1
|
Peters-Clarke TM, Coon JJ, Riley NM. Instrumentation at the Leading Edge of Proteomics. Anal Chem 2024; 96:7976-8010. [PMID: 38738990 DOI: 10.1021/acs.analchem.3c04497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Affiliation(s)
- Trenton M Peters-Clarke
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
| | - Joshua J Coon
- Department of Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Department of Biomolecular Chemistry, University of Wisconsin─Madison, Madison, Wisconsin 53706, United States
- Morgridge Institute for Research, Madison, Wisconsin 53715, United States
| | - Nicholas M Riley
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
2
|
Talbot FO, Suarez CM, Nagy AM, Chen JC, Djavani-Tabrizi I, Clotea I, Jockusch RA. Robust Fluorescence Collection Module for Wide-Bore Ion Cyclotron Resonance Mass Spectrometers. Anal Chem 2023; 95:17193-17202. [PMID: 37963234 DOI: 10.1021/acs.analchem.3c01801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Mass spectrometers are at the heart of the most powerful toolboxes available to scientists when studying molecular structure, conformation, and dynamics in controlled molecular environments. Improved molecular characterization brought about by the implementation of new orthogonal methods into mass spectrometry-enabled analyses opens deeper insight into the complex interplay of forces that underlie chemistry. Here, we detail how one can add fluorescence detection to commercial ultrahigh-resolution Fourier transform ion cyclotron resonance (FT-ICR) mass spectrometers without adverse effects to its preexisting analytical tools. This advance enables measurements based on fluorescence detection, such as Förster resonance energy transfer (FRET), to be used in conjunction with other MS/MS techniques to probe the conformation and dynamics of large biomolecules, such as proteins and their complexes, in the highly controlled environment of a Penning trap.
Collapse
Affiliation(s)
- Francis O Talbot
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Cynthia M Suarez
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Andrea M Nagy
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - JoAnn C Chen
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Iden Djavani-Tabrizi
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ioana Clotea
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Rebecca A Jockusch
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
3
|
Brandner S, Habeck T, Lermyte F. New Insights into the Intrinsic Electron-Based Dissociation Behavior of Cytochrome c Oligomers. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2023; 34:1908-1916. [PMID: 37227392 DOI: 10.1021/jasms.3c00106] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Between 2003 and 2017, four reports were published that demonstrated the intrinsic ability of the native iron-containing proteins cytochrome c and ferritin to undergo radical-based backbone fragmentation in the gas phase without the introduction of exogenous electrons. For cytochrome c in particular, this effect has so far only been reported to occur in the ion source, preventing the in-depth study of reactions occurring after gas-phase isolation of specific precursors. Here, we report the first observation of this intrinsic native electron capture dissociation behavior after quadrupole isolation of specific charge states of the cytochrome c dimer and trimer, providing direct experimental support for key aspects of the mechanism proposed 20 years ago. Furthermore, we provide evidence that, in contrast to some earlier proposals, these oligomeric states are formed in bulk solution rather than during the electrospray ionization process and that the observed fragmentation site preferences can be rationalized through the structure and interactions within these native oligomers rather than the monomer. We also show that the observed fragmentation pattern─and indeed, whether or not fragmentation occurs─is highly sensitive to the provenance and history of the protein samples, to the extent that samples can show distinct fragmentation behavior despite behaving identically in ion mobility experiments. This rather underexplored method therefore represents an exquisitely sensitive conformational probe and will hopefully receive more attention from the biomolecular mass spectrometry community in the future.
Collapse
Affiliation(s)
- Sarah Brandner
- Department of Chemistry, Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Tanja Habeck
- Department of Chemistry, Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| | - Frederik Lermyte
- Department of Chemistry, Clemens-Schöpf Institute of Organic Chemistry and Biochemistry, Technical University of Darmstadt, Peter-Grünberg-Strasse 4, 64287 Darmstadt, Germany
| |
Collapse
|
4
|
Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Characterization of Contractile Proteins from Skeletal Muscle Using Gel-Based Top-Down Proteomics. Proteomes 2019; 7:proteomes7020025. [PMID: 31226838 PMCID: PMC6631179 DOI: 10.3390/proteomes7020025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
The mass spectrometric analysis of skeletal muscle proteins has used both peptide-centric and protein-focused approaches. The term 'top-down proteomics' is often used in relation to studying purified proteoforms and their post-translational modifications. Two-dimensional gel electrophoresis, in combination with peptide generation for the identification and characterization of intact proteoforms being present in two-dimensional spots, plays a critical role in specific applications of top-down proteomics. A decisive bioanalytical advantage of gel-based and top-down approaches is the initial bioanalytical focus on intact proteins, which usually enables the swift identification and detailed characterisation of specific proteoforms. In this review, we describe the usage of two-dimensional gel electrophoretic top-down proteomics and related approaches for the systematic analysis of key components of the contractile apparatus, with a special focus on myosin heavy and light chains and their associated regulatory proteins. The detailed biochemical analysis of proteins belonging to the thick and thin skeletal muscle filaments has decisively improved our biochemical understanding of structure-function relationships within the contractile apparatus. Gel-based and top-down proteomics has clearly established a variety of slow and fast isoforms of myosin, troponin and tropomyosin as excellent markers of fibre type specification and dynamic muscle transition processes.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| |
Collapse
|
5
|
Paul D, Marchand A, Verga D, Teulade-Fichou MP, Bombard S, Rosu F, Gabelica V. Probing ligand and cation binding sites in G-quadruplex nucleic acids by mass spectrometry and electron photodetachment dissociation sequencing. Analyst 2019; 144:3518-3524. [PMID: 31020955 DOI: 10.1039/c9an00398c] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mass spectrometry provides exquisite details on ligand and cation binding stoichiometries with a DNA target. The next important step is to develop reliable methods to determine the cation and ligand binding sites in each complex separated by using a mass spectrometer. To circumvent the caveat of ligand derivatization for cross-linking, which may alter the ligand binding mode, we explored a tandem mass spectrometry (MS/MS) method that does not require ligand derivatization, and is therefore also applicable to localize metal cations. By putting more negative charge states on the complexes using supercharging agents, and by creating radical ions by electron photodetachment, oligonucleotide bonds become weaker than the DNA-cation or DNA-ligand noncovalent bonds upon collision-induced dissociation of the radicals. This electron photodetachment (EPD) method allows one to locate the binding regions of cations and ligands by top-down sequencing of the oligonucleotide target. The very potent G-quadruplex ligands 360A and PhenDC3 were found to replace a potassium cation and bind close to the central loop of 4-repeat human telomeric sequences.
Collapse
Affiliation(s)
- Dababrata Paul
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site, 2 rue Robert Escarpit, 33600 Pessac, France.
| | - Adrien Marchand
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site, 2 rue Robert Escarpit, 33600 Pessac, France.
| | - Daniela Verga
- Institut Curie, PSL Research University, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France and Université Paris Sud, Université Paris-Saclay, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France
| | - Marie-Paule Teulade-Fichou
- Institut Curie, PSL Research University, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France and Université Paris Sud, Université Paris-Saclay, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France
| | - Sophie Bombard
- Institut Curie, PSL Research University, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France and Université Paris Sud, Université Paris-Saclay, CNRS-UMR 9187, INSERM U1196, F-91405 Orsay, France
| | - Frédéric Rosu
- CNRS UMS3033, Inserm US001, IECB, 2 rue Robert Escarpit, 33607 Pessac, France.
| | - Valérie Gabelica
- University of Bordeaux, INSERM and CNRS, ARNA Laboratory, IECB site, 2 rue Robert Escarpit, 33600 Pessac, France.
| |
Collapse
|
6
|
Vincent D, Mertens D, Rochfort S. Optimisation of Milk Protein Top-Down Sequencing Using In-Source Collision-Induced Dissociation in the Maxis Quadrupole Time-of-Flight Mass Spectrometer. Molecules 2018; 23:molecules23112777. [PMID: 30373172 PMCID: PMC6278275 DOI: 10.3390/molecules23112777] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 10/24/2018] [Accepted: 10/25/2018] [Indexed: 12/25/2022] Open
Abstract
Top-down sequencing in proteomics has come of age owing to continuous progress in LC-MS. With their high resolution and broad mass range, Quadrupole Time-of-Flight (Q-ToF) hybrid mass spectrometers equipped with electrospray ionisation source and tandem MS capability by collision-induced dissociation (CID) can be employed to analyse intact proteins and retrieve primary sequence information. To our knowledge, top-down proteomics methods with Q-ToF have only been evaluated using samples of relatively low complexity. Furthermore, the in-source CID (IS-CID) capability of Q-ToF instruments has been under-utilised. This study aimed at optimising top-down sequencing of intact milk proteins to achieve the greatest sequence coverage possible from samples of increasing complexity, assessed using nine known proteins. Eleven MS/MS methods varying in their IS-CID and conventional CID parameters were tested on individual and mixed protein standards as well as raw milk samples. Top-down sequencing results from the nine most abundant proteoforms of caseins, alpha-lactalbumin and beta-lactoglubulins were compared. Nine MS/MS methods achieved more than 70% sequence coverage overall to distinguish between allelic proteoforms, varying only by one or two amino acids. The optimal methods utilised IS-CID at low energy. This experiment demonstrates the utility of Q-ToF systems for top-down proteomics and that IS-CID could be more frequently employed.
Collapse
Affiliation(s)
- Delphine Vincent
- Department of Economic Development, Jobs, Transport and Resources, AgriBio Centre, Bundoora, Victoria 3083, Australia.
| | | | - Simone Rochfort
- Department of Economic Development, Jobs, Transport and Resources, AgriBio Centre, Bundoora, Victoria 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia.
| |
Collapse
|
7
|
Jedinak A, Loughlin KR, Moses MA. Approaches to the discovery of non-invasive urinary biomarkers of prostate cancer. Oncotarget 2018; 9:32534-32550. [PMID: 30197761 PMCID: PMC6126692 DOI: 10.18632/oncotarget.25946] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 07/23/2018] [Indexed: 02/07/2023] Open
Abstract
Prostate cancer (PCa) continues to be one of the most common cancers in men worldwide. Prostate specific antigen (PSA) measured in blood has been used for decades as an aid for physicians to detect the presence of prostate cancer. However, the PSA test has limited sensitivity and specificity, leading to unnecessary biopsies, overdiagnosis and overtreatment of patients. For these reasons, there is an urgent need for more accurate PCa biomarkers that can detect PCa with high sensitivity and specificity. Urine is a unique source of potential protein biomarkers that can be measured in a non-invasive way. This review comprehensively summarizes state of the art approaches used in the discovery and validation of urinary biomarkers for PCa. Numerous strategies are currently being used in the discovery of urinary biomarkers for prostate cancer including gel-based separation techniques, mass spectrometry, activity-based proteomic assays and software approaches. Antibody-based approaches remain preferred method for validation of candidate biomarkers with rapidly advancing multiplex immunoassays and MS-based targeted approaches. In the last decade, there has been a dramatic acceleration in the development of new techniques and approaches in the discovery of protein biomarkers for prostate cancer including computational, statistical and data mining methods. Many urinary-based protein biomarkers have been identified and have shown significant promise in initial studies. Examples of these potential biomarkers and the methods utilized in their discovery are also discussed in this review.
Collapse
Affiliation(s)
- Andrej Jedinak
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| | - Kevin R Loughlin
- Department of Surgery, Harvard Medical School, Boston, MA, USA.,Department of Urology, Brigham and Women's Hospital, Boston, MA, USA
| | - Marsha A Moses
- Vascular Biology Program and Department of Surgery, Boston Children's Hospital, Boston, MA, USA.,Department of Surgery, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
8
|
MS methods to study macromolecule-ligand interaction: Applications in drug discovery. Methods 2018; 144:152-174. [PMID: 29890284 DOI: 10.1016/j.ymeth.2018.06.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/01/2018] [Accepted: 06/03/2018] [Indexed: 12/12/2022] Open
Abstract
The interaction of small compounds (i.e. ligands) with macromolecules or macromolecule assemblies (i.e. targets) is the mechanism of action of most of the drugs available today. Mass spectrometry is a popular technique for the interrogation of macromolecule-ligand interactions and therefore is also widely used in drug discovery and development. Thanks to its versatility, mass spectrometry is used for multiple purposes such as biomarker screening, identification of the mechanism of action, ligand structure optimization or toxicity assessment. The evolution and automation of the instruments now allows the development of high throughput methods with high sensitivity and a minimized false discovery rate. Herein, all these approaches are described with a focus on the methods for studying macromolecule-ligand interaction aimed at defining the structure-activity relationships of drug candidates, along with their mechanism of action, metabolism and toxicity.
Collapse
|
9
|
Chi Q, Liu YZ, Wang X. Study on the Structural Effect of Maltoligosaccharides on Cytochrome c Complexes Stabilities by Native Mass Spectrometry. NATURAL PRODUCTS AND BIOPROSPECTING 2018; 8:57-61. [PMID: 29380206 PMCID: PMC5803145 DOI: 10.1007/s13659-017-0150-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/13/2017] [Indexed: 05/05/2023]
Abstract
Noncovalent interactions between ligands and targeting proteins are essential for understanding molecular mechanisms of proteins. In this work, we investigated the interaction of Cytochrome c (Cyt c) with maltoligosaccharides, namely maltose (Mal II), maltotriose (Mal III), maltotetraose (Mal IV), maltopentaose (Mal V), maltohexaose (Mal VI) and maltoheptaose (Mal VII). Using electrospray ionization mass spetrometry (ESI-MS) assay, the 1:1 and 1:2 complexes formed by Cyt c with maltoligosaccharide ligand were observed. The corresponding association constants were calculated according to the deconvoluted spectra. The order of the relative binding affinities of the selected oligosaccharides with Cyt c were as Mal III > Mal IV > Mal II > Mal V > Mal VI > Mal VII. The results indicated that the stability of noncovalent protein complexes was intimately correlated to the molecular structure of bound ligand. The relevant functional groups that could form H-bonds, electrostatic or hydrophobic forces with protein's amino residues played an important role for the stability of protein complexes. In addition, the steric structure of ligand was also critical for an appropriate interaction with the binding pocket of proteins.
Collapse
Affiliation(s)
- Quan Chi
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, People's Republic of China
| | - Ying-Zhi Liu
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, People's Republic of China
| | - Xian Wang
- Key Laboratory of Analytical Chemistry of the State Ethnic Affairs Commission, College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, Hubei, 430074, People's Republic of China.
| |
Collapse
|
10
|
Eschweiler JD, Kerr R, Rabuck-Gibbons J, Ruotolo BT. Sizing Up Protein-Ligand Complexes: The Rise of Structural Mass Spectrometry Approaches in the Pharmaceutical Sciences. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2017; 10:25-44. [PMID: 28301749 DOI: 10.1146/annurev-anchem-061516-045414] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Capturing the dynamic interplay between proteins and their myriad interaction partners is critically important for advancing our understanding of almost every biochemical process and human disease. The importance of this general area has spawned many measurement methods capable of assaying such protein complexes, and the mass spectrometry-based structural biology methods described in this review form an important part of that analytical arsenal. Here, we survey the basic principles of such measurements, cover recent applications of the technology that have focused on protein-small-molecule complexes, and discuss the bright future awaiting this group of technologies.
Collapse
Affiliation(s)
| | - Richard Kerr
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109;
| | | | - Brandon T Ruotolo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109;
| |
Collapse
|
11
|
Astefanei A, Dapic I, Camenzuli M. Different Stationary Phase Selectivities and Morphologies for Intact Protein Separations. Chromatographia 2016; 80:665-687. [PMID: 28529348 PMCID: PMC5413533 DOI: 10.1007/s10337-016-3168-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/17/2016] [Accepted: 09/06/2016] [Indexed: 12/18/2022]
Abstract
The central dogma of biology proposed that one gene encodes for one protein. We now know that this does not reflect reality. The human body has approximately 20,000 protein-encoding genes; each of these genes can encode more than one protein. Proteins expressed from a single gene can vary in terms of their post-translational modifications, which often regulate their function within the body. Understanding the proteins within our bodies is a key step in understanding the cause, and perhaps the solution, to disease. This is one of the application areas of proteomics, which is defined as the study of all proteins expressed within an organism at a given point in time. The human proteome is incredibly complex. The complexity of biological samples requires a combination of technologies to achieve high resolution and high sensitivity analysis. Despite the significant advances in mass spectrometry, separation techniques are still essential in this field. Liquid chromatography is an indispensable tool by which low-abundant proteins in complex samples can be enriched and separated. However, advances in chromatography are not as readily adapted in proteomics compared to advances in mass spectrometry. Biologists in this field still favour reversed-phase chromatography with fully porous particles. The purpose of this review is to highlight alternative selectivities and stationary phase morphologies that show potential for application in top-down proteomics; the study of intact proteins.
Collapse
Affiliation(s)
- A. Astefanei
- Centre for Analytical Science in Amsterdam (CASA), Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - I. Dapic
- Centre for Analytical Science in Amsterdam (CASA), Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - M. Camenzuli
- Centre for Analytical Science in Amsterdam (CASA), Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
12
|
Rudashevskaya EL, Sickmann A, Markoutsa S. Global profiling of protein complexes: current approaches and their perspective in biomedical research. Expert Rev Proteomics 2016; 13:951-964. [PMID: 27602509 DOI: 10.1080/14789450.2016.1233064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Despite the rapid evolution of proteomic methods, protein interactions and their participation in protein complexes - an important aspect of their function - has rarely been investigated on the proteome-wide level. Disease states, such as muscular dystrophy or viral infection, are induced by interference in protein-protein interactions within complexes. The purpose of this review is to describe the current methods for global complexome analysis and to critically discuss the challenges and opportunities for the application of these methods in biomedical research. Areas covered: We discuss advancements in experimental techniques and computational tools that facilitate profiling of the complexome. The main focus is on the separation of native protein complexes via size exclusion chromatography and gel electrophoresis, which has recently been combined with quantitative mass spectrometry, for a global protein-complex profiling. The development of this approach has been supported by advanced bioinformatics strategies and fast and sensitive mass spectrometers that have allowed the analysis of whole cell lysates. The application of this technique to biomedical research is assessed, and future directions are anticipated. Expert commentary: The methodology is quite new, and has already shown great potential when combined with complementary methods for detection of protein complexes.
Collapse
Affiliation(s)
- Elena L Rudashevskaya
- a Department of Bioanalytics , Leibniz-Institut für Analytische Wissenschaften - ISAS eV , Dortmund , Germany
| | - Albert Sickmann
- a Department of Bioanalytics , Leibniz-Institut für Analytische Wissenschaften - ISAS eV , Dortmund , Germany.,b Medizinisches Proteom-Center , Ruhr-Universität Bochum , Bochum , Germany.,c School of Natural & Computing Sciences, Department of Chemistry , University of Aberdeen , Aberdeen , UK
| | - Stavroula Markoutsa
- a Department of Bioanalytics , Leibniz-Institut für Analytische Wissenschaften - ISAS eV , Dortmund , Germany
| |
Collapse
|
13
|
Alalwiat A, Grieshaber SE, Paik BA, Kiick KL, Jia X, Wesdemiotis C. Top-down mass spectrometry of hybrid materials with hydrophobic peptide and hydrophilic or hydrophobic polymer blocks. Analyst 2016; 140:7550-64. [PMID: 26460278 DOI: 10.1039/c5an01600b] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multidimensional mass spectrometry (MS) methodology is introduced for the molecular level characterization of polymer-peptide (or polymer-protein) copolymers that cannot be crystallized or chromatographically purified. It encompasses electrospray ionization (ESI) or matrix-assisted laser desorption ionization (MALDI) coupled with mass analysis, tandem mass spectrometry (MS(2)) and gas-phase separation by ion mobility mass spectrometry (IM-MS). The entire analysis is performed in the mass spectrometer ("top-down" approach) within milliseconds and with high sensitivity, as demonstrated for hybrid materials composed of hydrophobic poly(tert-butyl acrylate) (PtBA) or hydrophilic poly(acrylic acid) (PAA) blocks tethered to the hydrophobic decapeptide VPGVGVPGVG (VG2) via triazole linkages. The composition of the major products can be rapidly surveyed by MALDI-MS and MS(2). For a more comprehensive characterization, the ESI-IM-MS (and MS(2)) combination is more suitable, as it separates the hybrid materials based on their unique charges and shapes from unconjugated polymer and partially hydrolyzed products. Such separation is essential for reducing spectral congestion, deconvoluting overlapping compositions and enabling straightforward structural assignments, both for the hybrid copolymers as well as the polymer and peptide reactants. The IM dimension also permits the measurement of collision cross-sections (CCSs), which reveal molecular architecture. The MS and MS(2) spectra of the mobility separated ions conclusively showed that [PtBA-VG2]m and [PAA-VG2]m chains with the expected compositions and sequences were formed. Single and double copolymer blocks (m = 1-2) could be detected. Further, the CCSs of the hybrids, which were prepared via azide/alkyne cycloadditions, confirmed the formation of macrocyclic structures. The top-down methodology described would be particularly useful for the detection and identification of peptide/protein-polymer conjugates which are increasingly used in biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Ahlam Alalwiat
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA.
| | - Sarah E Grieshaber
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Bradford A Paik
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Kristi L Kiick
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Xinqiao Jia
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
| | - Chrys Wesdemiotis
- Department of Chemistry, The University of Akron, Akron, OH 44325-3601, USA.
| |
Collapse
|
14
|
Ranty B, Aldon D, Cotelle V, Galaud JP, Thuleau P, Mazars C. Calcium Sensors as Key Hubs in Plant Responses to Biotic and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:327. [PMID: 27014336 PMCID: PMC4792864 DOI: 10.3389/fpls.2016.00327] [Citation(s) in RCA: 186] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 03/03/2016] [Indexed: 05/07/2023]
Abstract
The Ca(2+) ion is recognized as a crucial second messenger in signaling pathways coupling the perception of environmental stimuli to plant adaptive responses. Indeed, one of the earliest events following the perception of environmental changes (temperature, salt stress, drought, pathogen, or herbivore attack) is intracellular variation of free calcium concentrations. These calcium variations differ in their spatio-temporal characteristics (subcellular location, amplitude, kinetics) with the nature and strength of the stimulus and, for this reason, they are considered as signatures encrypting information from the initial stimulus. This information is believed to drive a specific response by decoding via calcium-binding proteins. Based on recent examples, we illustrate how individual calcium sensors from the calcium-dependent protein kinase and calmodulin-like protein families can integrate inputs from various environmental changes. Focusing on members of these two families, shown to be involved in plant responses to both abiotic and biotic stimuli, we discuss their role as key hubs and we put forward hypotheses explaining how they can drive the signaling pathways toward the appropriate plant responses.
Collapse
Affiliation(s)
| | | | | | | | | | - Christian Mazars
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, CNRS, UPSAuzeville, Castanet-Tolosan, France
| |
Collapse
|
15
|
Sanchez-Lucas R, Mehta A, Valledor L, Cabello-Hurtado F, Romero-Rodrıguez MC, Simova-Stoilova L, Demir S, Rodriguez-de-Francisco LE, Maldonado-Alconada AM, Jorrin-Prieto AL, Jorrín-Novo JV. A year (2014-2015) of plants in Proteomics journal. Progress in wet and dry methodologies, moving from protein catalogs, and the view of classic plant biochemists. Proteomics 2016; 16:866-76. [PMID: 26621614 DOI: 10.1002/pmic.201500351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 10/26/2015] [Accepted: 11/04/2015] [Indexed: 12/23/2022]
Abstract
The present review is an update of the previous one published in Proteomics 2015 Reviews special issue [Jorrin-Novo, J. V. et al., Proteomics 2015, 15, 1089-1112] covering the July 2014-2015 period. It has been written on the bases of the publications that appeared in Proteomics journal during that period and the most relevant ones that have been published in other high-impact journals. Methodological advances and the contribution of the field to the knowledge of plant biology processes and its translation to agroforestry and environmental sectors will be discussed. This review has been organized in four blocks, with a starting general introduction (literature survey) followed by sections focusing on the methodology (in vitro, in vivo, wet, and dry), proteomics integration with other approaches (systems biology and proteogenomics), biological information, and knowledge (cell communication, receptors, and signaling), ending with a brief mention of some other biological and translational topics to which proteomics has made some contribution.
Collapse
Affiliation(s)
- Rosa Sanchez-Lucas
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain
| | - Angela Mehta
- Embrapa Recursos Genéticos e Biotecnologia (CENARGEN), Brasília, DF, Brazil
| | - Luis Valledor
- Department of Biology of Organisms and Systems (BOS), University of Oviedo, Oviedo, Spain
| | | | - M Cristina Romero-Rodrıguez
- Centro Multidisciplinario de Investigaciones Tecnológicas, and Departamento de Fitoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Asunción, San Lorenzo, Paraguay
| | - Lyudmila Simova-Stoilova
- Plant Molecular Biology Department, Institute of Plant Physiology and Genetics, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Sekvan Demir
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain
| | - Luis E Rodriguez-de-Francisco
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain.,INTEC-Sto. Domingo, Santo Domingo, República Dominicana
| | - Ana M Maldonado-Alconada
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain
| | - Ana L Jorrin-Prieto
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain
| | - Jesus V Jorrín-Novo
- Agroforestry and Plant Biochemistry and Proteomics Research Group, Department of Biochemistry and Molecular Biology, University of Córdoba-CeiA3, Córdoba, Spain
| |
Collapse
|
16
|
Marcoux J, Cianférani S. Towards integrative structural mass spectrometry: Benefits from hybrid approaches. Methods 2015; 89:4-12. [DOI: 10.1016/j.ymeth.2015.05.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Revised: 05/06/2015] [Accepted: 05/25/2015] [Indexed: 01/10/2023] Open
|
17
|
Claesen J, Lermyte F, Sobott F, Burzykowski T, Valkenborg D. Differences in the Elemental Isotope Definition May Lead to Errors in Modern Mass-Spectrometry-Based Proteomics. Anal Chem 2015; 87:10747-54. [PMID: 26457653 DOI: 10.1021/acs.analchem.5b01165] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The elemental isotope definition used to calculate the theoretical masses and isotope distribution of (bio)molecules is considered to be a fixed, universal standard in mass-spectrometry-based proteomics. However, this is an incorrect assumption. In view of the ongoing advances in mass spectrometry technology, and in particular the ever-increasing mass precision, the elemental isotope definition and its variations should be taken into account. We illustrate the effect of the elemental isotope uncertainty on the theoretical and experimental masses with theoretical calculations and examples.
Collapse
Affiliation(s)
- Jürgen Claesen
- Interuniversity Institute of Biostatistics and statistical Bioinformatics, Hasselt University , 3590 Diepenbeek, Belgium
| | | | | | - Tomasz Burzykowski
- Interuniversity Institute of Biostatistics and statistical Bioinformatics, Hasselt University , 3590 Diepenbeek, Belgium
| | - Dirk Valkenborg
- Interuniversity Institute of Biostatistics and statistical Bioinformatics, Hasselt University , 3590 Diepenbeek, Belgium.,Applied Bio and Molecular Systems, VITO , 2400 Mol, Belgium
| |
Collapse
|
18
|
Boeri Erba E, Klein PA, Signor L. Combining a NHS ester and glutaraldehyde improves crosslinking prior to MALDI MS analysis of intact protein complexes. JOURNAL OF MASS SPECTROMETRY : JMS 2015; 50:1114-1119. [PMID: 26456778 DOI: 10.1002/jms.3626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 06/11/2015] [Accepted: 06/18/2015] [Indexed: 06/05/2023]
Abstract
Protein complexes play pivotal roles in cellular life. Nevertheless, their characterization remains a substantial challenge. Mass spectrometry (MS) is an emerging tool to study protein assemblies, and electrospray ionization (ESI) is often used because it preserves non-covalent interactions. Matrix-assisted laser desorption/ionization (MALDI) represents an important alternative to ESI because it is more tolerant to salts and detergents (e.g. necessary in the case of membrane complex analyses). Prior to MALDI-MS, the subunits should be crosslinked (XLed). Moreover, crosslinking (XLing) is useful when constraint distances are determined to obtain low-resolution structural information. Here we report a novel XLing approach to study protein complexes with MALDI-MS. We investigated two tetramers (i.e. alcohol dehydrogenase and aldolase) larger than 140 kDa at two pH values (7.2 and 8.0). We tested two different crosslinkers (XLers) (i.e. BS(3) and glutaraldehyde), used separately or in combination. We utilized gentle agitation and ultracentrifugation. Our data shows that the pH influenced the XLing when using a single XLer. Combining two XLers was demonstrated to be more efficient than using a reagent alone. In particular, the combination determined a higher degree of XLing and lower mass shift. This could suggest a ranking in target amino acid availability. First residues at specific distances are linked by BS(3) , then glutaraldehyde binds residues that are still available at larger distances. Ultracentrifugation and gentle agitation both provide similar degrees of XLing, but the former method determined a lower mass increment resulting from redundant XLing. To conclude, we present an efficient dual XLing approach for determining mass and stoichiometry of protein assemblies.
Collapse
Affiliation(s)
- Elisabetta Boeri Erba
- Univ. Grenoble Alpes, IBS, F-38044, Grenoble, France
- CNRS, IBS, F-38044, Grenoble, France
- CEA, IBS, F-38044, Grenoble, France
| | - Pierre Andre Klein
- Univ. Grenoble Alpes, IBS, F-38044, Grenoble, France
- CNRS, IBS, F-38044, Grenoble, France
- CEA, IBS, F-38044, Grenoble, France
| | - Luca Signor
- Univ. Grenoble Alpes, IBS, F-38044, Grenoble, France
- CNRS, IBS, F-38044, Grenoble, France
- CEA, IBS, F-38044, Grenoble, France
| |
Collapse
|
19
|
Decoding protein networks during virus entry by quantitative proteomics. Virus Res 2015; 218:25-39. [PMID: 26365680 PMCID: PMC4914609 DOI: 10.1016/j.virusres.2015.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 01/05/2023]
Abstract
Virus entry into host cells relies on interactions between viral and host structures including lipids, carbohydrates and proteins. Particularly, protein–protein interactions between viral surface proteins and host proteins as well as secondary host protein–protein interactions play a pivotal role in coordinating virus binding and uptake. These interactions are dynamic and frequently involve multiprotein complexes. In the past decade mass spectrometry based proteomics methods have reached sensitivities and high throughput compatibilities of genomics methods and now allow the reliable quantitation of proteins in complex samples from limited material. As proteomics provides essential information on the biologically active entity namely the protein, including its posttranslational modifications and its interactions with other proteins, it is an indispensable method in the virologist's toolbox. Here we review protein interactions during virus entry and compare classical biochemical methods to study entry with novel technically advanced quantitative proteomics techniques. We highlight the value of quantitative proteomics in mapping functional virus entry networks, discuss the benefits and limitations and illustrate how the methodology will help resolve unsettled questions in virus entry research in the future.
Collapse
|
20
|
Lermyte F, Sobott F. Electron transfer dissociation provides higher-order structural information of native and partially unfolded protein complexes. Proteomics 2015; 15:2813-22. [DOI: 10.1002/pmic.201400516] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2014] [Revised: 03/13/2015] [Accepted: 06/15/2015] [Indexed: 12/31/2022]
Affiliation(s)
- Frederik Lermyte
- UA-VITO Center for Proteomics; University of Antwerp; Antwerp Belgium
- Biomolecular & Analytical Mass Spectrometry group; Department of Chemistry; University of Antwerp; Antwerp Belgium
| | - Frank Sobott
- UA-VITO Center for Proteomics; University of Antwerp; Antwerp Belgium
- Biomolecular & Analytical Mass Spectrometry group; Department of Chemistry; University of Antwerp; Antwerp Belgium
| |
Collapse
|
21
|
Abstract
The increasing acceptance that proteins may exert multiple functions in the cell brings with it new analytical challenges that will have an impact on the field of proteomics. Many proteomics workflows begin by destroying information about the interactions between different proteins, and the reduction of a complex protein mixture to constituent peptides also scrambles information about the combinatorial potential of post-translational modifications. To bring the focus of proteomics on to the domain of protein moonlighting will require novel analytical and quantitative approaches.
Collapse
|
22
|
Lermyte F, Williams JP, Brown JM, Martin EM, Sobott F. Extensive Charge Reduction and Dissociation of Intact Protein Complexes Following Electron Transfer on a Quadrupole-Ion Mobility-Time-of-Flight MS. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2015; 26:1068-76. [PMID: 25862188 DOI: 10.1007/s13361-015-1124-z] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 02/25/2015] [Accepted: 03/01/2015] [Indexed: 05/23/2023]
Abstract
Non-dissociative charge reduction, typically considered to be an unwanted side reaction in electron transfer dissociation (ETD) experiments, can be enhanced significantly in order to reduce the charge state of intact protein complexes to as low as 1+ on a commercially available Q-IM-TOF instrument. This allows for the detection of large complexes beyond 100,000 m/z, while at the same time generating top-down ETD fragments, which provide sequence information from surface-exposed parts of the folded structure. Optimization of the supplemental activation has proven to be crucial in these experiments and the charge-reduced species are most likely the product of both proton transfer (PTR) and non-dissociative electron transfer (ETnoD) reactions that occur prior to the ion mobility cell. Applications of this approach range from deconvolution of complex spectra to the manipulation of charge states of gas-phase ions.
Collapse
Affiliation(s)
- Frederik Lermyte
- Biomolecular and Analytical Mass Spectrometry group, Department of Chemistry, University of Antwerp, Groenenborgerlaan 171, 2020, Antwerp, Belgium
| | | | | | | | | |
Collapse
|
23
|
Wohlgemuth I, Lenz C, Urlaub H. Studying macromolecular complex stoichiometries by peptide-based mass spectrometry. Proteomics 2015; 15:862-79. [PMID: 25546807 PMCID: PMC5024058 DOI: 10.1002/pmic.201400466] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/24/2014] [Accepted: 12/22/2014] [Indexed: 11/11/2022]
Abstract
A majority of cellular functions are carried out by macromolecular complexes. A host of biochemical and spectroscopic methods exists to characterize especially protein/protein complexes, however there has been a lack of a universal method to determine protein stoichiometries. Peptide‐based MS, especially as a complementary method to the MS analysis of intact protein complexes, has now been developed to a point where it can be employed to assay protein stoichiometries in a routine manner. While the experimental demands are still significant, peptide‐based MS has been successfully applied to analyze stoichiometries for a variety of protein complexes from very different biological backgrounds. In this review, we discuss the requirements especially for targeted MS acquisition strategies to be used in this context, with a special focus on the interconnected experimental aspects of sample preparation, protein digestion, and peptide stability. In addition, different strategies for the introduction of quantitative peptide standards and their suitability for different scenarios are compared.
Collapse
Affiliation(s)
- Ingo Wohlgemuth
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen, Germany
| | | | | |
Collapse
|
24
|
Mass Spectrometry in Food Quality and Safety. ADVANCED MASS SPECTROMETRY FOR FOOD SAFETY AND QUALITY 2015. [DOI: 10.1016/b978-0-444-63340-8.00001-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
25
|
Shining a spotlight on intact proteins. Proteomics 2014; 14:1125-7. [DOI: 10.1002/pmic.201470073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|