1
|
Villalobos Solis MI, Poudel S, Bonnot C, Shrestha HK, Hettich RL, Veneault-Fourrey C, Martin F, Abraham PE. A Viable New Strategy for the Discovery of Peptide Proteolytic Cleavage Products in Plant-Microbe Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2020; 33:1177-1188. [PMID: 32597696 DOI: 10.1094/mpmi-04-20-0082-ta] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Small peptides that are proteolytic cleavage products (PCPs) of less than 100 amino acids are emerging as key signaling molecules that mediate cell-to-cell communication and biological processes that occur between and within plants, fungi, and bacteria. Yet, the discovery and characterization of these molecules is largely overlooked. Today, selective enrichment and subsequent characterization by mass spectrometry-based sequencing offers the greatest potential for their comprehensive characterization, however qualitative and quantitative performance metrics are rarely captured. Herein, we addressed this need by benchmarking the performance of an enrichment strategy, optimized specifically for small PCPs, using state-of-the-art de novo-assisted peptide sequencing. As a case study, we implemented this approach to identify PCPs from different root and foliar tissues of the hybrid poplar Populus × canescens 717-1B4 in interaction with the ectomycorrhizal basidiomycete Laccaria bicolor. In total, we identified 1,660 and 2,870 Populus and L. bicolor unique PCPs, respectively. Qualitative results supported the identification of well-known PCPs, like the mature form of the photosystem II complex 5-kDa protein (approximately 3 kDa). A total of 157 PCPs were determined to be significantly more abundant in root tips with established ectomycorrhiza when compared with root tips without established ectomycorrhiza and extramatrical mycelium of L. bicolor. These PCPs mapped to 64 Populus proteins and 69 L. bicolor proteins in our database, with several of them previously implicated in biologically relevant associations between plant and fungus.
Collapse
Affiliation(s)
- Manuel I Villalobos Solis
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
- Department of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, U.S.A
| | - Suresh Poudel
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| | - Clemence Bonnot
- UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280 Champenoux, France
| | - Him K Shrestha
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
- Department of Genome Science and Technology, University of Tennessee-Knoxville, Knoxville, TN 37996, U.S.A
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| | - Claire Veneault-Fourrey
- UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280 Champenoux, France
| | - Francis Martin
- UMR 1136 INRA-Université de Lorraine 'Interactions Arbres/Microorganismes', Laboratoire d'Excellence ARBRE, Centre INRA-Lorraine, 54280 Champenoux, France
| | - Paul E Abraham
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, U.S.A
| |
Collapse
|
2
|
Yu Y, Qi Y, Jin Y. Milk digestion peptidomics: Tracking caseinophosphopeptides in simulated gastrointestinal digestion. FOOD BIOSCI 2019. [DOI: 10.1016/j.fbio.2019.01.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
|
4
|
Yi L, Luo L, Lü X. Efficient Exploitation of Multiple Novel Bacteriocins by Combination of Complete Genome and Peptidome. Front Microbiol 2018; 9:1567. [PMID: 30057579 PMCID: PMC6053492 DOI: 10.3389/fmicb.2018.01567] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 06/25/2018] [Indexed: 11/13/2022] Open
Abstract
Backgroud: The growing emergence of antibiotic-resistant pathogens including the most dangerous superbugs requires quick discovery of novel antibiotics/biopreservatives for human health and food safety. Bacteriocins, a subgroup of antimicrobial peptides, have been considered as promising alternatives to antibiotics. Abundant novel bacteriocins are stored in genome sequences of lactic acid bacteria. However, discovery of novel bacteriocins still mainly relies on dubious traditional purification with low efficiency. Moreover, sequence alignment is invalid for novel bacteriocins which have no homology to known bacteriocins in databases. Therefore, an efficient, simple, universal, and time-saving method was needed to discover novel bacteriocins. Methods and Results: Crude bacteriocins from both cell-related and culture supernatant of Lactobacillus crustorum MN047 fermentation were applied to LC-MS/MS for peptidome assay, by which 131 extracellular peptides or proteins were identified in the complete genome sequence of L. crustorum MN047. Further, the genes of suspected bacteriocins were verified by expressed in Escherichia coli BL21 (DE3) pLysS. Thereafter, eight novel bacteriocins and two nonribosomal antimicrobial peptides were identified to be broad-spectrum activity against both Gram-positive and Gram-negative bacteria, including some multidrug-resistant strains. Among them, BM1556 located within predicted bacteriocin gene cluster. The most active bacteriocin BM1122 had low MIC values of 13.7 mg/L against both Staphylococcus aureus ATCC29213 and E. coli ATCC25922. The BM1122 had bactericidal action mode by biofilm-destruction, pore-formation, and membrane permeability change. Conclusions: The combination of complete genome and peptidome is a valid approach for quick discovery of novel bacteriocins without/with-low homology to known ones. This method will contribute to deep exploitation of novel bacteriocins in genome of bacteria submitted to GenBank.
Collapse
Affiliation(s)
- Lanhua Yi
- Department of Food Nutrition and Safety, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Lingli Luo
- Department of Food Nutrition and Safety, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Xin Lü
- Department of Food Nutrition and Safety, College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
5
|
La Barbera G, Capriotti AL, Cavaliere C, Ferraris F, Laus M, Piovesana S, Sparnacci K, Laganà A. Development of an enrichment method for endogenous phosphopeptide characterization in human serum. Anal Bioanal Chem 2018; 410:1177-1185. [DOI: 10.1007/s00216-017-0822-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 12/05/2017] [Accepted: 12/08/2017] [Indexed: 12/15/2022]
|
6
|
Li D, Yin D, Chen Y, Liu Z. Coupling of metal-organic frameworks-containing monolithic capillary-based selective enrichment with matrix-assisted laser desorption ionization-time-of-flight mass spectrometry for efficient analysis of protein phosphorylation. J Chromatogr A 2017; 1498:56-63. [DOI: 10.1016/j.chroma.2016.10.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/29/2016] [Accepted: 10/24/2016] [Indexed: 12/19/2022]
|
7
|
Li D, Bie Z. Metal–organic framework incorporated monolithic capillary for selective enrichment of phosphopeptides. RSC Adv 2017. [DOI: 10.1039/c7ra00263g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Protein phosphorylation is a major post-translational modification, which plays a central role in the cellular signaling of numerous biological processes.
Collapse
Affiliation(s)
- Daojin Li
- College of Chemistry and Chemical Engineering
- Henan Key Laboratory of Fuction-Oriented Porous Materials
- Luoyang Normal University
- Luoyang 471022
- P. R. China
| | - Zijun Bie
- Department of Chemistry
- Bengbu Medical College
- China
| |
Collapse
|
8
|
Tang CB, Zhang WG, Wang YS, Xing LJ, Xu XL, Zhou GH. Identification of Rosmarinic Acid-Adducted Sites in Meat Proteins in a Gel Model under Oxidative Stress by Triple TOF MS/MS. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6466-76. [PMID: 27486909 DOI: 10.1021/acs.jafc.6b02438] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Triple TOF MS/MS was used to identify adducts between rosmarinic acid (RosA)-derived quinones and meat proteins in a gel model under oxidative stress. Seventy-five RosA-modified peptides responded to 67 proteins with adduction of RosA. RosA conjugated with different amino acids in proteins, and His, Arg, and Lys adducts with RosA were identified for the first time in meat. A total of 8 peptides containing Cys, 14 peptides containing His, 48 peptides containing Arg, 64 peptides containing Lys, and 5 peptides containing N-termini that which participated in adduction reaction with RosA were identified, respectively. Seventy-seven adduction sites were subdivided into all adducted proteins including 2 N-terminal adduction sites, 3 Cys adduction sites, 4 His adduction sites, 29 Arg adduction sites, and 39 Lys adduction sites. Site occupancy analyses showed that approximately 80.597% of the proteins carried a single RosA-modified site, 14.925% retained two sites, 1.492% contained three sites, and the rest 2.985% had four or more sites. Large-scale triple TOF MS/MS mapping of RosA-adducted sites reveals the adduction regulations of quinone and different amino acids as well as the adduction ratios, which clarify phenol-protein adductions and pave the way for industrial meat processing and preservation.
Collapse
Affiliation(s)
- Chang-Bo Tang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
- Department of Food Nutrition and Detection, College of Education and Humanity, Suzhou Vocational University , Suzhou 215104, China
| | - Wan-Gang Zhang
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
| | - Yao-Song Wang
- College of Light Industry Science and Engineering, Nanjing Forestry University , Nanjing 210037, China
| | - Lu-Juan Xing
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
| | - Xing-Lian Xu
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
| | - Guang-Hong Zhou
- Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Key Laboratory of Meat Processing and Quality Control, Ministry of Education, Key Laboratory of Animal Products Processing, Ministry of Agriculture, College of Food Science and Technology, Nanjing Agricultural University , Nanjing 210095, China
| |
Collapse
|
9
|
Highly specific phosphopeptide enrichment by titanium(IV) cross-linked chitosan composite. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 1008:234-239. [PMID: 26680323 DOI: 10.1016/j.jchromb.2015.11.051] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 01/30/2023]
Abstract
Natural chitosan was applied as supporting material for Ti(IV) based immobilized metal ion affinity chromatographic (IMAC) material (Ti-CTS). Compared with other polymer based IMAC, Ti-CTS can save the cockamamie synthesis procedures and be easy to obtain. The morphology, surface area, pore volume and elemental composition of Ti-CTS were revealed by scanning electron microscopy (SEM), Brunauer-Emmett-Teller (BET) method and X-ray photoelectron spectroscopy (XPS). Tryptic digest products from several standard proteins and two real samples (non-fat milk and serum) were enriched using Ti-CTS to demonstrate the efficiency of this method. The results showed that this composite enables high sensitive and selective phosphopeptide enrichment from casein variants, non-fat milk and human serum. Furthermore, multi-phosphorylated peptides with three serine phospholated sites (S*S*S*) demonstrated high affinity to Ti-CTS. Hence, this method had great potential for future studies of complex phosphoproteomes and especially multi-phosphorylated peptides.
Collapse
|