to nucleic acids, proteins and other crucial cellular components. Most of the literature on microbial radiation resistance is based on acute γ-irradiation experiments performed in the laboratory, typically involving pure cultures isolation and their application on bioremediation/therapeutic field. There is much less information other than bioremediation and therapeutic application of such promising microbes we called as 'new era'. Here we discus origin and diversity of radiation resistance bacteria as well as selective mechanisms by which microorganisms can sustain in radiation rich environment. Potential uses of these radiations resistant microbes in the field of bioremediation, bioactive compounds and therapeutic industry. Last but not the least, which is the new aspect of radiation resistance microbes. Our review suggest that resistance to chronic radiation is not limited to rare specialized strains from extreme environments, but can occur among common microbial taxa, perhaps due to overlap molecular mechanisms of resistance to radiation and other stressors. These stress tolerance potential make them potential for radionuclides remediation, their extremolytes can be useful as anti-oxidant and anti-proliferative agents. In current scenario they can be useful in various fields from natural dye synthesis to nanoparticles production and anti-cancer treatment.
Collapse
Affiliation(s)
- Tilak Nayak
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| | - Indraneel Sengupta
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| | - Paltu Kumar Dhal
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
9
|
Villa JK, Han R, Tsai CH, Chen A, Sweet P, Franco G, Vaezian R, Tkavc R, Daly MJ, Contreras LM. A small RNA regulates pprM, a modulator of pleiotropic proteins promoting DNA repair, in Deinococcus radiodurans under ionizing radiation. Sci Rep 2021; 11:12949. [PMID: 34155239 PMCID: PMC8217566 DOI: 10.1038/s41598-021-91335-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/20/2021] [Indexed: 02/05/2023] Open
Abstract
Networks of transcriptional and post-transcriptional regulators are critical for bacterial survival and adaptation to environmental stressors. While transcriptional regulators provide rapid activation and/or repression of a wide-network of genes, post-transcriptional regulators, such as small RNAs (sRNAs), are also important to fine-tune gene expression. However, the mechanisms of sRNAs remain poorly understood, especially in less-studied bacteria. Deinococcus radiodurans is a gram-positive bacterium resistant to extreme levels of ionizing radiation (IR). Although multiple unique regulatory systems (e.g., the Radiation and Desiccation Response (RDR)) have been identified in this organism, the role of post-transcriptional regulators has not been characterized within the IR response. In this study, we have characterized an sRNA, PprS (formerly Dsr2), as a post-transcriptional coordinator of IR recovery in D. radiodurans. PprS showed differential expression specifically under IR and knockdown of PprS resulted in reduced survival and growth under IR, suggesting its importance in regulating post-radiation recovery. We determined a number of potential RNA targets involved in several pathways including translation and DNA repair. Specifically, we confirmed that PprS binds within the coding region to stabilize the pprM (DR_0907) transcript, a RDR modulator. Overall, these results are the first to present an additional layer of sRNA-based control in DNA repair pathways associated with bacterial radioresistance.
Collapse
Affiliation(s)
- Jordan K Villa
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Runhua Han
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Chen-Hsun Tsai
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Angela Chen
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Philip Sweet
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA
| | - Gabriela Franco
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Respina Vaezian
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Rok Tkavc
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
- Department of Microbiology and Immunology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Michael J Daly
- Department of Pathology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Department of Molecular and Cellular Biology, School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Lydia M Contreras
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, TX, USA.
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
de la Tour CB, Mathieu M, Servant P, Coste G, Norais C, Confalonieri F. Characterization of the DdrD protein from the extremely radioresistant bacterium Deinococcus radiodurans. Extremophiles 2021; 25:343-355. [PMID: 34052926 PMCID: PMC8254717 DOI: 10.1007/s00792-021-01233-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 05/16/2021] [Indexed: 10/25/2022]
Abstract
Here, we report the in vitro and in vivo characterization of the DdrD protein from the extraordinary stress-resistant bacterium, D. radiodurans. DdrD is one of the most highly induced proteins following cellular irradiation or desiccation. We confirm that DdrD belongs to the Radiation Desiccation Response (RDR) regulon protein family whose expression is regulated by the IrrE/DdrO proteins after DNA damage. We show that DdrD is a DNA binding protein that binds to single-stranded DNA In vitro, but not to duplex DNA unless it has a 5' single-stranded extension. In vivo, we observed no significant effect of the absence of DdrD on the survival of D. radiodurans cells after exposure to γ-rays or UV irradiation in different genetic contexts. However, genome reassembly is affected in a ∆ddrD mutant when cells recover from irradiation in the absence of nutrients. Thus, DdrD likely contributes to genome reconstitution after irradiation, but only under starvation conditions. Lastly, we show that the absence of the DdrD protein partially restores the frequency of plasmid transformation of a ∆ddrB mutant, suggesting that DdrD could also be involved in biological processes other than the response to DNA damage.
Collapse
Affiliation(s)
- Claire Bouthier de la Tour
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif sur Yvette, France.
| | - Martine Mathieu
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Geneviève Coste
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif sur Yvette, France
| | - Cédric Norais
- Department of Biochemistry, University of Wisconsin, Madison, WI, 53706, USA.,SAT Lyon, Promega France, 24 Chemin des Verrieres, 69260, Charbonnières les Bains, France
| | - Fabrice Confalonieri
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, 91198, Gif sur Yvette, France
| |
Collapse
|
11
|
Ujaoney AK, Padwal MK, Basu B. An in vivo Interaction Network of DNA-Repair Proteins: A Snapshot at Double Strand Break Repair in Deinococcus radiodurans. J Proteome Res 2021; 20:3242-3255. [PMID: 33929844 DOI: 10.1021/acs.jproteome.1c00078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An extremophile Deinococcus radiodurans survives massive DNA damage by efficiently mending hundreds of double strand breaks through homology-dependent DNA repair pathways. Although DNA repair proteins that contribute to its impressive DNA repair capacity are fairly known, interactions among them or with proteins related to other relevant pathways remain unexplored. Here, we report in vivo cross-linking of the interactomes of key DNA repair proteins DdrA, DdrB, RecA, and Ssb (baits) in D. radiodurans cells recovering from gamma irradiation. The protein-protein interactions were systematically investigated through co-immunoprecipitation experiments coupled to mass spectrometry. From a total of 399 proteins co-eluted with the baits, we recovered interactions among diverse biological pathways such as DNA repair, transcription, translation, chromosome partitioning, cell division, antioxidation, protein folding/turnover, metabolism, cell wall architecture, membrane transporters, and uncharacterized proteins. Among these, about 80 proteins were relevant to the DNA damage resistance of the organism based on integration of data on inducible expression following DNA damage, radiation sensitive phenotype of deletion mutant, etc. Further, we cloned ORFs of 23 interactors in heterologous E. coli and expressed corresponding proteins with N-terminal His-tag, which were used for pull-down assays. A total of 95 interactions were assayed, in which we confirmed 25 previously unknown binary interactions between the proteins associated with radiation resistance, and 2 known interactions between DdrB and Ssb or DR_1245. Among these, five interactions were positive even under non-stress conditions. The confirmed interactions cover a wide range of biological processes such as DNA repair, negative regulation of cell division, chromosome partitioning, membrane anchorage, etc., and their functional relevance is discussed from the perspective of DNA repair. Overall, the study substantially advances our understanding on the cross-talk between different homology-dependent DNA repair pathways and other relevant biological processes that essentially contribute to the extraordinary DNA damage repair capability of D. radiodurans. The data sets generated and analyzed in this study have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD021822.
Collapse
Affiliation(s)
- Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India.,Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| |
Collapse
|
12
|
Functional and structural characterization of Deinococcus radiodurans R1 MazEF toxin-antitoxin system, Dr0416-Dr0417. J Microbiol 2021; 59:186-201. [DOI: 10.1007/s12275-021-0523-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/09/2020] [Accepted: 12/22/2020] [Indexed: 12/14/2022]
|
13
|
Zhou C, Dai J, Lu H, Chen Z, Guo M, He Y, Gao K, Ge T, Jin J, Wang L, Tian B, Hua Y, Zhao Y. Succinylome Analysis Reveals the Involvement of Lysine Succinylation in the Extreme Resistance of Deinococcus radiodurans. Proteomics 2019; 19:e1900158. [PMID: 31487437 DOI: 10.1002/pmic.201900158] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 08/17/2019] [Indexed: 01/18/2023]
Abstract
Increasing evidence shows that the succinylation of lysine residues mainly regulates enzymes involved in the carbon metabolism pathway, in both prokaryotic and eukaryotic cells. Deinococcus radiodurans is one of the most radioresistant organisms on earth and is famous for its robust resistance. A major goal in the current study of protein succinylation is to explore its function in D. radiodurans. High-resolution LC-MS/MS is used for qualitative proteomics to perform a global succinylation analysis of D. radiodurans and 492 succinylation sites in 270 proteins are identified. These proteins are involved in a variety of biological processes and pathways. It is found that the enzymes involved in nucleic acid binding/processing are enriched in D. radiodurans compared with their previously reported levels in other bacteria. The mutagenesis studies confirm that succinylation regulates the enzymatic activities of species-specific proteins PprI and DdrB, which belong to the radiation-desiccation response regulon. Together, these results provide insight into the role of lysine succinylation in the extreme resistance of D. radiodurans.
Collapse
Affiliation(s)
- Congli Zhou
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Jingli Dai
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Huizhi Lu
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Zijing Chen
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Miao Guo
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Yuan He
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Kaixuan Gao
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Tong Ge
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Jiayu Jin
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Liangyan Wang
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Bing Tian
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Yuejin Hua
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| | - Ye Zhao
- Key Laboratory of Chinese Ministry of Agriculture for Nuclear-Agricultural Sciences, Institute of Nuclear-Agricultural Sciences, Zhejiang University, Zhejiang, 310058, China
| |
Collapse
|
14
|
Lim S, Jung JH, Blanchard L, de Groot A. Conservation and diversity of radiation and oxidative stress resistance mechanisms in Deinococcus species. FEMS Microbiol Rev 2019; 43:19-52. [PMID: 30339218 PMCID: PMC6300522 DOI: 10.1093/femsre/fuy037] [Citation(s) in RCA: 127] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 10/17/2018] [Indexed: 12/17/2022] Open
Abstract
Deinococcus bacteria are famous for their extreme resistance to ionising radiation and other DNA damage- and oxidative stress-generating agents. More than a hundred genes have been reported to contribute to resistance to radiation, desiccation and/or oxidative stress in Deinococcus radiodurans. These encode proteins involved in DNA repair, oxidative stress defence, regulation and proteins of yet unknown function or with an extracytoplasmic location. Here, we analysed the conservation of radiation resistance-associated proteins in other radiation-resistant Deinococcus species. Strikingly, homologues of dozens of these proteins are absent in one or more Deinococcus species. For example, only a few Deinococcus-specific proteins and radiation resistance-associated regulatory proteins are present in each Deinococcus, notably the metallopeptidase/repressor pair IrrE/DdrO that controls the radiation/desiccation response regulon. Inversely, some Deinococcus species possess proteins that D. radiodurans lacks, including DNA repair proteins consisting of novel domain combinations, translesion polymerases, additional metalloregulators, redox-sensitive regulator SoxR and manganese-containing catalase. Moreover, the comparisons improved the characterisation of several proteins regarding important conserved residues, cellular location and possible protein–protein interactions. This comprehensive analysis indicates not only conservation but also large diversity in the molecular mechanisms involved in radiation resistance even within the Deinococcus genus.
Collapse
Affiliation(s)
- Sangyong Lim
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | - Jong-Hyun Jung
- Biotechnology Research Division, Korea Atomic Energy Research Institute, Jeongeup 56212, Republic of Korea
| | | | - Arjan de Groot
- Aix Marseille Univ, CEA, CNRS, BIAM, Saint Paul-Lez-Durance, France
| |
Collapse
|
15
|
Chen TT, Hua W, Zhang XZ, Wang BH, Yang ZS. The effects of pprI gene of Deinococcus radiodurans R1 on acute radiation injury of mice exposed to 60Co γ-ray radiation. Oncotarget 2018; 8:2008-2019. [PMID: 27974687 PMCID: PMC5356773 DOI: 10.18632/oncotarget.13893] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 11/15/2016] [Indexed: 11/25/2022] Open
Abstract
The role of the pprI gene from Deinococcus radiodurans R1 in therapy of acute radiation injury of a mammalian host was investigated. We injected a plasmid containing the pprI gene into the muscle of mice exposed to total 6Gy of 60Co γ-ray radiation. After injection, we used in vivo gene electroporation technology to transfer the pprI gene into the cell. We found the PprI protein was expressed significantly at 1 d after irradiation, but there was no expression of pprI gene 7 d post-irradiation. The expression of pprI gene evidently decreased the death rate of mice exposed to lethal dose radiation, significantly relieved effects on blood cells in the acute stage, shortened the persistence time of the decrease of lymphocytes, and decreased the apoptotic rates of spleen cells, thymocytes and bone marrow cells. The expression of Rad51 protein in the lungs, livers, and kidneys was significantly higher in the mice treated with the pprI plasmid after irradiation. However, there were no obvious differences for Rad52 protein expression. We conclude that the prokaryotic pprI gene of D. radiodurans R1 first was expressed in mammalian cells. The expressed prokaryotic PprI protein has distinct effects of the prevention and treatment on acute radiation injury of mammal. The effects of radio-resistance may relate to expression of Rad51 protein which is homologous with RecA from D. radiodurans.
Collapse
Affiliation(s)
- Ting-Ting Chen
- Department of Oncology, The People`s Hospital of Subei, Yangzhou, China
| | - Wei Hua
- Department of Oncology, The People`s Hospital of Subei, Yangzhou, China
| | - Xi-Zhi Zhang
- Department of Oncology, The People`s Hospital of Subei, Yangzhou, China
| | - Bu-Hai Wang
- Department of Oncology, The People`s Hospital of Subei, Yangzhou, China
| | - Zhan-Shan Yang
- School of Radiation Medicine and Protection, Medical College of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Zhou Y, Shen P, Lan Q, Deng C, Zhang Y, Li Y, Wei W, Wang Y, Su N, He F, Xie Q, Lyu Z, Yang D, Xu P. High-coverage proteomics reveals methionine auxotrophy in Deinococcus radiodurans. Proteomics 2017; 17. [PMID: 28608649 DOI: 10.1002/pmic.201700072] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/13/2017] [Accepted: 06/02/2017] [Indexed: 11/09/2022]
Abstract
Deinococcus radiodurans is a robust bacterium best known for its capacity to resist to radiation. In this study, the SDS-PAGE coupled with high-precision LC-MS/MS was used to study the D. radiodurans proteome. A total of 1951 proteins were identified which covers 63.18% protein-coding genes. Comparison of the identified proteins to the key enzymes in amino acid biosyntheses from KEGG database showed the methionine biosynthesis module is incomplete while other amino acid biosynthesis modules are complete, which indicated methionine auxotrophy in D. radiodurans. The subsequent amino acid-auxotrophic screening has verified methionine instead of other amino acids is essential for the growth of D. radiodurans. With molecular evolutionary genetic analysis, we found the divergence in methionine biosynthesis during the evolution of the common ancestor of bacteria. We also found D. radiodurans lost the power of synthesizing methionine because of the missing metA and metX in two types of methionine biosyntheses. For the first time, this study used high-coverage proteome analysis to identify D. radiodurans amino acid auxotrophy, which provides the important reference for the development of quantitative proteomics analysis using stable isotope labeling in metabolomics of D. radiodurans and in-depth analysis of the molecular mechanism of radiation resistance.
Collapse
Affiliation(s)
- Yanxia Zhou
- College of Life Sciences, Hebei University and Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, P. R. China.,State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Pan Shen
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Qiuyan Lan
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
| | - Chen Deng
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Yao Zhang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, College of Ecology and Evolution, Sun Yat-Sen University, Guangzhou, P. R. China
| | - Yanchang Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Wei Wei
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Yihao Wang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Na Su
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Fuchu He
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Qiong Xie
- China Astronaut Research and Training Center, Beijing, P. R. China
| | - Zhitang Lyu
- College of Life Sciences, Hebei University and Key Laboratory of Microbial Diversity Research and Application of Hebei Province, Baoding, P. R. China
| | - Dong Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, P. R. China
| | - Ping Xu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, P. R. China.,School of Basic Medical Science, Key Laboratory of Combinatorial Biosynthesis and Drug Discovery of Ministry of Education, School of Pharmaceutical Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
17
|
Ujaoney AK, Padwal MK, Basu B. Proteome dynamics during post-desiccation recovery reveal convergence of desiccation and gamma radiation stress response pathways in Deinococcus radiodurans. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017. [PMID: 28645711 DOI: 10.1016/j.bbapap.2017.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deinococcus radiodurans is inherently resistant to both ionizing radiation and desiccation. Fifteen months of desiccation was found to be the LD50 dose for D. radiodurans. Desiccated cells of D. radiodurans entered 6h of growth arrest during post-desiccation recovery (PDR). Proteome dynamics during PDR were mapped by resolving cellular proteins by 2-dimensional gel electrophoresis coupled with mass spectrometry. At least 41 proteins, represented by 51 spots on proteome profiles, were differentially expressed throughout PDR. High upregulation in expression was observed for DNA repair proteins involved in single strand annealing (DdrA and DdrB), nucleotide excision repair (UvrA and UvrB), homologous recombination (RecA) and other vital proteins that contribute to DNA replication, recombination and repair (Ssb, GyrA and GyrB). Expression of CRP/FNR family transcriptional regulator (Crp) remained high throughout PDR. Other pathways such as cellular detoxification, protein homeostasis and metabolism displayed both, moderately induced and repressed proteins. Functional relevance of proteomic modulations to surviving desiccation stress is discussed in detail. Comparison of our data with the published literature revealed convergence of radiation and desiccation stress responses of D. radiodurans. This is the first report that substantiates the hypothesis that the radiation stress resistance of D. radiodurans is incidental to its desiccation stress resistance.
Collapse
Affiliation(s)
- Aman Kumar Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Mahesh Kumar Padwal
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India; Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India.
| |
Collapse
|
18
|
Villa JK, Amador P, Janovsky J, Bhuyan A, Saldanha R, Lamkin TJ, Contreras LM. A Genome-Wide Search for Ionizing-Radiation-Responsive Elements in Deinococcus radiodurans Reveals a Regulatory Role for the DNA Gyrase Subunit A Gene's 5' Untranslated Region in the Radiation and Desiccation Response. Appl Environ Microbiol 2017; 83:e00039-17. [PMID: 28411225 PMCID: PMC5452802 DOI: 10.1128/aem.00039-17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 04/07/2017] [Indexed: 12/19/2022] Open
Abstract
Tight regulation of gene expression is important for the survival of Deinococcus radiodurans, a model bacterium of extreme stress resistance. Few studies have examined the use of regulatory RNAs as a possible contributing mechanism to ionizing radiation (IR) resistance, despite their proffered efficient and dynamic gene expression regulation under IR stress. This work presents a transcriptome-based approach for the identification of stress-responsive regulatory 5' untranslated region (5'-UTR) elements in D. radiodurans R1 that can be broadly applied to other bacteria. Using this platform and an in vivo fluorescence screen, we uncovered the presence of a radiation-responsive regulatory motif in the 5' UTR of the DNA gyrase subunit A gene. Additional screens under H2O2-induced oxidative stress revealed the specificity of the response of this element to IR stress. Further examination of the sequence revealed a regulatory motif of the radiation and desiccation response (RDR) in the 5' UTR that is necessary for the recovery of D. radiodurans from high doses of IR. Furthermore, we suggest that it is the preservation of predicted RNA structure, in addition to DNA sequence consensus of the motif, that permits this important regulatory ability.IMPORTANCEDeinococcus radiodurans is an extremely stress-resistant bacterium capable of tolerating up to 3,000 times more ionizing radiation than human cells. As an integral part of the stress response mechanism of this organism, we suspect that it maintains stringent control of gene expression. However, understanding of its regulatory pathways remains incomplete to date. Untranslated RNA elements have been demonstrated to play crucial roles in gene regulation throughout bacteria. In this work, we focus on searching for and characterizing responsive RNA elements under radiation stress and propose that multiple levels of gene regulation work simultaneously to enable this organism to efficiently recover from exposure to ionizing radiation. The model we propose serves as a generic template to investigate similar mechanisms of gene regulation under stress that have likely evolved in other bacterial species.
Collapse
Affiliation(s)
- Jordan K Villa
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Paul Amador
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Justin Janovsky
- Institute of Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas, USA
| | - Arijit Bhuyan
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas,USA
| | | | - Thomas J Lamkin
- Air Force Research Laboratory/XPRA Wright-Patterson AFB, Ohio, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas,USA
| |
Collapse
|
19
|
Anaganti N, Basu B, Mukhopadhyaya R, Apte SK. Proximity of Radiation Desiccation Response Motif to the core promoter is essential for basal repression as well as gamma radiation-induced gyrB gene expression in Deinococcus radiodurans. Gene 2017; 615:8-17. [DOI: 10.1016/j.gene.2017.03.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Revised: 02/14/2017] [Accepted: 03/01/2017] [Indexed: 11/28/2022]
|
20
|
Vishambra D, Srivastava M, Dev K, Jaiswal V. Subcellular localization based comparative study on radioresistant bacteria: A novel approach to mine proteins involve in radioresistance. Comput Biol Chem 2017; 69:1-9. [PMID: 28527408 DOI: 10.1016/j.compbiolchem.2017.05.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 03/25/2017] [Accepted: 05/05/2017] [Indexed: 11/16/2022]
Abstract
Radioresistant bacteria (RRB) are among the most radioresistant organisms and has a unique role in evolution. Along with the evolutionary role, radioresistant organisms play important role in paper industries, bioremediation, vaccine development and possibility in anti-aging and anti-cancer treatment. The study of radiation resistance in RRB was mainly focused on cytosolic mechanisms such as DNA repair mechanism, cell cleansing activity and high antioxidant activity. Although it was known that protein localized on outer areas of cell play role in resistance towards extreme condition but the mechanisms/proteins localized on the outer area of cells are not studied for radioresistance. Considering the fact that outer part of cell is more exposed to radiations and proteins present in outer area of the cell may have role in radioresistance. Localization based comparative study of proteome from RRB and non-radio resistant bacteria was carried out. In RRB 20 unique proteins have been identified. Further domain, structural, and pathway analysis of selected proteins were carried out. Out of 20 proteins, 8 proteins were direct involvement in radioresistance and literature study strengthens this, however, 1 proteins had assumed relation in radioresistance. Selected radioresistant proteins may be helpful for optimal use of RRB in industry and health care.
Collapse
Affiliation(s)
- Divya Vishambra
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Malay Srivastava
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Kamal Dev
- Faculty of Applied Sciences and Biotechnology, Shoolini University, Solan, Himachal Pradesh, India
| | - Varun Jaiswal
- School of Electrical and Computer Science Engineering, Shoolini University, Solan, Himachal Pradesh, India.
| |
Collapse
|
21
|
Blanchard L, Guérin P, Roche D, Cruveiller S, Pignol D, Vallenet D, Armengaud J, de Groot A. Conservation and diversity of the IrrE/DdrO-controlled radiation response in radiation-resistant Deinococcus bacteria. Microbiologyopen 2017; 6. [PMID: 28397370 PMCID: PMC5552922 DOI: 10.1002/mbo3.477] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 02/22/2017] [Accepted: 02/28/2017] [Indexed: 12/26/2022] Open
Abstract
The extreme radiation resistance of Deinococcus bacteria requires the radiation‐stimulated cleavage of protein DdrO by a specific metalloprotease called IrrE. DdrO is the repressor of a predicted radiation/desiccation response (RDR) regulon, composed of radiation‐induced genes having a conserved DNA motif (RDRM) in their promoter regions. Here, we showed that addition of zinc ions to purified apo‐IrrE, and short exposure of Deinococcus cells to zinc ions, resulted in cleavage of DdrO in vitro and in vivo, respectively. Binding of IrrE to RDRM‐containing DNA or interaction of IrrE with DNA‐bound DdrO was not observed. The data are in line with IrrE being a zinc peptidase, and indicate that increased zinc availability, caused by oxidative stress, triggers the in vivo cleavage of DdrO unbound to DNA. Transcriptomics and proteomics of Deinococcus deserti confirmed the IrrE‐dependent regulation of predicted RDR regulon genes and also revealed additional members of this regulon. Comparative analysis showed that the RDR regulon is largely well conserved in Deinococcus species, but also showed diversity in the regulon composition. Notably, several RDR genes with an important role in radiation resistance in Deinococcus radiodurans, for example pprA, are not conserved in some other radiation‐resistant Deinococcus species.
Collapse
Affiliation(s)
- Laurence Blanchard
- Lab Bioenerget Cellulaire, CEA, DRF, BIAM, Saint-Paul-lez-Durance, France.,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France.,Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | - Philippe Guérin
- Laboratory "Innovative technologies for Detection and Diagnostic", CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Bagnols-sur-Cèze, France
| | - David Roche
- CEA, DRF, Institut de Génomique, LABGeM, Evry, France.,UMR-CNRS 8030 Génomique Métabolique, CEA Institut de Génomique - Genoscope, Evry, France
| | - Stéphane Cruveiller
- CEA, DRF, Institut de Génomique, LABGeM, Evry, France.,UMR-CNRS 8030 Génomique Métabolique, CEA Institut de Génomique - Genoscope, Evry, France
| | - David Pignol
- Lab Bioenerget Cellulaire, CEA, DRF, BIAM, Saint-Paul-lez-Durance, France.,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France.,Aix-Marseille Université, Saint-Paul-lez-Durance, France
| | - David Vallenet
- CEA, DRF, Institut de Génomique, LABGeM, Evry, France.,UMR-CNRS 8030 Génomique Métabolique, CEA Institut de Génomique - Genoscope, Evry, France
| | - Jean Armengaud
- Laboratory "Innovative technologies for Detection and Diagnostic", CEA-Marcoule, DRF/IBITEC-S/SPI/Li2D, Bagnols-sur-Cèze, France
| | - Arjan de Groot
- Lab Bioenerget Cellulaire, CEA, DRF, BIAM, Saint-Paul-lez-Durance, France.,CNRS, UMR 7265 Biol Veget & Microbiol Environ, Saint-Paul-lez-Durance, France.,Aix-Marseille Université, Saint-Paul-lez-Durance, France
| |
Collapse
|
22
|
Agapov AA, Kulbachinskiy AV. Mechanisms of Stress Resistance and Gene Regulation in the Radioresistant Bacterium Deinococcus radiodurans. BIOCHEMISTRY (MOSCOW) 2016; 80:1201-16. [PMID: 26567564 DOI: 10.1134/s0006297915100016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The bacterium Deinococcus radiodurans reveals extraordinary resistance to ionizing radiation, oxidative stress, desiccation, and other damaging conditions. In this review, we consider the main molecular mechanisms underlying such resistance, including the action of specific DNA repair and antioxidation systems, and transcription regulation during the anti-stress response.
Collapse
Affiliation(s)
- A A Agapov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, 123182, Russia.
| | | |
Collapse
|
23
|
DNA Gyrase of Deinococcus radiodurans is characterized as Type II bacterial topoisomerase and its activity is differentially regulated by PprA in vitro. Extremophiles 2016; 20:195-205. [DOI: 10.1007/s00792-016-0814-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 01/20/2016] [Indexed: 11/26/2022]
|
24
|
PprA Protein Is Involved in Chromosome Segregation via Its Physical and Functional Interaction with DNA Gyrase in Irradiated Deinococcus radiodurans Bacteria. mSphere 2016; 1:mSphere00036-15. [PMID: 27303692 PMCID: PMC4863600 DOI: 10.1128/msphere.00036-15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 12/09/2015] [Indexed: 11/30/2022] Open
Abstract
D. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation that are aggravated by the absence of PprA, and (iii) PprA stimulates the decatenation activity of DNA gyrase. Our results extend the knowledge of how D. radiodurans cells survive exposure to extreme doses of gamma irradiation and point out the link between DNA repair, chromosome segregation, and DNA gyrase activities in the radioresistant D. radiodurans bacterium. PprA, a radiation-induced Deinococcus-specific protein, was previously shown to be required for cell survival and accurate chromosome segregation after exposure to ionizing radiation. Here, we used an in vivo approach to determine, by shotgun proteomics, putative PprA partners coimmunoprecipitating with PprA when cells were exposed to gamma rays. Among them, we found the two subunits of DNA gyrase and, thus, chose to focus our work on characterizing the activities of the deinococcal DNA gyrase in the presence or absence of PprA. Loss of PprA rendered cells hypersensitive to novobiocin, an inhibitor of the B subunit of DNA gyrase. We showed that treatment of bacteria with novobiocin resulted in induction of the radiation desiccation response (RDR) regulon and in defects in chromosome segregation that were aggravated by the absence of PprA. In vitro, the deinococcal DNA gyrase, like other bacterial DNA gyrases, possesses DNA negative supercoiling and decatenation activities. These two activities are inhibited in vitro by novobiocin and nalidixic acid, whereas PprA specifically stimulates the decatenation activity of DNA gyrase. Together, these results suggest that PprA plays a major role in chromosome decatenation via its interaction with the deinococcal DNA gyrase when D. radiodurans cells are recovering from exposure to ionizing radiation. IMPORTANCED. radiodurans is one of the most radiation-resistant organisms known. This bacterium is able to cope with high levels of DNA lesions generated by exposure to extreme doses of ionizing radiation and to reconstruct a functional genome from hundreds of radiation-induced chromosomal fragments. Here, we identified partners of PprA, a radiation-induced Deinococcus-specific protein, previously shown to be required for radioresistance. Our study leads to three main findings: (i) PprA interacts with DNA gyrase after irradiation, (ii) treatment of cells with novobiocin results in defects in chromosome segregation that are aggravated by the absence of PprA, and (iii) PprA stimulates the decatenation activity of DNA gyrase. Our results extend the knowledge of how D. radiodurans cells survive exposure to extreme doses of gamma irradiation and point out the link between DNA repair, chromosome segregation, and DNA gyrase activities in the radioresistant D. radiodurans bacterium.
Collapse
|
25
|
Thiaville PC, El Yacoubi B, Köhrer C, Thiaville JJ, Deutsch C, Iwata-Reuyl D, Bacusmo JM, Armengaud J, Bessho Y, Wetzel C, Cao X, Limbach PA, RajBhandary UL, de Crécy-Lagard V. Essentiality of threonylcarbamoyladenosine (t(6)A), a universal tRNA modification, in bacteria. Mol Microbiol 2015; 98:1199-221. [PMID: 26337258 DOI: 10.1111/mmi.13209] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2015] [Indexed: 02/06/2023]
Abstract
Threonylcarbamoyladenosine (t(6)A) is a modified nucleoside universally conserved in tRNAs in all three kingdoms of life. The recently discovered genes for t(6)A synthesis, including tsaC and tsaD, are essential in model prokaryotes but not essential in yeast. These genes had been identified as antibacterial targets even before their functions were known. However, the molecular basis for this prokaryotic-specific essentiality has remained a mystery. Here, we show that t(6)A is a strong positive determinant for aminoacylation of tRNA by bacterial-type but not by eukaryotic-type isoleucyl-tRNA synthetases and might also be a determinant for the essential enzyme tRNA(Ile)-lysidine synthetase. We confirm that t(6)A is essential in Escherichia coli and a survey of genome-wide essentiality studies shows that genes for t(6)A synthesis are essential in most prokaryotes. This essentiality phenotype is not universal in Bacteria as t(6)A is dispensable in Deinococcus radiodurans, Thermus thermophilus, Synechocystis PCC6803 and Streptococcus mutans. Proteomic analysis of t(6)A(-) D. radiodurans strains revealed an induction of the proteotoxic stress response and identified genes whose translation is most affected by the absence of t(6)A in tRNAs. Thus, although t(6)A is universally conserved in tRNAs, its role in translation might vary greatly between organisms.
Collapse
Affiliation(s)
- Patrick C Thiaville
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.,Genetics and Genomics Graduate Program, University of Florida, Gainesville, FL, 32610, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32610, USA.,Institut de Génétique et Microbiologie, Université of Paris-Sud, Orsay, France
| | - Basma El Yacoubi
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Caroline Köhrer
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jennifer J Thiaville
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Chris Deutsch
- Department of Chemistry, Portland State University, Portland, OR, 97297, USA
| | - Dirk Iwata-Reuyl
- Department of Chemistry, Portland State University, Portland, OR, 97297, USA
| | - Jo Marie Bacusmo
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA
| | - Jean Armengaud
- CEA, DSV, IBiTec-S, SPI, Li2D, Laboratory 'Innovative technologies for Detection and Diagnostics', Bagnols-sur-Cèze, F-30200, France
| | - Yoshitaka Bessho
- RIKEN SPring-8 Center, 1-1-1 Kouto, Sayo, Hyogo, 679-5148, Japan.,Institute of Physics, Academia Sinica, 128 Sec. 2, Academia Rd., Nankang, Taipei, 11529, Taiwan
| | - Collin Wetzel
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Xiaoyu Cao
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Patrick A Limbach
- Rieveschl Laboratories for Mass Spectrometry, Department of Chemistry, University of Cincinnati, Cincinnati, Ohio, 45221, USA
| | - Uttam L RajBhandary
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32611, USA.,University of Florida Genetics Institute, University of Florida, Gainesville, FL, 32610, USA
| |
Collapse
|
26
|
Comparative proteomic analysis of silkworm fat body after knocking out fibroin heavy chain gene: a novel insight into cross-talk between tissues. Funct Integr Genomics 2015; 15:611-37. [DOI: 10.1007/s10142-015-0461-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2015] [Revised: 07/28/2015] [Accepted: 08/02/2015] [Indexed: 11/25/2022]
|
27
|
Trapp J, Almunia C, Gaillard JC, Pible O, Chaumot A, Geffard O, Armengaud J. Proteogenomic insights into the core-proteome of female reproductive tissues from crustacean amphipods. J Proteomics 2015; 135:51-61. [PMID: 26170043 DOI: 10.1016/j.jprot.2015.06.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/11/2015] [Accepted: 06/29/2015] [Indexed: 11/27/2022]
Abstract
As a result of the poor genome sequence coverage of crustacean amphipods, characterization of their evolutionary biology relies mostly on phenotypic traits. Here, we analyzed the proteome of ovaries from five amphipods, all from the Senticaudata suborder, with the objective to obtain insights into the core-proteome of female reproductive systems. These amphipods were from either the Gammarida infraorder: Gammarus fossarum, Gammarus pulex, Gammarus roeseli, or the Talitrida infraorder: Parhyale hawaiensis and Hyalella azteca. Ovaries from animals sampled at the end of their reproductive cycle were dissected. Their whole protein contents were extracted and their proteomes were recorded by high-throughput nanoLC-MS/MS with a high-resolution mass spectrometer. We interpreted tandem mass spectrometry data with the protein sequence resource from G. fossarum and P. hawaiensis, both recently established by RNA sequencing. The large molecular biodiversity within amphipods was assessed by the ratio of MS/MS spectra assigned for each sample, which tends to diverge rapidly along the taxonomic level considered. The core-proteome was defined as the proteins conserved along all samples, thus detectable by the homology-based proteomic assignment procedure. This specific subproteome may be further enriched in the future with the analysis of new species and update of the protein sequence resource.
Collapse
Affiliation(s)
- Judith Trapp
- Irstea, Unité de Recherche MALY, Laboratoire d'écotoxicologie, CS70077, F-69626 Villeurbanne, France; CEA-Marcoule, DSV/IBICTEC-S/SPI/Li2D, Laboratory "Innovative Technologies for Detection and Diagnostic", BP 17171, F-30200 Bagnols-sur-Cèze, France
| | - Christine Almunia
- CEA-Marcoule, DSV/IBICTEC-S/SPI/Li2D, Laboratory "Innovative Technologies for Detection and Diagnostic", BP 17171, F-30200 Bagnols-sur-Cèze, France
| | - Jean-Charles Gaillard
- CEA-Marcoule, DSV/IBICTEC-S/SPI/Li2D, Laboratory "Innovative Technologies for Detection and Diagnostic", BP 17171, F-30200 Bagnols-sur-Cèze, France
| | - Olivier Pible
- CEA-Marcoule, DSV/IBICTEC-S/SPI/Li2D, Laboratory "Innovative Technologies for Detection and Diagnostic", BP 17171, F-30200 Bagnols-sur-Cèze, France
| | - Arnaud Chaumot
- Irstea, Unité de Recherche MALY, Laboratoire d'écotoxicologie, CS70077, F-69626 Villeurbanne, France
| | - Olivier Geffard
- Irstea, Unité de Recherche MALY, Laboratoire d'écotoxicologie, CS70077, F-69626 Villeurbanne, France.
| | - Jean Armengaud
- CEA-Marcoule, DSV/IBICTEC-S/SPI/Li2D, Laboratory "Innovative Technologies for Detection and Diagnostic", BP 17171, F-30200 Bagnols-sur-Cèze, France.
| |
Collapse
|
28
|
Passot FM, Nguyen HH, Dard-Dascot C, Thermes C, Servant P, Espéli O, Sommer S. Nucleoid organization in the radioresistant bacteriumDeinococcus radiodurans. Mol Microbiol 2015; 97:759-74. [DOI: 10.1111/mmi.13064] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/15/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Fanny Marie Passot
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris Sud; Bâtiment 409 Orsay 91405 France
| | - Hong Ha Nguyen
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris Sud; Bâtiment 409 Orsay 91405 France
| | - Cloelia Dard-Dascot
- Plateforme Intégrée IMAGIF - CNRS; Avenue de la Terrasse; Gif sur Yvette 91198 France
| | - Claude Thermes
- Plateforme Intégrée IMAGIF - CNRS; Avenue de la Terrasse; Gif sur Yvette 91198 France
| | - Pascale Servant
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris Sud; Bâtiment 409 Orsay 91405 France
| | - Olivier Espéli
- Center for Interdisciplinary Research In Biology (CIRB); Collège de France; CNRS UMR 7241, INSERM U1050, 11 place Marcelin Berthelot Paris 75005 France
| | - Suzanne Sommer
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS; Université Paris Sud; Bâtiment 409 Orsay 91405 France
| |
Collapse
|
29
|
Ujaoney AK, Basu B, Muniyappa K, Apte SK. Functional roles of N-terminal and C-terminal domains in the overall activity of a novel single-stranded DNA binding protein of Deinococcus radiodurans. FEBS Open Bio 2015; 5:378-87. [PMID: 25973364 PMCID: PMC4427625 DOI: 10.1016/j.fob.2015.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/17/2015] [Accepted: 04/17/2015] [Indexed: 11/28/2022] Open
Abstract
Single-stranded DNA binding protein (Ssb) of Deinococcus radiodurans comprises N- and C-terminal oligonucleotide/oligosaccharide binding (OB) folds connected by a beta hairpin connector. To assign functional roles to the individual OB folds, we generated three Ssb variants: SsbN (N-terminal without connector), SsbNC (N-terminal with connector) and SsbC (C-terminal), each harboring one OB fold. Both SsbN and SsbNC displayed weak single-stranded DNA (ssDNA) binding activity, compared to the full-length Ssb (SsbFL). The level of ssDNA binding activity displayed by SsbC was intermediate between SsbFL and SsbN. SsbC and SsbFL predominantly existed as homo-dimers while SsbNC/SsbN formed different oligomeric forms. In vitro, SsbNC or SsbN formed a binary complex with SsbC that displayed enhanced ssDNA binding activity. Unlike SsbFL, Ssb variants were able to differentially modulate topoisomerase-I activity, but failed to stimulate Deinococcal RecA-promoted DNA strand exchange. The results suggest that the C-terminal OB fold is primarily responsible for ssDNA binding. The N-terminal OB fold binds weakly to ssDNA but is involved in multimerization.
Collapse
Affiliation(s)
- Aman K Ujaoney
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Bhakti Basu
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, India
| | - Shree K Apte
- Molecular Biology Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| |
Collapse
|
30
|
PprA, a pleiotropic protein for radioresistance, works through DNA gyrase and shows cellular dynamics during postirradiation recovery in Deinococcus radiodurans. J Genet 2015; 93:349-54. [PMID: 25189229 DOI: 10.1007/s12041-014-0382-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
PprA, a pleiotropic protein involved in radioresistance of Deinococcus radiodurans was detected in multiprotein DNA processing complex identified from this bacterium. pprA mutant expressing GFP-PprA could restore its wild type resistance of γ radiation. Under normal conditions, GFP-PprA expressing cells showed PprA localization on both septum trapped nucleoids (STN) and nucleoids located elsewhere (MCN). Cell exposed to 4 kGy γ radiation showed nearly 2 h growth lag and during this growth arrest phase, the majority of the cells had GFP-PprA located on MCN. While in late phase (~120 min) PIR cells, when cells are nearly out of growth arrest, PprA was maximally found with STN. These cells when treated with nalidixic acid showed diffused localization of PprA across the septum. gyrA disruption mutant of D. radiodurans showed growth inhibition, which increased further in gyrA pprA mutant. Interestingly, gyrA mutant showed ~20-fold less resistance to γ radiation as compared to wild type, which did increase further in gyrA pprA mutant. These results suggested that PprA localization undergoes a dynamic change during PIR, and its localization on nucleoid near septum and functional interaction with gyrase A might suggest a mechanism that could explain PprA role in genome segregation possibly through topoisomerase II.
Collapse
|
31
|
Soppa J. Polyploidy in archaea and bacteria: about desiccation resistance, giant cell size, long-term survival, enforcement by a eukaryotic host and additional aspects. J Mol Microbiol Biotechnol 2015; 24:409-19. [PMID: 25732342 DOI: 10.1159/000368855] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
During recent years, it has become clear that many species of archaea and bacteria are polyploid and contain more than 10 copies of their chromosome. In this contribution, eight examples are discussed to highlight different aspects of polyploidy in prokaryotes. The species discussed are the bacteria Azotobacter vinelandii, Deinococcus radiodurans, Sinorhizobium meliloti, and Epulopiscium as well as the archaea Methanocaldococcus jannaschii, Methanococcus maripaludis, Haloferax volcanii, and haloarchaeal isolates from salt deposits. The topics include possible laboratory artifacts, resistance against double-strand breaks, long-term survival, relaxation of DNA segregation and septum formation, enforced polyploidy by a eukaryotic host, genome equalization by gene conversion, and the nongenetic usage of genomic DNA as a phosphate storage polymer. Together, the selected topics give an overview of the biodiversity of polyploidy in archaea and bacteria.
Collapse
Affiliation(s)
- Jörg Soppa
- Biocentre, Institute for Molecular Biosciences, Goethe University, Frankfurt, Germany
| |
Collapse
|
32
|
de Groot A, Roche D, Fernandez B, Ludanyi M, Cruveiller S, Pignol D, Vallenet D, Armengaud J, Blanchard L. RNA sequencing and proteogenomics reveal the importance of leaderless mRNAs in the radiation-tolerant bacterium Deinococcus deserti. Genome Biol Evol 2015; 6:932-48. [PMID: 24723731 PMCID: PMC4007540 DOI: 10.1093/gbe/evu069] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Deinococcus deserti is a desiccation- and radiation-tolerant desert bacterium. Differential RNA sequencing (RNA-seq) was performed to explore the specificities of its transcriptome. Strikingly, for 1,174 (60%) mRNAs, the transcription start site was found exactly at (916 cases, 47%) or very close to the translation initiation codon AUG or GUG. Such proportion of leaderless mRNAs, which may resemble ancestral mRNAs, is unprecedented for a bacterial species. Proteomics showed that leaderless mRNAs are efficiently translated in D. deserti. Interestingly, we also found 173 additional transcripts with a 5′-AUG or 5′-GUG that would make them competent for ribosome binding and translation into novel small polypeptides. Fourteen of these are predicted to be leader peptides involved in transcription attenuation. Another 30 correlated with new gene predictions and/or showed conservation with annotated and nonannotated genes in other Deinococcus species, and five of these novel polypeptides were indeed detected by mass spectrometry. The data also allowed reannotation of the start codon position of 257 genes, including several DNA repair genes. Moreover, several novel highly radiation-induced genes were found, and their potential roles are discussed. On the basis of our RNA-seq and proteogenomics data, we propose that translation of many of the novel leaderless transcripts, which may have resulted from single-nucleotide changes and maintained by selective pressure, provides a new explanation for the generation of a cellular pool of small peptides important for protection of proteins against oxidation and thus for radiation/desiccation tolerance and adaptation to harsh environmental conditions.
Collapse
Affiliation(s)
- Arjan de Groot
- CEA, DSV, IBEB, Lab Bioénergétique Cellulaire, Saint-Paul-lez-Durance, France
| | | | | | | | | | | | | | | | | |
Collapse
|