1
|
Cai H, Pang Y, Ren Z, Fu X, Jia L. Delivering synaptic protein mRNAs via extracellular vesicles ameliorates cognitive impairment in a mouse model of Alzheimer's disease. BMC Med 2024; 22:138. [PMID: 38528511 PMCID: PMC10964680 DOI: 10.1186/s12916-024-03359-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 03/15/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Synaptic dysfunction with reduced synaptic protein levels is a core feature of Alzheimer's disease (AD). Synaptic proteins play a central role in memory processing, learning, and AD pathogenesis. Evidence suggests that synaptic proteins in plasma neuronal-derived extracellular vesicles (EVs) are reduced in patients with AD. However, it remains unclear whether levels of synaptic proteins in EVs are associated with hippocampal atrophy of AD and whether upregulating the expression of these synaptic proteins has a beneficial effect on AD. METHODS In this study, we included 57 patients with AD and 56 healthy controls. We evaluated their brain atrophy through magnetic resonance imaging using the medial temporal lobe atrophy score. We measured the levels of four synaptic proteins, including synaptosome-associated protein 25 (SNAP25), growth-associated protein 43 (GAP43), neurogranin, and synaptotagmin 1 in both plasma neuronal-derived EVs and cerebrospinal fluid (CSF). We further examined the association of synaptic protein levels with brain atrophy. We also evaluated the levels of these synaptic proteins in the brains of 5×FAD mice. Then, we loaded rabies virus glycoprotein-engineered EVs with messenger RNAs (mRNAs) encoding GAP43 and SNAP25 and administered these EVs to 5×FAD mice. After treatment, synaptic proteins, dendritic density, and cognitive function were evaluated. RESULTS The results showed that GAP43, SNAP25, neurogranin, and synaptotagmin 1 were decreased in neuronal-derived EVs but increased in CSF in patients with AD, and the changes corresponded to the severity of brain atrophy. GAP43 and SNAP25 were decreased in the brains of 5×FAD mice. The engineered EVs efficiently and stably delivered these synaptic proteins to the brain, where synaptic protein levels were markedly upregulated. Upregulation of synaptic protein expression could ameliorate cognitive impairment in AD by promoting dendritic density. This marks the first successful delivery of synaptic protein mRNAs via EVs in AD mice, yielding remarkable therapeutic effects. CONCLUSIONS Synaptic proteins are closely related to AD processes. Delivery of synaptic protein mRNAs via EVs stands as a promising effective precision treatment strategy for AD, which significantly advances the current understanding of therapeutic approaches for the disease.
Collapse
Affiliation(s)
- Huimin Cai
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St., Beijing, 100053, China
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Yana Pang
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St., Beijing, 100053, China
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Ziye Ren
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St., Beijing, 100053, China
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Xiaofeng Fu
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St., Beijing, 100053, China
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China
| | - Longfei Jia
- Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, 45 Changchun St., Beijing, 100053, China.
- Center of Alzheimer's Disease, Beijing Institute of Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Gupta S, Khan J, Ghosh S. Molecular mechanism of cognitive impairment associated with Parkinson's disease: A stroke perspective. Life Sci 2024; 337:122358. [PMID: 38128756 DOI: 10.1016/j.lfs.2023.122358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/03/2023] [Accepted: 12/13/2023] [Indexed: 12/23/2023]
Abstract
Parkinson's disease (PD) is a common neurological illness that causes several motor and non-motor symptoms, most characteristically limb tremors and bradykinesia. PD is a slowly worsening disease that arises due to progressive neurodegeneration of specific areas of the brain, especially the substantia nigra of the midbrain. Even though PD has continuously been linked to a higher mortality risk in numerous epidemiologic studies, there have been significant discoveries regarding the connection between PD and stroke. The incidence of strokes such as cerebral infarction and hemorrhage is substantially associated with the development of PD. Moreover, cognitive impairments, primarily dementia, have been associated with stroke and PD. However, the underlying molecular mechanism of this phenomenon is still obscure. This concise review focuses on the relationship between stroke and PD, emphasizing the molecular mechanism of cognition deficit and memory loss evident in PD and stroke. Furthermore, we are also highlighting some potential drug molecules that can target both PD and stroke.
Collapse
Affiliation(s)
- Sanju Gupta
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India
| | - Juhee Khan
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India
| | - Surajit Ghosh
- Department of Bioscience & Bioengineering, Indian Institute of Technology Jodhpur (IIT-Jodhpur), Rajasthan 342037, India.
| |
Collapse
|
3
|
The Effect of Aggregated Alpha Synuclein on Synaptic and Axonal Proteins in Parkinson’s Disease—A Systematic Review. Biomolecules 2022; 12:biom12091199. [PMID: 36139038 PMCID: PMC9496556 DOI: 10.3390/biom12091199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/22/2022] [Accepted: 08/26/2022] [Indexed: 11/17/2022] Open
Abstract
α-synuclein is a core component of Lewy bodies, one of the pathological hallmarks of Parkinson’s disease. Aggregated α-synuclein can impair both synaptic functioning and axonal transport. However, understanding the pathological role that α-synuclein plays at a cellular level is complicated as existing findings are multifaceted and dependent on the mutation, the species, and the quantity of the protein that is involved. This systematic review aims to stratify the research findings to develop a more comprehensive understanding of the role of aggregated α-synuclein on synaptic and axonal proteins in Parkinson’s disease models. A literature search of the PubMed, Scopus, and Web of Science databases was conducted and a total of 39 studies were included for analysis. The review provides evidence for the dysregulation or redistribution of synaptic and axonal proteins due to α-synuclein toxicity. However, due to the high quantity of variables that were used in the research investigations, it was challenging to ascertain exactly what effect α-synuclein has on the expression of the proteins. A more standardized experimental approach regarding the variables that are employed in future studies is crucial so that existing literature can be consolidated. New research involving aggregated α-synuclein at the synapse and regarding axonal transport could be advantageous in guiding new treatment solutions.
Collapse
|
4
|
Zhu F, Chen H, Han J, Zhou W, Tang Q, Yu Q, Ma S, Liu X, Huo S, Chen K. Proteomic and Targeted Metabolomic Studies on a Silkworm Model of Parkinson's Disease. J Proteome Res 2022; 21:2114-2123. [PMID: 35959672 DOI: 10.1021/acs.jproteome.2c00149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Parkinson's disease (PD) is a chronic and progressive movement disorder that is characterized by the loss of dopaminergic neurons in the brain. Animal models of PD have become very popular in the past two decades to understand the etiology, pathology, and molecular and cellular pathways associated with PD. In this study, we report the first neurotoxin-induced silkworm model for PD by chronic feeding with 6-hydroxydopamine (6-OHDA) and explore the possible molecular mechanisms associated with PD using proteomic and targeted metabolomic approaches. Although silkworm is phylogenetically distant from humans and rats, 6-OHDA treatment produced similar PD phenotypes, including motor dysfunction, dopaminergic neuron degeneration, and decreased levels of dopamine. Major neurotransmitters in the silkworm head tissue were profiled, revealing key molecules implicating neurodegenerative disorder. Proteomics analysis revealed a major downregulation of nearly 50 structural proteins constituting cuticles and microfilaments, indicating mechanical damage in the silkworm tissues. The results suggest that 6-OHDA treatment could induce PD-like symptoms in silkworms and activate similar proteomic and metabolic pathways to those in rats or higher animals. This study demonstrates the feasibility and value of the silkworm-based PD model, which may provide important clues for understanding the molecular and cellular mechanisms underlying PD. The mass spectrometry raw files have been deposited to iProx via the project ID IPX0004206000.
Collapse
|
5
|
Nano-MgO composites containing plasmid DNA to silence SNCA gene displays neuroprotective effects in Parkinson's rats induced by 6-hydroxydopamine. Eur J Pharmacol 2022; 922:174904. [DOI: 10.1016/j.ejphar.2022.174904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
|
6
|
Dakik H, Mantash S, Nehme A, Kobeissy F, Zabet-Moghaddam M, Mirzaei P, Mechref Y, Gaillard A, Prestoz L, Zibara K. Analysis of the Neuroproteome Associated With Cell Therapy After Intranigral Grafting in a Mouse Model of Parkinson Disease. Front Neurosci 2021; 15:621121. [PMID: 33776636 PMCID: PMC7991918 DOI: 10.3389/fnins.2021.621121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Accepted: 02/09/2021] [Indexed: 12/04/2022] Open
Abstract
Advances in large-scale proteomics analysis have been very useful in understanding pathogenesis of diseases and elaborating therapeutic strategies. Proteomics has been employed to study Parkinson disease (PD); however, sparse studies reported proteome investigation after cell therapy approaches. In this study, we used liquid chromatography–tandem mass spectrometry and systems biology to identify differentially expressed proteins in a translational mouse model of PD after cell therapy. Proteins were extracted from five nigrostriatal-related brain regions of mice previously lesioned with 6-hydroxydopamine in the substantia nigra. Protein expression was compared in non-grafted brain to 1 and 7 days after intranigral grafting of E12.5 embryonic ventral mesencephalon (VM). We found a total of 277 deregulated proteins after transplantation, which are enriched for lipid metabolism, oxidative phosphorylation and PD, thus confirming that our animal model is similar to human PD and that the presence of grafted cells modulates the expression of these proteins. Notably, seven proteins (Acta1, Atp6v1e1, Eci3, Lypla2, Pip4k2a, Sccpdh, and Sh3gl2) were commonly down-regulated after engraftment in all studied brain regions. These proteins are known to be involved in the formation of lipids and recycling of dopamine (DA) vesicle at the synapse. Moreover, intranigral transplantation of VM cells decreased the expression of proteins related to oxidative stress, especially in the nigrostriatal pathway containing the DA grafted neurons. In the same regions, an up-regulation of several proteins including α-synuclein and tyrosine hydroxylase was observed, whereas expression of tetraspanin 7 was shut down. Overall, these results suggest that intranigral transplantation of VM tissue in an animal model of PD may induce a decrease of oxidative stress in the nigrostriatal pathway and a restoration of the machinery of neurotransmitters, particularly DA release to promote DA transmission through a decrease of D2 DA receptors endocytosis. Identification of new mechanistic elements involved in the nigrostriatal reconstruction process, using translational animal models and systems biology, is a promising approach to enhance the repair of this pathway in PD patients undergoing cell therapy.
Collapse
Affiliation(s)
- Hassan Dakik
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,Université de Tours, Tours, France
| | - Sarah Mantash
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Ali Nehme
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,McGill University and Génome Québec Innovation Centre, McGill University, Montreal, QC, Canada
| | - Firas Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Masoud Zabet-Moghaddam
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Parvin Mirzaei
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Yehia Mechref
- Center for Biotechnology and Genomics, Texas Tech University, Lubbock, TX, United States
| | - Afsaneh Gaillard
- INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Laetitia Prestoz
- INSERM, Laboratoire de Neurosciences Expérimentales et Cliniques, Université de Poitiers, Poitiers, France
| | - Kazem Zibara
- ER045, PRASE, Lebanese University, Beirut, Lebanon.,Department of Biology, Faculty of Sciences-I, Lebanese University, Beirut, Lebanon
| |
Collapse
|
7
|
Manzoor R, Rasool A, Ahmed M, Kaleem U, Duru LN, Ma H, Deng Y. Synergistic Neuroprotective Effect of Endogenously-Produced Hydroxytyrosol and Synaptic Vesicle Proteins on Pheochromocytoma Cell Line Against Salsolinol. Molecules 2020; 25:E1715. [PMID: 32276517 PMCID: PMC7181248 DOI: 10.3390/molecules25071715] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 01/29/2023] Open
Abstract
Oxidative stress triggers a lethal cascade, leading to Parkinson's disease by causing degeneration of dopaminergic neurons. In this study, eight antioxidants were screened for their neuroprotective effect on PC12 cells (pheochromocytoma cell line) under oxidative stress induced by salsolinol (OSibS). Hydroxytyrosol was found to be the strongest neuroprotective agent; it improved viability of PC12 cells by up to 81.69% under OSibS. Afterward, two synaptic vesicle proteins, synapsin-1 and septin-5, were screened for their neuroprotective role; the overexpression of synapsin-1 and the downregulation of septin-5 separately improved the viability of PC12 cells by up to 71.17% and 67.00%, respectively, compared to PC12 cells only treated with salsolinol (PoTwS) under OSibS. Subsequently, the PC12+syn++sep- cell line was constructed and pretreated with 100 µM hydroxytyrosol, which improved its cell viability by up to 99.03% and led to 14.71- and 6.37-fold reductions in the levels of MDA and H2O2, respectively, and 6.8-, 12.97-, 10.57-, and 7.57-fold increases in the activity of catalase, glutathione reductase, superoxide dismutase, and glutathione peroxidase, respectively, compared to PoTwS under OSibS. Finally, alcohol dehydrogenase-6 from Saccharomyces cerevisiae was expressed in PC12+syn++sep- cells to convert 3,4-dihydroxyphenylacetaldehyde (an endogenous neurotoxin) into hydroxytyrosol. The PC12+syn++sep-+ADH6+ cell line also led to 22.38- and 12.33-fold decreases in the production of MDA and H2O2, respectively, and 7.15-, 13.93-, 12.08-, and 8.11-fold improvements in the activity of catalase, glutathione reductase, superoxide dismutase, and glutathione peroxidase, respectively, compared to PoTwS under OSibS. Herein, we report the endogenous production of a powerful antioxidant, hydroxytyrosol, from 3,4-dihydroxyphenylacetaldehyde, and evaluate its synergistic neuroprotective effect, along with synapsin-1 and septin-5, on PC12 cells under OSibS.
Collapse
Affiliation(s)
- Robina Manzoor
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (R.M.); (L.N.D.); (H.M.)
| | - Aamir Rasool
- Institute for Synthetic Biosystem, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China;
- Institute of Biochemistry, University of Balochistan, Quetta 87300, Pakistan
| | - Maqbool Ahmed
- Department of Tuberculosis, Bolan University of Medical and Health Sciences, Quetta 87300, Pakistan;
| | - Ullah Kaleem
- Department of Microbiology, University of Balochistan, Quetta 87300, Pakistan;
| | - Lucienne Nneoma Duru
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (R.M.); (L.N.D.); (H.M.)
| | - Hong Ma
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (R.M.); (L.N.D.); (H.M.)
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing 100081, China; (R.M.); (L.N.D.); (H.M.)
| |
Collapse
|
8
|
Overexpression of endophilin A1 exacerbates synaptic alterations in a mouse model of Alzheimer's disease. Nat Commun 2018; 9:2968. [PMID: 30061577 PMCID: PMC6065365 DOI: 10.1038/s41467-018-04389-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 04/27/2018] [Indexed: 02/05/2023] Open
Abstract
Endophilin A1 (EP) is a protein enriched in synaptic terminals that has been linked to Alzheimer's disease (AD). Previous in vitro studies have shown that EP can bind to a variety of proteins, which elicit changes in synaptic transmission of neurotransmitters and spine formation. Additionally, we previously showed that EP protein levels are elevated in AD patients and AD transgenic animal models. Here, we establish the in vivo consequences of upregulation of EP expression in amyloid-β peptide (Aβ)-rich environments, leading to changes in both long-term potentiation and learning and memory of transgenic animals. Specifically, increasing EP augmented cerebral Aβ accumulation. EP-mediated signal transduction via reactive oxygen species (ROS)/p38 mitogen-activated protein (MAP) kinase contributes to Aβ-induced mitochondrial dysfunction, synaptic injury, and cognitive decline, which could be rescued by blocking either ROS or p38 MAP kinase activity.
Collapse
|
9
|
Mercado G, Castillo V, Soto P, López N, Axten JM, Sardi SP, Hoozemans JJ, Hetz C. Targeting PERK signaling with the small molecule GSK2606414 prevents neurodegeneration in a model of Parkinson's disease. Neurobiol Dis 2018; 112:136-148. [DOI: 10.1016/j.nbd.2018.01.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/21/2017] [Accepted: 01/08/2018] [Indexed: 12/14/2022] Open
|
10
|
Ke M, Wu H, Zhu Z, Zhang C, Zhang Y, Deng Y. Differential proteomic analysis of white adipose tissues from T2D KKAy mice by LC-ESI-QTOF. Proteomics 2017; 17. [PMID: 27995753 DOI: 10.1002/pmic.201600219] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 11/28/2016] [Accepted: 12/13/2016] [Indexed: 12/14/2022]
Abstract
Type 2 diabetes (T2D) has become a worldwide increasingly social health burden for its high morbidity and heightened prevalence. As one of the main tissues involved in uptake of glucose under the stimulation of insulin, WAT plays very important role in metabolic and homeostasis regulation. We performed a differential proteomics study to investigate alterations in epididymis fat pad of high fat diet fed T2D KKAy mice compared to normal fed C57BL/6J mice, by 18 O-labeling relative quantitative technique. Among 329 confidently identified proteins, 121 proteins showed significant changes with CV ≤ 20% (fold changes of >2 or <0.5 as threshold). According to GO classification, we found that altered proteins contained members of biological processes of metabolic process, oxidative stress, ion homeostasis, apoptosis and cell division. In metabolic, proteins assigned to fatty acid biosynthesis (FAS etc.) were decreased, the key enzyme (ACOX3) in β-oxidation process was increased. Increased glycolysis enzymes (ENOB etc.) and decreased TCA cycle related enzymes (SCOT1 etc.) suggested that glucose metabolism in mitochondria of T2D mice might be impaired. Elevated oxidative stress was observed with alterations of a series of oxidordeuctase (QSOX1 etc.). Besides, alterations of ion homeostasis (AT2C1 etc.) proteins were also observed. The enhancement of cell proliferation associated proteins (ELYS etc.) and inhibition of apoptosis associated proteins (RASF6 etc.) in WAT might contributed to the fat pad and body weight gain. Overall, these changes in WAT may serve as a reference for understanding the functional mechanism of T2D.
Collapse
Affiliation(s)
- Ming Ke
- Beijing Institute of Technology, School of life science, Haidian, Beijing, P. R. China
| | - Hanyan Wu
- Beijing Institute of Technology, School of life science, Haidian, Beijing, P. R. China
| | - Zhaoyang Zhu
- Beijing Institute of Technology, School of life science, Haidian, Beijing, P. R. China
| | - Chi Zhang
- Beijing Institute of Technology, School of life science, Haidian, Beijing, P. R. China
| | - Yongqian Zhang
- Beijing Institute of Technology, School of life science, Haidian, Beijing, P. R. China
| | - Yunlin Deng
- Beijing Institute of Technology, School of life science, Haidian, Beijing, P. R. China
| |
Collapse
|
11
|
Abstract
INTRODUCTION Parkinson's disease (PD) is an insidious disorder affecting more than 1-2% of the population over the age of 65. Understanding the etiology of PD may create opportunities for developing new treatments. Genomic and transcriptomic studies are useful, but do not provide evidence for the actual status of the disease. Conversely, proteomic studies deal with proteins, which are real time players, and can hence provide information on the dynamic nature of the affected cells. The number of publications relating to the proteomics of PD is vast. Therefore, there is a need to evaluate the current proteomics literature and establish the connections between the past and the present to foresee the future. Areas covered: PubMed and Web of Science were used to retrieve the literature associated with PD proteomics. Studies using human samples, model organisms and cell lines were selected and reviewed to highlight their contributions to PD. Expert commentary: The proteomic studies associated with PD achieved only limited success in facilitating disease diagnosis, monitoring and progression. A global system biology approach using new models is needed. Future research should integrate the findings of proteomics with other omics data to facilitate both early diagnosis and the treatment of PD.
Collapse
Affiliation(s)
- Murat Kasap
- a Department of Medical Biology/DEKART Proteomics Laboratory , Kocaeli University Medical School , Kocaeli , Turkey
| | - Gurler Akpinar
- a Department of Medical Biology/DEKART Proteomics Laboratory , Kocaeli University Medical School , Kocaeli , Turkey
| | - Aylin Kanli
- a Department of Medical Biology/DEKART Proteomics Laboratory , Kocaeli University Medical School , Kocaeli , Turkey
| |
Collapse
|
12
|
Maasz G, Zrinyi Z, Reglodi D, Petrovics D, Rivnyak A, Kiss T, Jungling A, Tamas A, Pirger Z. Pituitary adenylate cyclase-activating polypeptide (PACAP) has a neuroprotective function in dopamine-based neurodegeneration in rat and snail parkinsonian models. Dis Model Mech 2016; 10:127-139. [PMID: 28067625 PMCID: PMC5312006 DOI: 10.1242/dmm.027185] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Accepted: 12/06/2016] [Indexed: 01/12/2023] Open
Abstract
Pituitary adenylate cyclase-activating polypeptide (PACAP) rescues dopaminergic neurons from neurodegeneration and improves motor changes induced by 6-hydroxy-dopamine (6-OHDA) in rat parkinsonian models. Recently, we investigated the molecular background of the neuroprotective effect of PACAP in dopamine (DA)-based neurodegeneration using rotenone-induced snail and 6-OHDA-induced rat models of Parkinson's disease. Behavioural activity, monoamine (DA and serotonin), metabolic enzyme (S-COMT, MB-COMT and MAO-B) and PARK7 protein concentrations were measured before and after PACAP treatment in both models. Locomotion and feeding activity were decreased in rotenone-treated snails, which corresponded well to findings obtained in 6-OHDA-induced rat experiments. PACAP was able to prevent the behavioural malfunctions caused by the toxins. Monoamine levels decreased in both models and the decreased DA level induced by toxins was attenuated by ∼50% in the PACAP-treated animals. In contrast, PACAP had no effect on the decreased serotonin (5HT) levels. S-COMT metabolic enzyme was also reduced but a protective effect of PACAP was not observed in either of the models. Following toxin treatment, a significant increase in MB-COMT was observed in both models and was restored to normal levels by PACAP. A decrease in PARK7 was also observed in both toxin-induced models; however, PACAP had a beneficial effect only on 6-OHDA-treated animals. The neuroprotective effect of PACAP in different animal models of Parkinson's disease is thus well correlated with neurotransmitter, enzyme and protein levels. The models successfully mimic several, but not all etiological properties of the disease, allowing us to study the mechanisms of neurodegeneration as well as testing new drugs. The rotenone and 6-OHDA rat and snail in vivo parkinsonian models offer an alternative method for investigation of the molecular mechanisms of neuroprotective agents, including PACAP. Summary: PACAP has a neuroprotective effect in different toxin-induced rat and snail parkinsonian models, acting partially through the same mechanisms.
Collapse
Affiliation(s)
- Gabor Maasz
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary.,Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary
| | - Zita Zrinyi
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary
| | - Dora Reglodi
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Dora Petrovics
- Department of Analytical Biochemistry, Institute of Biochemistry and Medical Chemistry, University of Pecs, 7624 Pecs, Hungary
| | - Adam Rivnyak
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Tibor Kiss
- Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary
| | - Adel Jungling
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Andrea Tamas
- Department of Anatomy, University of Pecs, 7624 Pecs, Hungary
| | - Zsolt Pirger
- MTA-ÖK BLI NAP_B Adaptive Neuroethology, Department of Experimental Zoology, Balaton Limnological Institute, MTA-CER, 8237 Tihany, Hungary
| |
Collapse
|
13
|
Liu Y, Liu K, Qin W, Liu C, Zheng X, Deng Y, Qing H. Effects of stem cell therapy on protein profile of parkinsonian rats using an(18) O-labeling quantitative proteomic approach. Proteomics 2016; 16:1023-32. [PMID: 26791447 DOI: 10.1002/pmic.201500421] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 12/24/2015] [Accepted: 01/18/2016] [Indexed: 01/26/2023]
Abstract
The application of neural stem cell (NSC) research to neurodegenerative diseases has led to promising clinical trials. Currently, NSC therapy is most promising for Parkinson's disease (PD). We conducted behavioral tests and immunoassays for the profiling of a PD model in rats to assess the therapeutic effects of NSC treatments. Further, using a multiple sample comparison workflow, combined with (18) O-labeled proteome mixtures, we compared the differentially expressed proteins from control, PD, and NSC-treated PD rats. The results were analyzed bioinformatically and verified by Western blot. Based on our initial findings, we believe that the proteomic approach is a valuable tool in evaluating the therapeutic effects of NSC transplantation on neurodegenerative disorders.
Collapse
Affiliation(s)
- Yahui Liu
- School of Life Science, Beijing Institute of Technology, Beijing, P. R. China
| | - Kefu Liu
- School of Life Science, Beijing Institute of Technology, Beijing, P. R. China
| | - Wei Qin
- School of Life Science, Beijing Institute of Technology, Beijing, P. R. China
| | - Chenghao Liu
- School of Life Science, Beijing Institute of Technology, Beijing, P. R. China
| | - Xiaowei Zheng
- School of Life Science, Beijing Institute of Technology, Beijing, P. R. China
| | - Yulin Deng
- School of Life Science, Beijing Institute of Technology, Beijing, P. R. China
| | - Hong Qing
- School of Life Science, Beijing Institute of Technology, Beijing, P. R. China
| |
Collapse
|
14
|
Noor A, Zahid S. A review of the role of synaptosomal-associated protein 25 (SNAP-25) in neurological disorders. Int J Neurosci 2016; 127:805-811. [DOI: 10.1080/00207454.2016.1248240] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Aneeqa Noor
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saadia Zahid
- Neurobiology Research Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
15
|
Halbgebauer S, Öckl P, Wirth K, Steinacker P, Otto M. Protein biomarkers in Parkinson's disease: Focus on cerebrospinal fluid markers and synaptic proteins. Mov Disord 2016; 31:848-60. [PMID: 27134134 DOI: 10.1002/mds.26635] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 03/06/2016] [Accepted: 03/09/2016] [Indexed: 01/06/2023] Open
Abstract
Despite extensive research, to date, no validated biomarkers for PD have been found. This review seeks to summarize studies approaching the detection of biomarker candidates for PD and introduce promising ones in more detail, with special attention to synaptic proteins. To this end, we performed a PubMed search and included studies using proteomic tools (2-dimensional difference in gel electrophoresis and/or mass spectrometry) for the comparison of samples from PD and control patients. We found 27 studies reporting more than 500 differentially expressed proteins in which a total of 28 were detected in 2 and 17 in 3 or more independent studies, including posttranslationally modified proteins. In addition, of these 500 proteins, 25 were found to be brain specific, and 14 were enriched in synapses. Special attention was given to the applicability of the biomarker regarding sampling procedures, that is, using CSF/serum material for diagnosis. Furthermore, presynaptic proteins involved in vesicle membrane fusion seem to be interesting candidates for future analyses. Nonetheless, even though such promising biomarker candidates for PD exist, validation of these biomarkers in large-scale clinical studies is necessary to evaluate the diagnostic potential. © 2016 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
| | - Patrick Öckl
- Department of Neurology, University of Ulm, Ulm, Germany
| | | | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| |
Collapse
|
16
|
Ke M, Zhang Y, Xiong Y, Saeed Y, Deng Y. Identification of protein complexes of microsomes in rat adipocytes by native gel coupled with LC-ESI-QTOF. MOLECULAR BIOSYSTEMS 2016; 12:1313-23. [PMID: 26886786 DOI: 10.1039/c5mb00707k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The study of the composition of microsome proteins/complexes/interactions in adipocytes provides useful information for researchers related to energy metabolism disorders. The native gel coupled with LC-ESI-QTOF approach was employed here for separating protein complexes. We found a series of proteins functionally clustered in biological processes of protein metabolism, cellular carbohydrate catabolism, response to stimulus and wounding, macromolecular complex subunit organization, positive regulation of molecular function, regulation of programmed cell death and biomolecule transport. According to clustering of proteins' electrophoresis profiles across native gel fractions and bioinformatics data retrieval, protein complexes/interactions involved in protein metabolism, cellular carbohydrate catabolism, macromolecular complex subunit organization and biomolecule transport were identified. Besides, the results also revealed some functional linkages, which may provide useful information for discovering previously unknown interactions. The interaction between SSAO and ALDH2 was verified by co-immunoprecipitation. The native gel combining mass spectrometry approach appeared to be a useful tool for investigating microsome proteins and complexes to complement the traditional electrophoresis approaches. The native gel strategy together with our findings should facilitate future studies of the composition of rat adipocyte microsome protein complexes under different conditions.
Collapse
Affiliation(s)
- Ming Ke
- School of Life Science, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | | | | | | | | |
Collapse
|
17
|
Josić D, Andjelković U. The Role of Proteomics in Personalized Medicine. Per Med 2016. [DOI: 10.1007/978-3-319-39349-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Wang Y, Javed I, Liu Y, Lu S, Peng G, Zhang Y, Qing H, Deng Y. Effect of Prolonged Simulated Microgravity on Metabolic Proteins in Rat Hippocampus: Steps toward Safe Space Travel. J Proteome Res 2015; 15:29-37. [PMID: 26523826 DOI: 10.1021/acs.jproteome.5b00777] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mitochondria are not only the main source of energy in cells but also produce reactive oxygen species (ROS), which result in oxidative stress when in space. This oxidative stress is responsible for energy imbalances and cellular damage. In this study, a rat tail suspension model was used in individual experiments for 7 and 21 days to explore the effect of simulated microgravity (SM) on metabolic proteins in the hippocampus, a vital brain region involved in learning, memory, and navigation. A comparative (18)O-labeled quantitative proteomic strategy was used to observe the differential expression of metabolic proteins. Forty-two and sixty-seven mitochondrial metabolic proteins were differentially expressed after 21 and 7 days of SM, respectively. Mitochondrial Complex I, III, and IV, isocitrate dehydrogenase and malate dehydrogenase were down-regulated. Moreover, DJ-1 and peroxiredoxin 6, which defend against oxidative damage, were up-regulated in the hippocampus. Western blot analysis of proteins DJ-1 and COX 5A confirmed the mass spectrometry results. Despite these changes in mitochondrial protein expression, no obvious cell apoptosis was observed after 21 days of SM. The results of this study indicate that the oxidative stress induced by SM has profound effects on metabolic proteins.
Collapse
Affiliation(s)
- Yun Wang
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Iqbal Javed
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Yahui Liu
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Song Lu
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Guang Peng
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Yongqian Zhang
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Hong Qing
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| | - Yulin Deng
- School of Life Sciences, Beijing Institute of Technology , No. 5 Zhongguancun South Street, Beijing 100081, P.R. China
| |
Collapse
|
19
|
Wang Y, Iqbal J, Liu Y, Su R, Lu S, Peng G, Zhang Y, Qing H, Deng Y. Effects of simulated microgravity on the expression of presynaptic proteins distorting the GABA/glutamate equilibrium - A proteomics approach. Proteomics 2015; 15:3883-91. [DOI: 10.1002/pmic.201500302] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 08/28/2015] [Accepted: 09/07/2015] [Indexed: 01/03/2023]
Affiliation(s)
- Yun Wang
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Javed Iqbal
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Yahui Liu
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Rui Su
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Song Lu
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Guang Peng
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Yongqian Zhang
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Hong Qing
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| | - Yulin Deng
- School of Life Sciences; Beijing Institute of Technology; Beijing P.R. China
| |
Collapse
|