1
|
Bai L, Zhao Y, Zhou Y, Song Y, Xiao H, Zhao G, Wang Z, Li X. Advances in immunological sorting of X and Y chromosome-bearing sperm: from proteome to sex-specific proteins. Front Vet Sci 2025; 12:1523491. [PMID: 40144522 PMCID: PMC11936898 DOI: 10.3389/fvets.2025.1523491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 02/24/2025] [Indexed: 03/28/2025] Open
Abstract
Sex determination is the developmental assignment that results from genetic factors. The sexual characters were the specific manifestations of male and female individuals under stimulation of sexual hormonal production. The fusion of an oocyte with an X chromosome-bearing sperm will lead to a female (XX), while fusion with a Y chromosome-bearing sperm will develop into a male (XY) in mammals. Sexing technology has been developed to fertilize eggs with sorted sperm, producing offspring of the desired sex. Sperm sorting enables the sex pre-determination of offspring via in vitro fertilization (IVF) or artificial insemination (AI) in domestic animals. Flow cytometric sorting of X and Y sperm is widely considered the most applied method for sperm sorting and has been commercially applied in cattle. However, a non-invasive, immunological method for screening X and Y sperm is considered to be a feasible approach. This review summarizes the current knowledge and techniques of sperm immunological sorting, including the preparation of antibodies, application of immunomodulators, and immunoisolation. Additionally, we focus on identifying sex-specifically expressed proteins in X and Y sperm through proteomic analysis, and verifying the sex-specific proteins using experimental techniques. Furthermore, several housekeeping proteins as loading control were discussed in immunoblotting of sperm proteins. Immunological sorting of X and Y sperm could provide a convenient, cost-effective, and highly efficient technique that can improve economic benefits and achieve an advanced level of sexing technology. This review provides insight into immunological sorting of sperm and the pre-determination of sex in farm animals.
Collapse
Affiliation(s)
- Linfeng Bai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Hohhot, China
- National Center of Technology Innovation for Dairy Industry, Hohhot, China
| | - Yue Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Yang Zhou
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Hohhot, China
- College of Basic Medicine, Inner Mongolia Medicine University, Hohhot, China
| | - Yongli Song
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Hohhot, China
| | - Hao Xiao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Gaoping Zhao
- Inner Mongolia SaiKexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| | - Zhigang Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Xihe Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, Hohhot, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, Inner Mongolia University, Hohhot, China
- National Center of Technology Innovation for Dairy Industry, Hohhot, China
- Inner Mongolia SaiKexing Institute of Breeding and Reproductive Biotechnology in Domestic Animal, Hohhot, China
| |
Collapse
|
2
|
Bhushan V, Ali SA, Parashar A, Kumar S, Mohanty AK. Mapping the proteome landscape of Indian Zebu (Sahiwal) spermatozoa using high-resolution mass spectrometry and in-silico annotation. Anim Biotechnol 2024; 35:2428402. [PMID: 39564716 DOI: 10.1080/10495398.2024.2428402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/22/2024] [Indexed: 11/21/2024]
Abstract
Proteomic analysis of sperm cells offers significant insights into proteins' structural, functional, and localization aspects within biological systems. Sahiwal, a native Indian cattle breed, is well known for its disease resistance, calving ease, and resilience to drought. This study addressed the gap in Sahiwal's comprehensive sperm proteome profiling data. The research involved the global in-silico quantitative high-resolution mass spectrometry-based protein profiling of Indian Zebu sperm, identifying 4651 sperm proteins. Beyond mere identification, the study characterized these proteins at a sub-organellar level to facilitate a better understanding of their functional attributes. Gene Ontology analysis of sperm proteins facilitated the segregation of proteins based on their function, localization, and mode of action. The study revealed that despite the limited number of organelles, sperm cells encapsulate a wide array of crucial proteins, compensating for the deficiency of organelles through the presence of multifunctional proteins. Most identified sperm proteins actively participate in spermatogenesis, motility, acrosome reaction, capacitation, and seminal plasma binding, directly or indirectly. Notably, the results not only present the highest number of identified bovine sperm proteins but also hold the potential to pave the way for empirical research on sperm functionality, egg-sperm interaction, sperm-sex sorting biomarkers, sperm quality, and bull fertility.
Collapse
Affiliation(s)
- Vanya Bhushan
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Syed Azmal Ali
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
- Proteomics of Stem Cells and Cancer, German Cancer Research Center, Heidelberg, Germany
| | - Abhishek Parashar
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Sudarshan Kumar
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
| | - Ashok Kumar Mohanty
- Proteomics and Structural Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal, India
- ICAR-Central Institute for Research on Cattle, Meerut, India
| |
Collapse
|
3
|
Parrilla I, Cambra JM, Cuello C, Rodriguez-Martinez H, Gil MA, Martinez EA. Cryopreservation of highly extended pig spermatozoa remodels its proteome and counteracts polyspermic fertilization in vitro. Andrology 2024; 12:1356-1372. [PMID: 38131448 DOI: 10.1111/andr.13575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/28/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Currently, high polyspermy remains a significant obstacle to achieving optimal efficiency in in vitro fertilization (IVF) and in vitro embryo production (IVP) systems in pigs. Developing strategies that would prevent polyspermy is essential in overcoming this challenge and maximizing the potential of this reproductive biotechnology. Previous results have demonstrated that using boar spermatozoa subjected to a high-extension and reconcentration procedure and then cryopreserved resulted in significant improvements in IVF/IVP systems with high rates of monospermy and penetration. OBJECTIVE The aim of the present study was to unveil the molecular mechanisms that may underlie the changes in fertilization patterns exhibited by highly extended and cryopreserved boar spermatozoa. MATERIALS AND METHODS To achieve this goal, we used quantitative proteomic analysis (LC‒ESI‒MS/MS SWATH) to identify differentially abundant proteins (DAPs) between highly extended (HE) and conventionally (control; CT) cryopreserved boar spermatozoa. Prior to the analysis, we evaluated the in vitro post-thawing fertilizing ability of the sperm samples. The results demonstrated a remarkable improvement in monospermy and IVF efficiency when using HE spermatozoa in IVF compared with CT spermatozoa. RESULTS At the proteomic level, the combination of high-extension and cryopreservation had a significant impact on the frozen-thawed sperm proteome. A total of 45 proteins (24 downregulated and 21 upregulated) were identified as DAPs (FC > 1 or ≤1; p < 0.05) when compared with CT spermatozoa. Some of these proteins were primarily linked to metabolic processes and the structural composition of sperm cells. The dysregulation of these proteins may have a direct or indirect effect on essential sperm functions and significantly affect spermatozoa-oocyte interaction and, therefore, the sperm fertilization profile under in vitro conditions. While these findings are promising, further research is necessary to comprehend how the disturbance of specific proteins affects sperm fertilization ability.
Collapse
Affiliation(s)
- Inmaculada Parrilla
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Josep M Cambra
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
- Large Animal Models in Cardiovascular Research, Internal Medical Department I, TU Munich, Technical University of Munich, Munich, Germany
| | - Cristina Cuello
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Heriberto Rodriguez-Martinez
- Department of Biomedical & Clinical Sciences (BKV), BKH/Obstetrics & Gynecology, Linköping University, Linköping, Sweden
| | - Maria A Gil
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| | - Emilio A Martinez
- Department of Medicine and Animal Surgery, International Excellence Campus for Higher Education and Research "Campus Mare Nostrum,", University of Murcia, Murcia, Spain
- Department of Medicine and Animal Surgery, Institute for Biomedical Research of Murcia (IMIB-Pascual Parrilla), Murcia, Spain
| |
Collapse
|
4
|
Wang J, Zheng LF, Ren S, Li DL, Chen C, Sun HH, Liu LY, Guo H, Zhao TJ. ARF6 plays a general role in targeting palmitoylated proteins from the Golgi to the plasma membrane. J Cell Sci 2023; 136:jcs261319. [PMID: 37461827 DOI: 10.1242/jcs.261319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 07/07/2023] [Indexed: 08/10/2023] Open
Abstract
Protein palmitoylation is a post-translational lipid modification of proteins. Accumulating evidence reveals that palmitoylation functions as a sorting signal to direct proteins to destinations; however, the sorting mechanism remains largely unknown. Here, we show that ARF6 plays a general role in targeting palmitoylated proteins from the Golgi to the plasma membrane (PM). Through shRNA screening, we identified ARF6 as the key small GTPase in targeting CD36, a palmitoylated protein, from the Golgi to the PM. We found that the N-terminal myristoylation of ARF6 is required for its binding with palmitoylated CD36, and the GTP-bound form of ARF6 facilitates the delivery of CD36 to the PM. Analysis of stable isotope labeling by amino acids in cell culture revealed that ARF6 might facilitate the sorting of 359 of the 531 palmitoylated PM proteins, indicating a general role of ARF6. Our study has thus identified a sorting mechanism for targeting palmitoylated proteins from the Golgi to the PM.
Collapse
Affiliation(s)
- Juan Wang
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Lang-Fan Zheng
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Su Ren
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Dong-Lin Li
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
| | - Chen Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Hui-Hui Sun
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Li-Ying Liu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Huiling Guo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Tong-Jin Zhao
- State Key Laboratory of Genetic Engineering, Shanghai Key Laboratory of Metabolic Remodeling and Health, Institute of Metabolism and Integrative Biology, Zhongshan Hospital, Fudan University, Shanghai Qi Zhi Institute, Shanghai 200438, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Biomedical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, China
| |
Collapse
|
5
|
Zigo M, Kerns K, Sutovsky P. The Ubiquitin-Proteasome System Participates in Sperm Surface Subproteome Remodeling during Boar Sperm Capacitation. Biomolecules 2023; 13:996. [PMID: 37371576 PMCID: PMC10296210 DOI: 10.3390/biom13060996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023] Open
Abstract
Sperm capacitation is a complex process endowing biological and biochemical changes to a spermatozoon for a successful encounter with an oocyte. The present study focused on the role of the ubiquitin-proteasome system (UPS) in the remodeling of the sperm surface subproteome. The sperm surface subproteome from non-capacitated and in vitro capacitated (IVC) porcine spermatozoa, with and without proteasomal inhibition, was selectively isolated. The purified sperm surface subproteome was analyzed using high-resolution, quantitative liquid chromatography-mass spectrometry (LC-MS) in four replicates. We identified 1680 HUGO annotated proteins, out of which we found 91 to be at least 1.5× less abundant (p < 0.05) and 141 to be at least 1.5× more abundant (p < 0.05) on the surface of IVC spermatozoa. These proteins were associated with sperm capacitation, hyperactivation, metabolism, acrosomal exocytosis, and fertilization. Abundances of 14 proteins were found to be significantly different (p < 0.05), exceeding a 1.5-fold abundance between the proteasomally inhibited (100 µM MG132) and vehicle control (0.2% ethanol) groups. The proteins NIF3L1, CSE1L, NDUFB7, PGLS, PPP4C, STK39, and TPRG1L were found to be more abundant; while BPHL, GSN, GSPT1, PFDN4, STYXL1, TIMM10, and UBXN4 were found to be less abundant in proteasomally inhibited IVC spermatozoa. Despite the UPS having a narrow range of targets, it modulated sperm metabolism and binding by regulating susceptible surface proteins. Changes in CSE1L, PFDN4, and STK39 during in vitro capacitation were confirmed using immunocytochemistry, image-based flow cytometry, and Western blotting. The results confirmed the active participation of the UPS in the extensive sperm surface proteome remodeling that occurs during boar sperm capacitation. This work will help us to identify new pharmacological mechanisms to positively or negatively modulate sperm fertilizing ability in food animals and humans.
Collapse
Affiliation(s)
- Michal Zigo
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA;
| | - Karl Kerns
- Division of Animal Science, University of Missouri, Columbia, MO 65211, USA;
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA;
| | - Peter Sutovsky
- Department of Animal Science, Iowa State University, Ames, IA 50011, USA;
- Department of Obstetrics, Gynecology and Women’s Health, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
6
|
Characterization of proteases in the seminal plasma and spermatozoa of llama. Theriogenology 2023; 199:30-42. [PMID: 36682266 DOI: 10.1016/j.theriogenology.2023.01.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
Camelids' semen has peculiar characteristics that differentiate it from other species, including the highly viscous aspect of seminal plasma that greatly difficult sperm manipulation and the development of techniques such as cryopreservation, artificial insemination, and/or in vitro fertilization. The presence of proteases in the seminal plasma is responsible for semen liquefaction, and sperm functionality to achieve fertilization. The enzymatic and molecular composition of the semen of llama remains unknown. Therefore, the goal of the study was to characterize the protease activity and composition of the seminal plasma and sperm of llama semen. The proteolytic activity was performed using gelatine zymography and the composition by mass-spectrometry. Metallo-proteases were the major source of gelatinolytic activity in seminal plasma, while serine-peptidases were the main enzymes of sperm cells. Matrix Metalloproteinase 2 (MMP2) was the most prominent metallo-protease of llama seminal plasma characterized under the exposure of different inhibitors (EDTA and benzamidine) and by a specific immunodetection. Moreover, the prostate and epididymis were identified as potential sites of its synthesis and secretion. Outstandingly, this metalloproteinase was undetectable in llama sperm. Regarding, the molecular composition of semen by mass-spectrometry, 4 metallo-, 9 serine-, 8 threonine-, and 1 aspartic-peptidases were identified alongside 15 regulators in the sperm cell; where 24 were directly or indirectly interacting. Whereas 6 metallo-, 12 serine-, 3 cysteine-, and 1 aspartic-peptidases were identified, besides 7 inhibitors and 5 regulators in llama seminal plasma where 30 of them were directly or indirectly interconnected. This is the first study describing a partial degradome of llama seminal plasma and spermatozoa suggesting significant differences especially the absence of MMP2 in spermatozoa in contrast to data observed in other species. The characterization of proteases in llama semen will provide a better understanding of the molecular mechanisms involved in the in vivo or in vitro fertilization process in this species.
Collapse
|
7
|
Wang N, Yang M, He D, Li X, Zhang X, Han B, Liu C, Hai C, Li G, Zhao Y. TMT-based quantitative N-glycoproteomic analysis reveals glycoprotein protection can improve the quality of frozen bovine sperm. Int J Biol Macromol 2022; 218:168-180. [PMID: 35870621 DOI: 10.1016/j.ijbiomac.2022.07.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/13/2022] [Accepted: 07/14/2022] [Indexed: 11/25/2022]
Abstract
Cryopreservation of bovine semen plays a vital role in accelerating genetic improvement and elite breeding, but it has a detrimental effect on sperm quality, resulting in the decline of the reproductive efficiency. The glycosylation modification of protein has irreplaceable roles in spermatozoa. Herein, the effect of cryopreservation on glycoproteins of bovine spermatozoa has been studied for the first time using a tandem mass tag (TMT)-labeled quantitative glycoproteome. A total of 2598 proteins and 492 glycoproteins were identified, including 83 different expression proteins (DEPs) and 44 different expression glycosylated proteins (DEGPs) between fresh and frozen spermatozoa. Thirty-three DEPs are glycoproteins, which demonstrates that glycoproteins of bovine sperm were seriously affected by cryopreservation. Moreover, the effects include glycoprotein expression, glycosylation modification, and substructure localization for proteins such as glycoproteins TEX101, ACRBP, and IZOMU4. The biologic functions of the 115 changed proteins are mainly involved in sperm capacitation, migration in female genitalia, and sperm-egg interaction. Mostly key regulators were identified to be glycoproteins, which confirms that glycosylated proteins played important roles in bovine sperm. This comprehensive study of sperm glycoproteins helps to unravel the cryoinjury mechanisms, thus implying that glycoprotein protection should be an effective way to improve the quality of frozen sperm.
Collapse
Affiliation(s)
- Na Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Ming Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Dingbo He
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Xin Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Xueli Zhang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Biying Han
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Chunli Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Chao Hai
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Guangpeng Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China
| | - Yuefang Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Yuquan District, Hohhot 010020, China.
| |
Collapse
|
8
|
Wang N, Zhang X, Li X, Liu C, Yang M, Han B, Hai C, Su G, Li G, Zhao Y. Cysteine is highly enriched in the canonical N-linked glycosylation motif of bovine spermatozoa N-Glycoproteome. Theriogenology 2022; 184:1-12. [DOI: 10.1016/j.theriogenology.2022.02.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/15/2022]
|
9
|
Xu Y, Han Q, Ma C, Wang Y, Zhang P, Li C, Cheng X, Xu H. Comparative Proteomics and Phosphoproteomics Analysis Reveal the Possible Breed Difference in Yorkshire and Duroc Boar Spermatozoa. Front Cell Dev Biol 2021; 9:652809. [PMID: 34336820 PMCID: PMC8322956 DOI: 10.3389/fcell.2021.652809] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022] Open
Abstract
Sperm cells are of unique elongated structure and function, the development of which is tightly regulated by the existing proteins and the posttranslational modifications (PTM) of these proteins. Based on the phylogenetic relationships of various swine breeds, Yorkshire boar is believed to be distinctly different from Duroc boar. The comprehensive differential proteomics and phosphoproteomics profilings were performed on spermatozoa from both Yorkshire and Duroc boars. By both peptide and PTM peptide quantification followed by statistical analyses, 167 differentially expressed proteins were identified from 1,745 proteins, and 283 differentially expressed phosphopeptides corresponding to 102 unique differentially phosphorylated proteins were measured from 1,140 identified phosphopeptides derived from 363 phosphorylated proteins. The representative results were validated by Western blots. Pathway enrichment analyses revealed that majority of differential expression proteins and differential phosphorylation proteins were primarily concerned with spermatogenesis, male gamete generation, sperm motility, energy metabolism, cilium morphogenesis, axonemal dynein complex assembly, sperm–egg recognition, and capacitation. Remarkably, axonemal dynein complex assembly related proteins, such as SMCP, SUN5, ODF1, AKAP3, and AKAP4 that play a key regulatory role in the sperm physiological functions, were significantly higher in Duroc spermatozoa than that of Yorkshire. Furthermore, phosphorylation of sperm-specific proteins, such as CABYR, ROPN1, CALM1, PRKAR2A, and PRKAR1A, participates in regulation of the boar sperm motility mainly through the cAMP/PKA signal pathway in different breeds, demonstrating that protein phosphorylation may be an important mechanism underlying the sperm diversity. Protein–protein interaction analysis revealed that the 14 overlapped proteins between differential expression proteins and differential phosphorylation proteins potentially played a key role in sperm development and motility of the flagellum, including the proteins ODF1, SMCP, AKAP4, FSIP2, and SUN5. Taken together, these physiologically and functionally differentially expressed proteins (DEPs) and differentially expressed phosphorylated proteins (DPPs) may constitute the proteomic backgrounds between the two different boar breeds. The validation will be performed to delineate the roles of these PTM proteins as modulators of Yorkshire and Duroc boar spermatozoa.
Collapse
Affiliation(s)
- Yongjie Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Qiu Han
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Chaofeng Ma
- Xinyang Animal Disease Control and Prevention Center, Xinyang, China
| | - Yaling Wang
- College of Life Science, Xinyang Normal University, Xinyang, China
| | - Pengpeng Zhang
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Cencen Li
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Xiaofang Cheng
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| | - Haixia Xu
- College of Life Science, Xinyang Normal University, Xinyang, China.,Institute for Conservation and Utilization of Agro-Bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, China
| |
Collapse
|
10
|
Quelhas J, Santiago J, Matos B, Rocha A, Lopes G, Fardilha M. Bovine semen sexing: Sperm membrane proteomics as candidates for immunological selection of X- and Y-chromosome-bearing sperm. Vet Med Sci 2021; 7:1633-1641. [PMID: 34037311 PMCID: PMC8464243 DOI: 10.1002/vms3.540] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 04/14/2021] [Accepted: 05/03/2021] [Indexed: 01/25/2023] Open
Abstract
The use of sexed semen in dairy and beef farms ensures the production of animals of the desired sex, resulting in a reduction of costs and an improvement of environmental sustainability. Several methods have been developed over the years, but most of them were abandoned due to their limited efficacy. Currently, the only commercially available method for the separation of X- and Y-chromosome-bearing sperm is fluorescence-activated cell sorting. However, this technique is expensive and has limited usefulness for the industry, considering that it cannot produce doses of sexed semen with the desired number of sperm for artificial insemination. Immunological methods have emerged as an attractive alternative to flow cytometry and proteomic knowledge of X- and Y-sperm could be useful to the development of a new method. In this review, we identify the main applications of sexed semen, describe the existing methods and highlight future research opportunities in the field. We consider that immunological methods, based on sperm cell's surface proteins differentially expressed between X- and Y-sperm, could be an interesting and promising approach to semen sexing.
Collapse
Affiliation(s)
- Joana Quelhas
- Bovine Semen Collection and Storage Centre of Lusogenes, Aveiro, Portugal.,Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal.,Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar-University of Porto, Porto, Portugal
| | - Joana Santiago
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - Bárbara Matos
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| | - António Rocha
- Department of Imuno-Physiology and Pharmacology, Institute of Biomedical Sciences Abel Salazar- University of Porto, Porto, Portugal
| | - Graça Lopes
- Department of Veterinary Clinics, Institute of Biomedical Sciences Abel Salazar-University of Porto, Porto, Portugal
| | - Margarida Fardilha
- Laboratory of Signal Transduction, Department of Medical Sciences, Institute of Biomedicine - iBiMED, University of Aveiro, Aveiro, Portugal
| |
Collapse
|
11
|
Laxmivandana R, Patole C, Sharma TR, Sharma KK, Naskar S. Differential proteins associated with plasma membrane in X- and/or Y-chromosome bearing spermatozoa in indicus cattle. Reprod Domest Anim 2021; 56:928-935. [PMID: 33829570 DOI: 10.1111/rda.13936] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 04/05/2021] [Indexed: 11/29/2022]
Abstract
The differential proteins associated with plasma membrane of spermatozoa are less known, identification of which shall help overcome limitations of currently used methods of sperm sexing, considered as a high priority for livestock sector of many countries. This study has reported plasma membrane proteomics of unsorted spermatozoa and differential expression of plasma membrane-associated proteins between X- and Y-chromosome bearing spermatozoa of indicus cattle (Bos indicus). Isolation of plasma membrane fraction using percoll gradient, relatively a rapid method, from bovine spermatozoa has been reported to enrich isolation of plasma membrane proteins. Significant enrichment for plasma membrane-associated proteins was observed in plasma membrane fraction (p < .05) as compared to the total cell lysate using LC-MS/MS. Furthermore, these experiments were conducted in flow cytometry sorted, sexed-semen samples. Thirteen proteins were identified as differentially abundant between X- and Y-sorted spermatozoa. Among these, two proteins were downregulated in Y-sorted spermatozoa compared to the X-sorted spermatozoa (p < .05), while four and seven proteins could be noted in X- and Y-sorted spermatozoa, respectively. Proteins that are presumed to support sperm capacitation and sperm migration velocity were found to be abundant in Y-sorted spermatozoa while those associated with structural molecule activity were identified as abundant in X-sorted spermatozoa in the present study. Our study provides better insight into the plasma membrane proteomics of spermatozoa of indicus cattle and furnishes data that might aid in design and development of alternate and open technology for sex-sorting of semen.
Collapse
Affiliation(s)
| | | | - Tilak Raj Sharma
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| | | | - Soumen Naskar
- ICAR-Indian Institute of Agricultural Biotechnology, Ranchi, India
| |
Collapse
|
12
|
Li Y, Wang Y, Yao Y, Lyu J, Qiao Q, Mao J, Xu Z, Ye M. Rapid Enzyme-Mediated Biotinylation for Cell Surface Proteome Profiling. Anal Chem 2021; 93:4542-4551. [PMID: 33660993 DOI: 10.1021/acs.analchem.0c04970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cell surface is the primary site for sensing extracellular stimuli. The knowledge of the transient changes on the surfaceome upon a perturbation is very important as the initial changed proteins could be driving molecules for some phenotype. In this study, we report a fast cell surface labeling strategy based on peroxidase-mediated oxidative tyrosine coupling strategy, enabling efficient and selective cell surface labeling within seconds. With a labeling time of 1 min, 2684 proteins, including 1370 (51%) cell surface-annotated proteins (cell surface/plasma membrane/extracellular), 732 transmembrane proteins, and 81 cluster of differentiation antigens, were identified from HeLa cells. By comparison with the negative control experiment using quantitative proteomics, 500 (68%) out of the 731 significantly enriched proteins (p-value < 0.05, ≥2-fold) in positive experimental samples were cell surface-annotated proteins. Finally, this technology was applied to track the dynamic changes of the surfaceome upon insulin stimulation at two time points (5 min and 2 h) in HepG2 cells. Thirty-two proteins, including INSR, CTNNB1, TFRC, IGF2R, and SORT1, were found to be significantly regulated (p-value < 0.01, ≥1.5-fold) after insulin exposure by different mechanisms. We envision that this technique could be a powerful tool to analyze the transient changes of the surfaceome with a good time resolution and to delineate the temporal and spatial regulation of cellular signaling.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Yan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Yao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Jiawen Lyu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinglong Qiao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Jiawei Mao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Zhaochao Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| |
Collapse
|
13
|
Ligands and Receptors Involved in the Sperm-Zona Pellucida Interactions in Mammals. Cells 2021; 10:cells10010133. [PMID: 33445482 PMCID: PMC7827414 DOI: 10.3390/cells10010133] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
Sperm-zona pellucida (ZP) interaction, involving the binding of sperm surface ligands to complementary carbohydrates of ZP, is the first direct gamete contact event crucial for subsequent gamete fusion and successful fertilization in mammals. It is a complex process mediated by the coordinated engagement of multiple ZP receptors forming high-molecular-weight (HMW) protein complexes at the acrosomal region of the sperm surface. The present article aims to review the current understanding of sperm-ZP binding in the four most studied mammalian models, i.e., murine, porcine, bovine, and human, and summarizes the candidate ZP receptors with established ZP affinity, including their origins and the mechanisms of ZP binding. Further, it compares and contrasts the ZP structure and carbohydrate composition in the aforementioned model organisms. The comprehensive understanding of sperm-ZP interaction mechanisms is critical for the diagnosis of infertility and thus becomes an integral part of assisted reproductive therapies/technologies.
Collapse
|
14
|
Spermatozoa induce transcriptomic alterations in bovine oviductal epithelial cells prior to initial contact. J Cell Commun Signal 2020; 14:439-451. [PMID: 32880838 PMCID: PMC7642185 DOI: 10.1007/s12079-020-00575-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 07/31/2020] [Indexed: 01/12/2023] Open
Abstract
The capability of spermatozoa to directly influence maternal gene expression is already established. Indeed, some of the changes induced by spermatozoa may have a direct functional importance in the pre-conceptional period. Although the mechanisms underlying these sperm-maternal interactions are not well characterized, it is possible that they could involve ligands that are released from the spermatozoa. This study therefore aimed to test whether physical contact between bovine spermatozoa and bovine oviductal epithelial cells (BOECs) is a prerequisite for spermatozoa-induced gene expression changes. We used two co-culture models: a contact co-culture model in which spermatozoa interact directly with BOECs, and a non-contact co-culture model in which an insert with the pore size of 0.4 μm was placed between spermatozoa and BOECs. Messenger RNA sequencing analysis of BOECs by RNA-seq revealed ten differentially expressed genes in contact system and 108 differentially expressed genes in the non-contact system after 10 h of co-culture. Retinol metabolism pathway and ovarian steroidogenesis pathway were significantly enriched in the non-contact co-culture system. Q-PCR analysis revealed that transcriptional responses can be rapid, with increased expression of four genes (DHRS3, CYP1B1, PTGS2, and ATF3) detectable within just 90 min of co-incubation, but with expression levels highly dependent on the type of co-culture system. The findings from our study demonstrate that direct contact with spermatozoa is not necessary to induce changes in gene expression of oviductal epithelial cells, suggesting that spermatozoa may be able to signal to maternal tissues in advance of their arrival.
Collapse
|
15
|
Ramesha KP, Mol P, Kannegundla U, Thota LN, Gopalakrishnan L, Rana E, Azharuddin N, Mangalaparthi KK, Kumar M, Dey G, Patil A, Saravanan K, Behera SK, Jeyakumar S, Kumaresan A, Kataktalware MA, Prasad TSK. Deep Proteome Profiling of Semen of Indian Indigenous Malnad Gidda (Bos indicus) Cattle. J Proteome Res 2020; 19:3364-3376. [DOI: 10.1021/acs.jproteome.0c00237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kerekoppa P. Ramesha
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | - Praseeda Mol
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| | - Uday Kannegundla
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | | | - Lathika Gopalakrishnan
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
- Manipal Academy of Higher Education, Madhav Nagar, Manipal 576104, India
| | - Ekta Rana
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | - Nizamuddin Azharuddin
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | - Kiran K Mangalaparthi
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
- Amrita School of Biotechnology, Amrita Vishwa Vidyapeetham, Kollam, Kerala 690525, India
| | - Manish Kumar
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Gourav Dey
- Institute of Bioinformatics, International Technology Park, Bangalore 560066, India
| | - Arun Patil
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Kumar Saravanan
- Proteomics Facility, Thermo Fisher Scientific India Pvt. Ltd., Bangalore 560066, India
| | - Santosh Kumar Behera
- Centre for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore 575018, India
| | - Sakthivel Jeyakumar
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | - Arumugam Kumaresan
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | - Mukund A. Kataktalware
- Southern Regional Station, ICAR-National Dairy Research Institute, Bangalore 560030, India
| | | |
Collapse
|
16
|
Roca J, Perez-Patiño C, Barranco I, Padilla LC, Martínez EA, Rodriguez-Martinez H, Parrilla I. Proteomics in fresh and preserved pig semen: Recent achievements and future challenges. Theriogenology 2020; 150:41-47. [PMID: 32088031 DOI: 10.1016/j.theriogenology.2020.01.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 01/28/2020] [Indexed: 12/11/2022]
Abstract
Proteins in semen, either in spermatozoa (SPZ) or seminal plasma (SP), are directly involved in molecular processes and biological pathways regulating sperm function, including fertilizing ability. Therefore, semen proteins are candidates of choice for biomarkers discovery for fertility and for sperm (dys)function. Mass spectrometry (MS)-based proteomics has opened up a new era for characterizing and quantifying the protein profile of SP and SPZ, as well as for unveiling the complex protein interactions involved in the activation of sperm functionality. This article overviews existing literature on MS-based proteomics regarding porcine semen, with a specific focus on the potential practical application of the results achieved so far. The weaknesses of current studies and the perspectives for future research in MS-based pig semen proteomics are also addressed.
Collapse
Affiliation(s)
- Jordi Roca
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain.
| | - Cristina Perez-Patiño
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| | - Isabel Barranco
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain; Biotechnology of Animal and Human Reproduction (TechnoSperm), Department of Biology, Faculty of Sciences, Institute of Food and Agricultural Technology, University of Girona, Girona, 17003, Spain
| | - Lorena C Padilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| | - Emilio A Martínez
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| | | | - Inmaculada Parrilla
- Department of Medicine and Animal Surgery, Faculty of Veterinary Science, University of Murcia, Murcia, 30100, Spain
| |
Collapse
|
17
|
Zhu W, Zhang Y, Ren CH, Cheng X, Chen JH, Ge ZY, Sun ZP, Zhuo X, Sun FF, Chen YL, Jia XJ, Zhang Z. Identification of proteomic markers for ram spermatozoa motility using a tandem mass tag (TMT) approach. J Proteomics 2020; 210:103438. [DOI: 10.1016/j.jprot.2019.103438] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/08/2019] [Accepted: 06/30/2019] [Indexed: 12/27/2022]
|
18
|
Noor Z, Ranganathan S. Bioinformatics approaches for improving seminal plasma proteome analysis. Theriogenology 2019; 137:43-49. [PMID: 31186128 DOI: 10.1016/j.theriogenology.2019.05.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Reproduction efficiency of male animals is one of the key factors influencing the sustainability of livestock. Mass spectrometry (MS) based proteomics has become an important tool for studying seminal plasma proteomes. In this review, we summarize bioinformatics analysis strategies for current proteomics approaches, for identifying novel biomarkers of reproductive robustness.
Collapse
Affiliation(s)
- Zainab Noor
- Department of Molecular Sciences, Macquarie University, Sydney, Australia
| | - Shoba Ranganathan
- Department of Molecular Sciences, Macquarie University, Sydney, Australia.
| |
Collapse
|
19
|
Li Y, Qin H, Ye M. An overview on enrichment methods for cell surface proteome profiling. J Sep Sci 2019; 43:292-312. [PMID: 31521063 DOI: 10.1002/jssc.201900700] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/09/2019] [Accepted: 09/11/2019] [Indexed: 12/17/2022]
Abstract
Cell surface proteins are essential for many important biological processes, including cell-cell interactions, signal transduction, and molecular transportation. With the characteristics of low abundance, high hydrophobicity, and high heterogeneity, it is difficult to get a comprehensive view of cell surface proteome by direct analysis. Thus, it is important to selectively enrich the cell surface proteins before liquid chromatography with mass spectrometry analysis. In recent years, a variety of enrichment methods have been developed. Based on the separation mechanism, these methods could be mainly classified into three types. The first type is based on their difference in the physicochemical property, such as size, density, charge, and hydrophobicity. The second one is based on the bimolecular affinity interaction with lectin or antibody. And the third type is based on the chemical covalent coupling to free side groups of surface-exposed proteins or carbohydrate chains, such as primary amines, carboxyl groups, glycan side chains. In addition, metabolic labeling and enzymatic reaction-based methods have also been employed to selectively isolate cell surface proteins. In this review, we will provide a comprehensive overview of the enrichment methods for cell surface proteome profiling.
Collapse
Affiliation(s)
- Yanan Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China.,University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hongqiang Qin
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| | - Mingliang Ye
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian, 116023, P. R. China
| |
Collapse
|
20
|
Menezes EB, Velho ALC, Santos F, Dinh T, Kaya A, Topper E, Moura AA, Memili E. Uncovering sperm metabolome to discover biomarkers for bull fertility. BMC Genomics 2019; 20:714. [PMID: 31533629 PMCID: PMC6749656 DOI: 10.1186/s12864-019-6074-6] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 08/30/2019] [Indexed: 02/08/2023] Open
Abstract
Background Subfertility decreases the efficiency of the cattle industry because artificial insemination employs spermatozoa from a single bull to inseminate thousands of cows. Variation in bull fertility has been demonstrated even among those animals exhibiting normal sperm numbers, motility, and morphology. Despite advances in research, molecular and cellular mechanisms underlying the causes of low fertility in some bulls have not been fully elucidated. In this study, we investigated the metabolic profile of bull spermatozoa using non-targeted metabolomics. Statistical analysis and bioinformatic tools were employed to evaluate the metabolic profiles high and low fertility groups. Metabolic pathways associated with the sperm metabolome were also reported. Results A total of 22 distinct metabolites were detected in spermatozoa from bulls with high fertility (HF) or low fertility (LF) phenotype. The major metabolite classes of bovine sperm were organic acids/derivatives and fatty acids/conjugates. We demonstrated that the abundance ratios of five sperm metabolites were statistically different between HF and LF groups including gamma-aminobutyric acid (GABA), carbamate, benzoic acid, lactic acid, and palmitic acid. Metabolites with different abundances in HF and LF bulls had also VIP scores of greater than 1.5 and AUC- ROC curves of more than 80%. In addition, four metabolic pathways associated with differential metabolites namely alanine, aspartate and glutamate metabolism, β-alanine metabolism, glycolysis or gluconeogenesis, and pyruvate metabolism were also explored. Conclusions This is the first study aimed at ascertaining the metabolome of spermatozoa from bulls with different fertility phenotype using gas chromatography-mass spectrometry. We identified five metabolites in the two groups of sires and such molecules can be used, in the future, as key indicators of bull fertility.
Collapse
Affiliation(s)
- E B Menezes
- Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, Mississippi State, MS, 39762, USA
| | - A L C Velho
- Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, Mississippi State, MS, 39762, USA.,Department of Animal Sciences, Federal University of Ceara, Fortaleza, Brazil
| | - F Santos
- Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, Mississippi State, MS, 39762, USA.,Department of Animal Sciences, Federal University of Ceara, Fortaleza, Brazil
| | - T Dinh
- Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, Mississippi State, MS, 39762, USA
| | - A Kaya
- Department of Reproduction and Artificial Insemination, Selcuk University, Konya, Turkey
| | - E Topper
- Alta Genetic Inc., Watertown, WI, USA
| | - A A Moura
- Department of Animal Sciences, Federal University of Ceara, Fortaleza, Brazil
| | - E Memili
- Department of Animal and Dairy Sciences, Mississippi State University, 4025 Wise Center, Mississippi State, MS, 39762, USA.
| |
Collapse
|
21
|
Wu Y, Wu S, Ma S, Yan F, Weng Z. Cytocompatible Modification of Thermoresponsive Polymers on Living Cells for Membrane Proteomic Isolation and Analysis. Anal Chem 2019; 91:3187-3194. [DOI: 10.1021/acs.analchem.8b04201] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yuanzi Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Shuigen Wu
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Shanyun Ma
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Fen Yan
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Zuquan Weng
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian 350002, China
| |
Collapse
|
22
|
Bundgaard L, Stensballe A, Elbæk KJ, Berg LC. Mapping of equine mesenchymal stromal cell surface proteomes for identification of specific markers using proteomics and gene expression analysis: an in vitro cross-sectional study. Stem Cell Res Ther 2018; 9:288. [PMID: 30359315 PMCID: PMC6202851 DOI: 10.1186/s13287-018-1041-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 10/04/2018] [Accepted: 10/08/2018] [Indexed: 12/19/2022] Open
Abstract
Background Stem cells have great potential for tissue regeneration, but before stem cell populations can be used in the clinic, it is crucial that the stem cells have been definitely characterized by a set of specific markers. Although there have been attempts to identify a set of immunophenotypic markers to characterize equine mesenchymal stromal cells (MSCs), immunophenotyping of equine MSCs is still challenging due to the limited availability of suitable antibodies of high quality and consistent performance across different laboratories. The aim of this study was to evaluate a strategy for mapping the equine MSCs surface proteome by use of biotin-enrichment and mass spectrometry (MS) analysis and mine the proteome for potential equine MSCs surface markers belonging to the cluster of differentiation protein group. Gene expression analysis was used for verification. Methods Equine MSCs derived from bone marrow (BM) (n = 3) and adipose tissue (AT) (n = 3) were expanded to P3 and either used for (1) cell differentiation into mesodermal lineages (chondrogenic and osteogenic), (2) enrichment of the MSCs surface proteins by biotinylation followed by in-gel digest of the isolated proteins and nanoLC-MS/MS analysis to unravel the enriched cell surface proteome, and (3) RNA isolation and quantitative real-time reverse transcriptase PCR analysis of the CD29, CD44, CD90, CD105, CD166, CD34, CD45, and CD79a gene expression. Results A total of 1239 proteins at 1% FDR were identified by MS analysis of the enriched MSCs surface protein samples. Of these proteins, 939 were identified in all six biological samples. The identified proteins included 19 proteins appointed to the cluster of differentiation classification system as potential cell surface targets. The protein and gene expression pattern was positive for the commonly used positive MSCs markers CD29, CD44, CD90, CD105, and CD166, and lacked the negative MSCs markers CD34, CD45, and CD79a. Conclusions The findings of this study show that enrichment of the MSCs surface proteome by biotinylation followed by MS analysis is a valuable alternative to immunophenotyping of surface markers, when suitable antibodies are not available. Further, they support gene expression analysis as a valuable control analysis to verify the data.
Collapse
Affiliation(s)
- Louise Bundgaard
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, DK-2630, Taastrup, Denmark.
| | - Allan Stensballe
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220, Aalborg Ø, Denmark
| | - Kirstine Juul Elbæk
- Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7, 9220, Aalborg Ø, Denmark
| | - Lise Charlotte Berg
- Department of Veterinary Clinical Sciences, University of Copenhagen, Agrovej 8, DK-2630, Taastrup, Denmark
| |
Collapse
|
23
|
Lamy J, Nogues P, Combes-Soia L, Tsikis G, Labas V, Mermillod P, Druart X, Saint-Dizier M. Identification by proteomics of oviductal sperm-interacting proteins. Reproduction 2018. [PMID: 29540510 DOI: 10.1530/rep-17-0712] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The interactions between oviductal fluid (OF) proteins and spermatozoa play major roles in sperm selection, storage and capacitation before fertilization. However, only a few sperm-interacting proteins in the OF has been identified and very little is known about the regulation of sperm-oviduct interactions across the estrous cycle. Samples of bovine frozen-thawed sperm from three bulls were incubated with OF at pre-, post-ovulatory stages (Pre-/Post-ov) or luteal phase (LP) of the estrous cycle (7 mg/mL proteins, treated groups) or with a protein-free media (control). The proteomes of sperm cells were assessed by nanoLC-MS/MS and quantified by label-free methods. A total of 27 sperm-interacting proteins originating in the OF were identified. Among those, 14 were detected at all stages, eight at Post-ov and LP and five only at LP. The sperm-interacting proteins detected at all stages or at LP and Post-ov were on average more abundant at LP than at other stages (P < 0.05). At Pre-ov, OVGP1 was the most abundant sperm-interacting protein while at Post-ov, ACTB, HSP27, MYH9, MYH14 and OVGP1 were predominant. Different patterns of abundance of sperm-interacting proteins related to the stage were evidenced, which greatly differed from those previously reported in the bovine OF. In conclusion, this study highlights the important regulations of sperm-oviduct interactions across the estrous cycle and provides new protein candidates that may modulate sperm functions.
Collapse
Affiliation(s)
- Julie Lamy
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Perrine Nogues
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Lucie Combes-Soia
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France.,INRACIRE (Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement), PAIB (Pôle d'Analyse et d'Imagerie des Biomolécules), Nouzilly, France
| | - Guillaume Tsikis
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Valérie Labas
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France.,INRACIRE (Plate-forme de Chirurgie et d'Imagerie pour la Recherche et l'Enseignement), PAIB (Pôle d'Analyse et d'Imagerie des Biomolécules), Nouzilly, France
| | - Pascal Mermillod
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Xavier Druart
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France
| | - Marie Saint-Dizier
- Physiologie de la Reproduction et des Comportements (PRC)UMR85, INRA, CNRS, Université de Tours, IFCE, Nouzilly, France .,University of ToursFaculty of Sciences and Techniques, Tours, France
| |
Collapse
|
24
|
Exploring evidence of positive selection signatures in cattle breeds selected for different traits. Mamm Genome 2017; 28:528-541. [PMID: 28905131 DOI: 10.1007/s00335-017-9715-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 09/05/2017] [Indexed: 02/07/2023]
Abstract
Since domestication, the genome landscape of cattle has been changing due to natural and artificial selection forces resulting in several general and specialized cattle breeds of the world. Identifying genomic regions affected due to these forces in livestock gives an insight into the history of selection for economically important traits and genetic adaptation to specific environments of the populations under consideration. This study explores the genes/genomic regions under selection in relation to the phenotypes of Holstein, Hanwoo, and N'Dama cattle breeds using Tajima's D, XP-CLR, and XP-EHH population statistical methods. The whole genomes of 10 Holstein (South Korea), 11 Hanwoo (South Korea), and 10 N'Dama (West Africa-Guinea) cattle breeds re-sequenced to ~11x coverage and retained 37 million SNPs were used for the study. Selection signature analysis revealed 441, 512, and 461 genes under selection from Holstein, Hanwoo, and N'Dama cattle breeds, respectively. Among all these, seven genes including ARFGAP3, SNORA70, and other RNA genes were common between the breeds. From each of the gene lists, significant functional annotation cluster terms including milk protein and thyroid hormone signaling pathway (Holstein), histone acetyltransferase activity (Hanwoo), and renin secretion (N'Dama) were enriched. Genes that are related to the phenotypes of the respective breeds were also identified. Moreover, significant breed-specific missense variants were identified in CSN3, PAPPA2 (Holstein), C1orf116 (Hanwoo), and COMMD1 (N'Dama) genes. The genes identified from this study provide an insight into the biological mechanisms and pathways that are important in cattle breeds selected for different traits of economic significance.
Collapse
|
25
|
De Toni L, Garolla A, Menegazzo M, Magagna S, Di Nisio A, Šabović I, Rocca MS, Scattolini V, Filippi A, Foresta C. Heat Sensing Receptor TRPV1 Is a Mediator of Thermotaxis in Human Spermatozoa. PLoS One 2016; 11:e0167622. [PMID: 27992447 PMCID: PMC5161326 DOI: 10.1371/journal.pone.0167622] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 11/17/2016] [Indexed: 01/13/2023] Open
Abstract
The molecular bases of sperm thermotaxis, the temperature-oriented cell motility, are currently under investigation. Thermal perception relies on a subclass of the transient receptor potential [TRP] channels, whose member TRPV1 is acknowledged as the heat sensing receptor. Here we investigated the involvement of TRPV1 in human sperm thermotaxis. We obtained semen samples from 16 normozoospermic subjects attending an infertility survey programme, testis biopsies from 6 patients with testicular germ cell cancer and testis fine needle aspirates from 6 patients with obstructive azoospermia undergoing assisted reproductive technologies. Expression of TRPV1 mRNA was assessed by RT-PCR. Protein expression of TRPV1 was determined by western blot, flow cytometry and immunofluorescence. Sperm motility was assessed by Sperm Class Analyser. Acrosome reaction, apoptosis and intracellular-Ca2+ content were assessed by flow cytometry. We found that TRPV1 mRNA and protein were highly expressed in the testis, in both Sertoli cells and germ-line cells. Moreover, compared to no-gradient controls at 31°C or 37°C (Ctrl 31°C and Ctrl 37°C respectively), sperm migration towards a temperature gradient of 31–37°C (T gradient) in non-capacitated conditions selected a higher number of cells (14,9 ± 4,2×106 cells T gradient vs 5,1± 0,3×106 cells Ctrl 31°C and 5,71±0,74×106 cells Ctrl 37°C; P = 0,039). Capacitation amplified the migrating capability towards the T gradient. Sperms migrated towards the T gradient showed enriched levels of both TRPV1 protein and mRNA. In addition, sperm cells were able to migrate toward a gradient of capsaicin, a specific agonist of TRPV1, whilst capsazepine, a specific agonist of TRPV1, blocked this effect. Finally, capsazepine severely blunted migration towards T gradient without abolishing. These results suggest that TRPV1 may represent a facilitating mediator of sperm thermotaxis.
Collapse
Affiliation(s)
- Luca De Toni
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, Padova, Italy
| | - Andrea Garolla
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, Padova, Italy
| | - Massimo Menegazzo
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, Padova, Italy
| | - Sabina Magagna
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, Padova, Italy
| | - Andrea Di Nisio
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, Padova, Italy
| | - Iva Šabović
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, Padova, Italy
- IRCCS-Istituto Oncologico Veneto [IOV], Via Gattamelata, Padova, Italy
| | - Maria Santa Rocca
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, Padova, Italy
| | - Valentina Scattolini
- Department of Medicine, University of Padova, Via Giustiniani, Padova, Italy
- Venetian Institute of Molecular Medicine, Via Orus 2, Padova, Italy
| | - Andrea Filippi
- Department of Physics and Astronomy “G. Galilei”, University of Padova, Via Marzolo 8, Padova, Italy
| | - Carlo Foresta
- Department of Medicine, Unit of Andrology and Reproductive Medicine, University of Padova, Via Giustiniani, Padova, Italy
- * E-mail:
| |
Collapse
|
26
|
Pini T, Leahy T, Soleilhavoup C, Tsikis G, Labas V, Combes-Soia L, Harichaux G, Rickard JP, Druart X, de Graaf SP. Proteomic Investigation of Ram Spermatozoa and the Proteins Conferred by Seminal Plasma. J Proteome Res 2016; 15:3700-3711. [PMID: 27636150 DOI: 10.1021/acs.jproteome.6b00530] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Sperm proteomes have emerged for several species; however, the extent of species similarity is unknown. Sheep are an important agricultural species for which a comprehensive sperm proteome has not been produced. In addition, potential proteomic factors from seminal plasma that may contribute to improved fertility after cervical insemination are yet to be explored. Here we use liquid chromatography-tandem mass spectrometry to investigate the proteome of ejaculated ram spermatozoa, with quantitative comparison to epididymal spermatozoa. We also present a comparison to published proteomes of five other species. We identified 685 proteins in ejaculated ram spermatozoa, with the most abundant proteins involved in metabolic pathways. Only 5% of ram sperm proteins were not detected in other species, which suggest highly conserved structures and pathways. Of the proteins present in both epididymal and ejaculated ram spermatozoa, 7% were more abundant in ejaculated spermatozoa. Only two membrane-bound proteins were detected solely in ejaculated sperm lysates: liver enriched gene 1 (LEG1/C6orf58) and epidermal growth factor-like repeats and discoidin I-like domains 3 (EDIL3). This is the first evidence that despite its relatively complex proteomic composition, seminal plasma exposure leads to few novel proteins binding tightly to the ram sperm plasma membrane.
Collapse
Affiliation(s)
- Taylor Pini
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - Tamara Leahy
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| | | | - Guillaume Tsikis
- PRC, INRA, CNRS, IFCE, Université de Tours , 37380 Nouzilly, France
| | - Valerie Labas
- PRC, INRA, CNRS, IFCE, Université de Tours , 37380 Nouzilly, France
| | | | | | - Jessica P Rickard
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| | - Xavier Druart
- PRC, INRA, CNRS, IFCE, Université de Tours , 37380 Nouzilly, France
| | - Simon P de Graaf
- Faculty of Veterinary Science, School of Life and Environmental Sciences, The University of Sydney , Sydney, New South Wales 2006, Australia
| |
Collapse
|
27
|
Fang F, Zhao Q, Sui Z, Liang Y, Jiang H, Yang K, Liang Z, Zhang L, Zhang Y. Glycan Moieties as Bait to Fish Plasma Membrane Proteins. Anal Chem 2016; 88:5065-71. [DOI: 10.1021/acs.analchem.6b01082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fei Fang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Qun Zhao
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Zhigang Sui
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yu Liang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Hao Jiang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Kaiguang Yang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Zhen Liang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Lihua Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| | - Yukui Zhang
- National Chromatographic R. & A. Center, Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, Liaoning 116023, China
| |
Collapse
|
28
|
Agarwal A, Bertolla RP, Samanta L. Sperm proteomics: potential impact on male infertility treatment. Expert Rev Proteomics 2016; 13:285-296. [PMID: 26853600 DOI: 10.1586/14789450.2016.1151357] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Spermatozoa are unique cells that have highly compact DNA, motility (and hypermotility) patterns, a specific morphology, localized mitochondria and an apical acrosome. They are the end product of a dynamic process termed spermatogenesis. Sperm are therefore produced with specific proteins in order to effect different traits, such as the presence of cysteine-rich protamines in DNA, which effectively compacts DNA. Moreover, specific proteins are transferred during epididymal maturation and after ejaculation in order to render sperm capable of undergoing post-ejaculatory alterations, generally termed capacitation, which confers capacity to fertilize a mature oocyte. In addition, sperm exhibit several post-translational modifications, which are fundamental to their function, such as SUMOylation and ubiquitination. Discussed in this review is the current knowledge of the sperm proteome in terms of its composition and the function that these proteins determine, as well as their post-translational modifications and how these alter sperm functional integrity. Studies are emphasized that focus on shotgun proteomics--untargeted determination of the protein constituent of a cell in a given biological condition--and technologies currently applied toward that end are reviewed.
Collapse
Affiliation(s)
- Ashok Agarwal
- a American Center for Reproductive Medicine, Department of Urology , Cleveland Clinic , Cleveland , OH , USA
| | - Ricardo Pimenta Bertolla
- b Department of Surgery, Division of Urology, Human Reproduction Section , Federal University of São Paulo , São Paulo , Brazil
| | - Luna Samanta
- c Department of Zoology, School of Life Sciences , Ravenshaw University , Cuttack , India
| |
Collapse
|
29
|
Nakazawa S, Shirae-Kurabayashi M, Otsuka K, Sawada H. Proteomics of ionomycin-induced ascidian sperm reaction: Released and exposed sperm proteins in the ascidian Ciona intestinalis. Proteomics 2015. [DOI: 10.1002/pmic.201500162] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shiori Nakazawa
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Maki Shirae-Kurabayashi
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Kei Otsuka
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| | - Hitoshi Sawada
- Sugashima Marine Biological Laboratory; Graduate School of Science; Nagoya University; Sugashima Toba Japan
| |
Collapse
|
30
|
Korbakis D, Brinc D, Schiza C, Soosaipillai A, Jarvi K, Drabovich AP, Diamandis EP. Immunocapture-Selected Reaction Monitoring Screening Facilitates the Development of ELISA for the Measurement of Native TEX101 in Biological Fluids. Mol Cell Proteomics 2015; 14:1517-26. [PMID: 25813379 DOI: 10.1074/mcp.m114.047571] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Indexed: 11/06/2022] Open
Abstract
Monoclonal antibodies that bind the native conformation of proteins are indispensable reagents for the development of immunoassays, production of therapeutic antibodies and delineating protein interaction networks by affinity purification-mass spectrometry. Antibodies generated against short peptides, protein fragments, or even full length recombinant proteins may not bind the native protein form in biological fluids, thus limiting their utility. Here, we report the application of immunocapture coupled with selected reaction monitoring measurements (immunocapture-SRM), in the rapid screening of hybridoma culture supernatants for monoclonal antibodies that bind the native protein conformation. We produced mouse monoclonal antibodies, which detect in human serum or seminal plasma the native form of the human testis-expressed sequence 101 (TEX101) protein-a recently proposed biomarker of male infertility. Pairing of two monoclonal antibodies against unique TEX101 epitopes led to the development of an ELISA for the measurement of TEX101 in seminal plasma (limit of detection: 20 pg/ml) and serum (limit of detection: 40 pg/ml). Measurements of matched seminal plasma samples, obtained from men pre- and post-vasectomy, confirmed the absolute diagnostic specificity and sensitivity of TEX101 for noninvasive identification of physical obstructions in the male reproductive tract. Measurement of male and female serum samples revealed undetectable levels of TEX101 in the systemic circulation of healthy individuals. Immunocapture-SRM screening may facilitate development of monoclonal antibodies and immunoassays against native forms of challenging protein targets.
Collapse
Affiliation(s)
- Dimitrios Korbakis
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Canada
| | - Davor Brinc
- ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | - Christina Schiza
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada
| | | | - Keith Jarvi
- ‖Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada; **Department of Surgery, Division of Urology, Mount Sinai Hospital, University of Toronto, Canada
| | - Andrei P Drabovich
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Canada;
| | - Eleftherios P Diamandis
- From the ‡Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; §Department of Clinical Biochemistry, University Health Network, Toronto, Canada; ¶Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; ‖Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada;
| |
Collapse
|