1
|
Farag A, Ngeun SK, Kaneda M, Aboubakr M, Elhaieg A, Hendawy H, Tanaka R. Exploring the Potential Effects of Cryopreservation on the Biological Characteristics and Cardiomyogenic Differentiation of Rat Adipose-Derived Mesenchymal Stem Cells. Int J Mol Sci 2024; 25:9908. [PMID: 39337396 PMCID: PMC11432599 DOI: 10.3390/ijms25189908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/05/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Cryopreservation is essential for the broad clinical application of mesenchymal stem cells (MSCs), yet its impact on their cellular characteristics and cardiomyogenic differentiation potential remains a critical concern in translational medicine. This study aimed to evaluate the effects of cryopreservation on the biological properties and cardiomyogenic capacity of rat adipose-derived MSCs (AD-MSCs). We examined their cellular morphology, surface marker expression (CD29, CD90, CD45), trilineage differentiation potential (adipogenic, osteogenic, chondrogenic), and gene expression profiles for the pluripotency marker REX1 and immunomodulatory markers TGFβ1 and IL-6. After inducing cardiomyocyte differentiation, we assessed cardiac-specific gene expressions (Troponin I, MEF2c, GSK-3β) using quantitative RT-qPCR, along with live/dead cell staining and immunofluorescence for cardiac-specific proteins (Troponin T, α-actinin, Myosin Heavy Chain). Cryopreserved AD-MSCs preserved their morphology, surface markers, and differentiation potential, but exhibited a reduced expression of REX1, TGFβ1, and IL-6. Additionally, cryopreservation diminished cardiomyogenic differentiation, as indicated by the lower levels of Troponin I, MEF2c, and GSK-3β seen compared to non-cryopreserved cells. Despite this, high cell viability (>90%) and maintained cardiac protein expression were observed post-cryopreservation. These findings highlight the necessity of optimizing cryopreservation protocols to ensure the full therapeutic potential of AD-MSCs, particularly in applications related to cardiac regenerative medicine.
Collapse
Affiliation(s)
- Ahmed Farag
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt
| | - Sai Koung Ngeun
- Laboratory of Veterinary Diagnostic Imaging, Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Masahiro Kaneda
- Laboratory of Veterinary Anatomy, Division of Animal Life Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Mohamed Aboubakr
- Department of Pharmacology, Faculty of Veterinary Medicine, Benha University, Toukh 13736, Egypt
| | - Asmaa Elhaieg
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Hanan Hendawy
- Department of Veterinary Surgery, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Ryou Tanaka
- Faculty of Agriculture, Veterinary Teaching Hospital, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| |
Collapse
|
2
|
Kodzik N, Ciereszko A, Judycka S, Słowińska M, Szczepkowska B, Świderska B, Dietrich MA. Cryoprotectant-specific alterations in the proteome of Siberian sturgeon spermatozoa induced by cryopreservation. Sci Rep 2024; 14:17707. [PMID: 39085328 PMCID: PMC11291920 DOI: 10.1038/s41598-024-68395-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 07/23/2024] [Indexed: 08/02/2024] Open
Abstract
Cryopreservation is crucial for conserving genetic diversity in endangered species including the critically endangered group of sturgeons (Acipenseridae), but it can compromise sperm quality and protein profiles. Although cryopreservation with dimethyl sulfoxide (DMSO) and methanol (MeOH) results in the recovery of good post-thaw motility, DMSO-preserved sperm show reduced fertilization ability. This study was conducted in Siberian sturgeon as a model for Acipenserid fishes to explore the effects of DMSO and MeOH on the proteome of semen using advanced proteomics methods-liquid chromatography‒mass spectrometry and two-dimensional difference gel electrophoresis. We analyzed the proteomic profiles of fresh and cryopreserved spermatozoa and their extracellular medium and showed that cryopreservation decreases motility and viability and increases reactive oxygen species levels, membrane fluidity, and acrosome damage. Despite having similar post-thaw semen motility, sperm treated with DMSO had significantly lower fertilization success (6.2%) than those treated with MeOH (51.2%). A total of 224 and 118 differentially abundant proteins were identified in spermatozoa preserved with MeOH and DMSO, respectively. MeOH-related proteins were linked to chromosomal structure and mitochondrial functionality, while DMSO-related proteins impacted fertilization by altering the acrosome reaction and binding of sperm to the zona pellucida and nuclear organization. Additionally, cryopreservation led to alterations in the proacrosin/acrosin system in both cryoprotectants. This study provides the first comprehensive proteomic characterization of Siberian sturgeon sperm after cryopreservation, offering insights into how cryoprotectants impact fertilization ability.
Collapse
Affiliation(s)
- Natalia Kodzik
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Sylwia Judycka
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Mariola Słowińska
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Bożena Szczepkowska
- Department of Sturgeon Fish Breeding, National Inland Fisheries Research Institute in Olsztyn, 11-610, Pozezdrze, Pieczarki, Poland
| | - Bianka Świderska
- Mass Spectrometry Laboratory, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Pawinskiego 5a, 02-106, Warsaw, Poland
| | - Mariola A Dietrich
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
3
|
Anjos C, Duarte D, Fatsini E, Matias D, Cabrita E. Comparative transcriptome analysis reveals molecular damage associated with cryopreservation in Crassostrea angulata D-larvae rather than to cryoprotectant exposure. BMC Genomics 2024; 25:591. [PMID: 38867206 PMCID: PMC11167747 DOI: 10.1186/s12864-024-10473-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 05/29/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND The Portuguese oyster Crassostrea angulata, a bivalve of significant economic and ecological importance, has faced a decline in both production and natural populations due to pathologies, climate change, and anthropogenic factors. To safeguard its genetic diversity and improve reproductive management, cryopreservation emerges as a valuable strategy. However, the cryopreservation methodologies lead to some damage in structures and functions of the cells and tissues that can affect post-thaw quality. Transcriptomics may help to understand the molecular consequences related to cryopreservation steps and therefore to identify different freezability biomarkers. This study investigates the molecular damage induced by cryopreservation in C. angulata D-larvae, focusing on two critical steps: exposure to cryoprotectant solution and the freezing/thawing process. RESULTS Expression analysis revealed 3 differentially expressed genes between larvae exposed to cryoprotectant solution and fresh larvae and 611 differentially expressed genes in cryopreserved larvae against fresh larvae. The most significantly enriched gene ontology terms were "carbohydrate metabolic process", "integral component of membrane" and "chitin binding" for biological processes, cellular components and molecular functions, respectively. Kyoto Encyclopedia of Genes and Genomes enrichment analysis identified the "neuroactive ligand receptor interaction", "endocytosis" and "spliceosome" as the most enriched pathways. RNA sequencing results were validate by quantitative RT-PCR, once both techniques presented the same gene expression tendency and a group of 11 genes were considered important molecular biomarkers to be used in further studies for the evaluation of cryodamage. CONCLUSIONS The current work provided valuable insights into the molecular repercussions of cryopreservation on D-larvae of Crassostrea angulata, revealing that the freezing process had a more pronounced impact on larval quality compared to any potential cryoprotectant-induced toxicity. Additionally, was identify 11 genes serving as biomarkers of freezability for D-larvae quality assessment. This research contributes to the development of more effective cryopreservation protocols and detection methods for cryodamage in this species.
Collapse
Affiliation(s)
- Catarina Anjos
- Centre of Marine Sciences-CCMAR/CIMAR.LA, University of Algarve, Faro, 8005-139, Portugal
- Portuguese Institute for Sea and Atmosphere-IPMA, Av. 5 de Outubro, Olhão, 8700-305, Portugal
| | - Daniel Duarte
- Centre of Marine Sciences-CCMAR/CIMAR.LA, University of Algarve, Faro, 8005-139, Portugal
| | - Elvira Fatsini
- Centre of Marine Sciences-CCMAR/CIMAR.LA, University of Algarve, Faro, 8005-139, Portugal
| | - Domitília Matias
- Portuguese Institute for Sea and Atmosphere-IPMA, Av. 5 de Outubro, Olhão, 8700-305, Portugal
| | - Elsa Cabrita
- Centre of Marine Sciences-CCMAR/CIMAR.LA, University of Algarve, Faro, 8005-139, Portugal.
| |
Collapse
|
4
|
Muñoz-Baquero M, Lorenzo-Rebenaque L, García-Domínguez X, Valdés-Hernández J, García-Párraga D, Marin C, García-Vázquez FA, Marco-Jiménez F. Proteomic Insights into Seminal Plasma and Spermatozoa Proteins of Small-Spotted Catsharks, Scyliorhinus canicula: Implications for Reproductive Conservation in Aquariums. Animals (Basel) 2024; 14:1281. [PMID: 38731285 PMCID: PMC11083954 DOI: 10.3390/ani14091281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
In the ex situ conservation of chondrichthyan species, successful reproduction in aquaria is essential. However, these species often exhibit reduced reproductive success under human care. A key aspect is that conventional sperm analyses do not provide insights into the functional competence of sperm. However, proteomics analysis enables a better understanding of male physiology, gaining relevance as a powerful tool for discovering protein biomarkers related to fertility. The present work aims to build the first proteome database for shark semen and to investigate the proteomic profiles of seminal plasma and spermatozoa from small-spotted catsharks (Scyliorhinus canicula) related to the underlying adaptations to both natural and aquarium environments, thereby identifying the reproductive impact in aquarium specimens. A total of 305 seminal plasma and 535 spermatozoa proteins were identified. Among these, 89 proteins (29.2% of the seminal plasma set) were common to both spermatozoa and seminal plasma. In the seminal plasma, only adenosylhomocysteinase protein showed differential abundance (DAP) between wild and aquarium animals. With respect to the spermatozoa proteins, a total of 107 DAPs were found between groups. Gene Ontology enrichment analysis highlighted the primary functional roles of these DAPs involved in oxidoreductase activity. Additionally, KEGG analysis indicated that these DAPs were primarily associated with metabolic pathways and carbon metabolism. In conclusion, we have successfully generated an initial proteome database for S. canicula seminal plasma and spermatozoa. Furthermore, we have identified protein variations, predominantly within spermatozoa, between aquarium and wild populations of S. canicula. These findings provide a foundation for future biomarker discovery in shark reproduction studies. However, additional research is required to determine whether these protein variations correlate with reproductive declines in captive sharks.
Collapse
Affiliation(s)
- Marta Muñoz-Baquero
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Spain; (M.M.-B.); (C.M.)
- Fundación Oceanogràfic de la Comunidad Valenciana, 46005 Valencia, Spain;
| | - Laura Lorenzo-Rebenaque
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (L.L.-R.); (X.G.-D.); (J.V.-H.)
| | - Ximo García-Domínguez
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (L.L.-R.); (X.G.-D.); (J.V.-H.)
| | - Jesús Valdés-Hernández
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (L.L.-R.); (X.G.-D.); (J.V.-H.)
| | - Daniel García-Párraga
- Fundación Oceanogràfic de la Comunidad Valenciana, 46005 Valencia, Spain;
- Veterinary Services, Avanqua-Oceanogràfic S.L., Ciudad de las Artes y las Ciencias, 46013 Valencia, Spain
| | - Clara Marin
- Department of Animal Production and Health, Veterinary Public Health and Food Science and Technology, Biomedical Research Institute, Faculty of Veterinary Medicine, Cardenal Herrera-CEU University, CEU Universities, Calle Santiago Ramón y Cajal 20, 45115 Alfara del Patriarca, Spain; (M.M.-B.); (C.M.)
| | - Francisco Alberto García-Vázquez
- Departamento de Fisiología, Facultad de Veterinaria, Universidad de Murcia, Campus de Excelencia Internacional Mare Nostrum, 30100 Murcia, Spain;
| | - Francisco Marco-Jiménez
- Institute for Animal Science and Technology, Universitat Politècnica de València, 46022 Valencia, Spain; (L.L.-R.); (X.G.-D.); (J.V.-H.)
| |
Collapse
|
5
|
Larbi A, Li C, Quan G. An updated review on the application of proteomics to explore sperm cryoinjury mechanisms in livestock animals. Anim Reprod Sci 2024; 263:107441. [PMID: 38412764 DOI: 10.1016/j.anireprosci.2024.107441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 02/19/2024] [Indexed: 02/29/2024]
Abstract
This comprehensive review critically examines the application of proteomics in understanding sperm cryoinjury mechanisms in livestock animals, in the context of the widespread use of semen cryopreservation for genetic conservation. Despite its global adoption, cryopreservation often detrimentally affects sperm quality and fertility due to cryoinjuries. These injuries primarily arise from ice crystal formation, osmotic shifts, oxidative stress, and the reorganization of membrane proteins and lipids during freezing and thawing, leading to premature capacitation-like changes. Moreover, the cryopreservation process induces proteome remodeling in mammalian sperm. Although there have been technological advances in semen cryopreservation, the precise mechanisms of mammalian sperm cryoinjury remain elusive. This review offers an in-depth exploration of how recent advancements in proteomic technologies have enabled a detailed investigation into these molecular disruptions. It presents an analysis of protein-level alterations post-thaw and their impact on sperm viability and functionality. Additionally, it discusses the role of proteomics in refining cryopreservation techniques to mitigate cryoinjury and enhance reproductive outcomes in livestock. This work synthesizes current knowledge, highlights gaps, and suggests directions for future research in animal reproductive science and biotechnology.
Collapse
Affiliation(s)
- Allai Larbi
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China; Laboratory of Sustainable Agriculture Management, Higher School of Technology Sidi Bennour, Chouaib Doukkali University, El Jadida, Morocco
| | - Chunyan Li
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China
| | - Guobo Quan
- Yunnan Animal Science and Veterinary Institute, Jindian, Panlong District, Kunming City, Yunnan Province, China.
| |
Collapse
|
6
|
Nynca J, Dietrich MA, Ciereszko A. DIGE Analysis of Fish Tissues. Methods Mol Biol 2023; 2596:303-322. [PMID: 36378447 DOI: 10.1007/978-1-0716-2831-7_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) appears to be especially useful in quantitative approaches, allowing the co-separation of proteins of control samples and proteins of treated/disease samples on the same gel, eliminating gel-to-gel variability. The principle of 2D-DIGE is to label proteins prior to isoelectric focusing and use three spectrally resolvable fluorescent dyes, allowing the independent labeling of control and experimental samples. This procedure makes it possible to reduce the number of gels in an experiment, allowing the accurate and reproducible quantification of multiple samples. 2D-DIGE has been found to be an excellent methodical tool in several areas of fish research, including environmental pollution and toxicology, the mechanisms of development and disorders, reproduction, nutrition, evolution, and ecology.
Collapse
Affiliation(s)
- Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland.
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
7
|
Sharafi M, Borghei-Rad SM, Hezavehei M, Shahverdi A, Benson JD. Cryopreservation of Semen in Domestic Animals: A Review of Current Challenges, Applications, and Prospective Strategies. Animals (Basel) 2022; 12:3271. [PMID: 36496792 PMCID: PMC9739224 DOI: 10.3390/ani12233271] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 11/11/2022] [Accepted: 11/21/2022] [Indexed: 11/26/2022] Open
Abstract
Cryopreservation is a way to preserve germplasm with applications in agriculture, biotechnology, and conservation of endangered animals. Cryopreservation has been available for over a century, yet, using current methods, only around 50% of spermatozoa retain their viability after cryopreservation. This loss is associated with damage to different sperm components including the plasma membrane, nucleus, mitochondria, proteins, mRNAs, and microRNAs. To mitigate this damage, conventional strategies use chemical additives that include classical cryoprotectants such as glycerol, as well as antioxidants, fatty acids, sugars, amino acids, and membrane stabilizers. However, clearly current protocols do not prevent all damage. This may be due to the imperfect function of antioxidants and the probable conversion of media components to more toxic forms during cryopreservation.
Collapse
Affiliation(s)
- Mohsen Sharafi
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
- Semex Alliance, Guelph, ON N1H 6J2, Canada
| | - Seyyed Mohsen Borghei-Rad
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran 16635-148, Iran
| | - Maryam Hezavehei
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran 16635-148, Iran
| | - Abdolhossein Shahverdi
- Department of Embryology, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran 16635-148, Iran
| | - James D. Benson
- Department of Biology, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| |
Collapse
|
8
|
Proteomic analysis of rabbit fresh and cryopreserved semen provides an important insight into molecular mechanisms of cryoinjuries to spermatozoa. Theriogenology 2022; 191:77-95. [DOI: 10.1016/j.theriogenology.2022.07.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 07/12/2022] [Accepted: 07/25/2022] [Indexed: 11/20/2022]
|
9
|
Alevra AI, Exadactylos A, Mente E, Papadopoulos S. The Protective Role of Melatonin in Sperm Cryopreservation of Farm Animals and Human: Lessons for Male Fish Cryopreservation. Animals (Basel) 2022; 12:ani12060791. [PMID: 35327189 PMCID: PMC8944624 DOI: 10.3390/ani12060791] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/12/2022] [Accepted: 03/18/2022] [Indexed: 12/12/2022] Open
Abstract
Simple Summary In recent years, cryopreservation of fish sperm has been a rapidly evolving technique that contributes both to the improvement of genetic reproduction programs and the proper management of broodstock as well as to ensuring the viability of endangered species. However, this technique can cause significant damage to sperm, making the use of cryoprotectants and antioxidants in cryopreservation solutions imperative. The hormone melatonin has demonstrated positive effects on the cryopreservation of sperm in both farm animals and humans. Therefore, the plethora of research that has been conducted on animals and humans could be expanded to fish cryopreservation, making melatonin potentially a very promising alternative cryoprotectant. Abstract Cryopreservation is a technique that offers various advantages, especially in fish, among others, that makes the reproduction of species easier through a constant supply of sperm, synchronization of the gamete availability of both sexes, storage of semen for genetic improvement programs, reduction in the cost by eliminating the need to maintain male broodstock, and conserving the gametes of endangered species. However, freezing and warming procedures for cryopreservation lead to a reduction in the quality and viability of cryopreserved sperm because of oxidative stress. For this reason, the enrichment of extender media with antioxidants is a common method of cryopreservation of the semen of several fish species. Recently, many studies have been published for the protective role of antioxidants and especially of melatonin on male fertility preservation both in farm animals and humans, demonstrating the beneficial effects of melatonin as a sperm cryoprotectant. On the other hand, very few studies were conducted using melatonin as an antioxidant in different male fish species for semen cryopreservation. We conclude that the use of moderate concentrations of melatonin are beneficial to semen preservation, and the mechanisms through which melatonin acts positively on spermatozoa need to be further investigated to establish improvement protocols for cryopreservation in fish species.
Collapse
Affiliation(s)
- Alexandra I. Alevra
- Hydrobiology-Ichthyology Laboratory, Department of Ichthyology and Aquatic Environment, University of Thessaly, Fytokou Str., 38446 Volos, Greece;
- Correspondence: (A.I.A.); (S.P.); Tel.: +30-241-093-139 (S.P.)
| | - Athanasios Exadactylos
- Hydrobiology-Ichthyology Laboratory, Department of Ichthyology and Aquatic Environment, University of Thessaly, Fytokou Str., 38446 Volos, Greece;
| | - Eleni Mente
- Laboratory of Ichthyology-Culture and Pathology of Aquatic Animals, School of Veterinary Medicine, Aristotle University of Thessaloniki, University Campus, 54006 Thessaloniki, Greece;
| | - Serafeim Papadopoulos
- Hydrobiology-Ichthyology Laboratory, Department of Ichthyology and Aquatic Environment, University of Thessaly, Fytokou Str., 38446 Volos, Greece;
- Correspondence: (A.I.A.); (S.P.); Tel.: +30-241-093-139 (S.P.)
| |
Collapse
|
10
|
García VA, Cabrales-Hessen SS, Espinosa-Araujo JA. Efecto de etilenglicol y leche en polvo en la criopreservación de semen de bocachico Prochilodus magdalenae. REVISTA COLOMBIANA DE BIOTECNOLOGÍA 2021. [DOI: 10.15446/rev.colomb.biote.v23n2.91188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Bocachico Prochilodus magdalenae es una especie endémica y la más importante de la pesquería continental colombiana. No obstante, sus capturas han disminuido aproximadamente el 67% en los últimos cuarenta años, por tanto ha sido categorizada como vulnerable a la extinción. La criopreservación de semen, es una herramienta biotecnológica de conservación por tanto el objetivo del presente estudio fue evaluar la criopreservación de semen de bocachico con etilenglicol (EG) y leche en polvo descremada (LP). La solución crioprotectora estuvo compuesta por EG (6, 8 o 10%), LP (3, 5 o 7%) y glucosa 6%. La calidad del semen descongelado se evaluó con un software tipo CASA (computer assisted semen analysis). El porcentaje de inclusión de EG, no afectó significativamente ninguno de los parámetros de calidad seminal evaluados (p>0,05), a excepción de la tasa de eclosión (p<0,05); mientras que, la LP afectó significativamente el porcentaje de espermatozoides estáticos (p<0,05) y las tasas de fertilización y eclosión (p<0,01). La mayor movilidad total se obtuvo cuando EG se incluyó a 10% y la LP a 7% (38,4±18,4%) (p<0,05); pero las mayores tasas de fertilización (54,3-64,2%) y eclosión (47,7-57,5%) se obtuvieron cuando EG se incluyó a 6 u 8% y la LP se incluyó a la menor concentración evaluada (3%), sin observarse diferencia significativa entre estos tratamientos (p>0,05). Los resultados permiten concluir que la combinación EG 6% con LP 3% permiten la criopreservación de semen de Prochilodus magdalenae de buena calidad y capacidad fecundante.
Collapse
|
11
|
Herkenhoff ME, Bovolenta LA, Broedel O, Dos Santos LD, de Oliveira AC, Chuffa LGA, Ribeiro ADO, Lupi LA, Dias MAD, Hilsdorf AWS, Frohme M, Pinhal D. Variant expression signatures of microRNAs and protein related to growth in a crossbreed between two strains of Nile tilapia (Oreochromis niloticus). Genomics 2021; 113:4303-4312. [PMID: 34774982 DOI: 10.1016/j.ygeno.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 10/05/2021] [Accepted: 11/07/2021] [Indexed: 11/24/2022]
Abstract
Nile tilapia (Oreochromis niloticus) is a species of worldwide importance for aquaculture. A crossbred lineage was developed through introgressive backcross breeding techniques and combines the high growth performance of the Chitralada (CHIT) lwith attractive reddish color of the Red Stirling (REDS) strains. Since the crossbreed has an unknown genetically improved background, the objective of this work was to characterize expression signatures that portray the advantageous phenotype of the crossbreeds. We characterized the microRNA transcriptome by high throughput sequencing (RNA-seq) and the proteome through mass spectrometry (ESI-Q-TOF-MS) and applied bioinformatics for the comparative analysis of such molecular data on the three strains. Crossbreed expressed a distinct set of miRNAs and proteins compared to the parents. They comprised several microRNAs regulate traits of economic interest. Proteomic profiles revealed differences between parental and crossbreed in expression of proteins associated with glycolisis. Distinctive miRNA and protein signatures contribute to the phenotype of crossbreed.
Collapse
Affiliation(s)
- Marcos Edgar Herkenhoff
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Luiz A Bovolenta
- Department of Biophysics and Pharmacology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Oliver Broedel
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany.
| | - Lucilene D Dos Santos
- Center for the Study of Venoms and Venomous Animals (CEVAP), São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Arthur C de Oliveira
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Luiz G A Chuffa
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Amanda de O Ribeiro
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil
| | - Luiz A Lupi
- Department of Structural and Functional Biology, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| | - Marco A D Dias
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Animal Sciences, Federal University of Lavras, Lavras, MG, Brazil
| | - Alexandre W S Hilsdorf
- Unit of Biotechnology, University of Mogi das Cruzes, Mogi das Cruzes, SP, Brazil; Department of Animal Sciences, Federal University of Lavras, Lavras, MG, Brazil.
| | - Marcus Frohme
- Division Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany.
| | - Danillo Pinhal
- Department of Chemical and Biological Sciences, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, SP, Brazil.
| |
Collapse
|
12
|
|
13
|
Bull Sperm Capacitation Is Accompanied by Redox Modifications of Proteins. Int J Mol Sci 2021; 22:ijms22157903. [PMID: 34360666 PMCID: PMC8347624 DOI: 10.3390/ijms22157903] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022] Open
Abstract
The ability to fertilise an egg is acquired by the mammalian sperm during the complex biochemical process called capacitation. Capacitation is accompanied by the production of reactive oxygen species (ROS), but the mechanism of redox regulation during capacitation has not been elucidated. This study aimed to verify whether capacitation coincides with reversible oxidative post-translational modifications of proteins (oxPTMs). Flow cytometry, fluorescence microscopy and Western blot analyses were used to verify the sperm capacitation process. A fluorescent gel-based redox proteomic approach allowed us to observe changes in the level of reversible oxPTMs manifested by the reduction or oxidation of susceptible cysteines in sperm proteins. Sperm capacitation was accompanied with redox modifications of 48 protein spots corresponding to 22 proteins involved in the production of ROS (SOD, DLD), playing a role in downstream redox signal transfer (GAPDHS and GST) related to the cAMP/PKA pathway (ROPN1L, SPA17), acrosome exocytosis (ACRB, sperm acrosome associated protein 9, IZUMO4), actin polymerisation (CAPZB) and hyperactivation (TUBB4B, TUB1A). The results demonstrated that sperm capacitation is accompanied by altered levels of oxPTMs of a group of redox responsive proteins, filling gaps in our knowledge concerning sperm capacitation.
Collapse
|
14
|
Mostek A, Janta A, Ciereszko A. Proteomic comparison of non-sexed and sexed (X-bearing) cryopreserved bull semen. Anim Reprod Sci 2020; 221:106552. [PMID: 32861114 DOI: 10.1016/j.anireprosci.2020.106552] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/20/2022]
Abstract
It is widely recognized that quality of spermatozoa in sexed semen (SS) samples is not as great as for conventional, non-sexed semen (NS). There are differences in qualitative and biochemical variables between spermatozoa in NS and SS. Information, however, is lacking on molecular differences, especially concerning spermatozoa proteomic differences is SS and NS. The objective of this study was to compare commercially available NS and SS bull semen by evaluating sperm quality variables in conjunction with a proteomics approach. Results from flow cytometry and computer-assisted sperm analyses indicated there was less sperm motility, viability, mitochondrial potential and acrosome integrity in sperm from SS. Results from proteomic analysis indicated sperm from NS and SS samples were characterized by different protein profiles. There was identification of 70 sperm proteins that differed in abundance and six protein spots that were different in extent of carbonylation. Sperm from SS had altered structures of enzymes involved in glycolysis, oxidative phosphorylation and maintenance of a constant adenylate energy charge. Furthermore, sperm from SS had alterations of several flagella substructures, especially outer dense fiber proteins, which were less abundant and more carbonylated than in sperm from NS. In sperm of SS, compared with NS, there were differences in abundance of proteins involved in capacitation, acrosome reaction and sperm-egg fusion as well as lesser abundances of sperm surface proteins. Results enable a greater understanding of differences between sperm from NS and SS samples, thereby contributing to development of improved protocols for more effective protection of sexed spermatozoa during processing.
Collapse
Affiliation(s)
- Agnieszka Mostek
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748 Olsztyn, Poland.
| | - Anna Janta
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748 Olsztyn, Poland
| | - Andrzej Ciereszko
- Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences in Olsztyn, Tuwima 10, 10-748 Olsztyn, Poland
| |
Collapse
|
15
|
Domestication is associated with differential expression of pikeperch egg proteins involved in metabolism, immune response and protein folding. Animal 2020; 14:2336-2350. [PMID: 32525470 DOI: 10.1017/s1751731120001184] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Domestication is a condition in which the breeding, care and feeding of animals are, at least in part, controlled by humans. Information regarding the changes in the protein composition of eggs in response to domestication is very limited. Such data are prerequisite for improvements in the reproduction of domesticated fish. The aim of this study was to examine the impact of domestication on the proteome of pikeperch eggs using two-dimensional differential in-gel electrophoresis. We analysed high-quality eggs from domesticated and wild pikeperch fish to reveal proteins that were presumably only related to the domestication process and not to the quality of eggs. Here, we show that domestication has a profound impact on the protein profile of pikeperch eggs. We identified 66 differentially abundant protein spots, including 27 spots that were more abundant in wild-caught pikeperch eggs and 39 spots that were enriched in eggs collected from domesticated females. Eggs originating from wild-caught females showed higher expression levels of proteins involved in folding, apoptotic process, purine metabolism and immune response, whereas eggs of domesticated females showed higher expression levels of proteins that participated mainly in metabolism. The changes in metabolic proteins in eggs from domesticated females can reflect the adaptation of pikeperch to commercial diets, which have profoundly distinct compositions compared with natural diets. The decrease in the abundance of proteins related to immune response in eggs from the domesticated population suggests that domestication may lead to disturbances in defence mechanisms. In turn, the lower abundance of heat shock proteins in eggs of domesticated fish may indicate their adaptation to stable farming conditions and reduced environmental stressors or their better tolerance of stress from breeding. The proteins identified in this study can increase our knowledge concerning the mechanism of the pikeperch domestication process.
Collapse
|
16
|
Peris-Frau P, Martín-Maestro A, Iniesta-Cuerda M, Sánchez-Ajofrín I, Mateos-Hernández L, Garde JJ, Villar M, Soler AJ. Freezing-Thawing Procedures Remodel the Proteome of Ram Sperm before and after In Vitro Capacitation. Int J Mol Sci 2019; 20:E4596. [PMID: 31533312 PMCID: PMC6769739 DOI: 10.3390/ijms20184596] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 02/07/2023] Open
Abstract
Mammalian sperm must undergo a set of structural and functional changes collectively termed as capacitation to ensure a successful oocyte fertilization. However, capacitation can be compromised by cryopreservation procedures, which alter the proteome and longevity of sperm. To date, how the protein changes induced by cryopreservation could affect the acquisition of sperm fertilizing potential remains unexplored. The present study investigated the protein profile of ram sperm during in vitro capacitation before and after cryopreservation to elucidate the impact of cryopreservation on sperm capacitation at a molecular level. Fresh and cryopreserved ram sperm were incubated under capacitating (CAP) and non-capacitating (NC) conditions for 240 min. The sperm proteome of these four treatments was analyzed and compared at different incubation times using reverse phase liquid chromatography coupled to mass spectrometry (RP-LC-MS/MS). The comparison between fresh and cryopreserved sperm suggested that cryopreservation facilitated an apoptosis-stress response and redox process, while the comparison between sperm incubated in CAP and NC conditions showed that capacitation increased those biological processes associated with signaling, metabolism, motility, and reproductive processes. In addition, 14 proteins related to mitochondrial activity, sperm motility, oocyte recognition, signaling, spermatogenesis, and the apoptosis-stress response underwent significant changes in abundance over time when fresh and cryopreserved sperm incubated in CAP and NC conditions were compared. Our results indicate that disturbances in a ram sperm proteome after cryopreservation may alter the quality of sperm and its specific machinery to sustain capacitation under in vitro conditions.
Collapse
Affiliation(s)
- Patricia Peris-Frau
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Alicia Martín-Maestro
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - María Iniesta-Cuerda
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Irene Sánchez-Ajofrín
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Lourdes Mateos-Hernández
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
- UMR BIPAR, INRA, Ecole Nationale Vétérinaire d'Alfort, ANSES, Université Paris-Est, 94700 Maisons-Alfort, France.
| | - J Julián Garde
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Margarita Villar
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Ana Josefa Soler
- SaBio IREC (CSIC-UCLM-JCCM), ETSIAM, Campus Universitario s/n, 02071 Albacete, Spain.
| |
Collapse
|
17
|
Nynca J, Słowińska M, Judycka S, Ciereszko A. Maladaptation of trout spermatozoa to fresh water is related to oxidative stress and proteome changes. Reproduction 2019; 157:485-499. [PMID: 30921765 DOI: 10.1530/rep-19-0012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 03/01/2019] [Indexed: 11/08/2022]
Abstract
Rainbow trout sperm are 'maladapted' to freshwater spawning, resulting in shorter duration of sperm motility in fresh water compared to buffered saline solution. We hypothesized that different sperm motility-activating media have various effects on sperm motility characteristics and oxidative stress, as well as on the protein profiles of rainbow trout sperm. We designed an experimental model for activation of rainbow trout sperm motility in different osmotic conditions: (i) isosmotic and (ii) hypoosmotic. Spermatozoa activation with hypoosmotic solution was associated with lower values for sperm motility parameters (52%) and an induced increase in ROS level (19.4%) in comparison to isosmotic activation with isosmotic solution (67 and 9.5% for sperm motility and ROS, respectively). Hypoosmotic activation resulted in a higher number of differentially abundant sperm proteins (out of which 50 were identified) compared to isosmotic conditions, where only two spots of protein disulfide-isomerase 6 were changed in abundance. The proteins are mainly involved in the TCA cycle, tight and gap junction signaling, Sertoli cell-Sertoli cell junction signaling and asparagine degradation. Our results, for the first time, indicate that during hypoosmotic activation of sperm motility, osmotic stress triggers oxidative stress and disturbances mostly to structural proteins and metabolic enzymes. Our results strongly suggest that comparative physiological and biochemical analysis of rainbow trout sperm characteristics in isosmotic and hypoosmotic conditions could be a useful model for studying the mechanism of sperm activation in salmonid fish.
Collapse
Affiliation(s)
- J Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - M Słowińska
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - S Judycka
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| | - A Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Olsztyn, Poland
| |
Collapse
|
18
|
Dietrich MA, Nynca J, Ciereszko A. Proteomic and metabolomic insights into the functions of the male reproductive system in fishes. Theriogenology 2019; 132:182-200. [PMID: 31029849 DOI: 10.1016/j.theriogenology.2019.04.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 02/08/2023]
Abstract
Proteomics and metabolomics are emerging and powerful tools to unravel the complex molecular mechanisms regulating reproduction in male fish. So far, numerous proteins and metabolites have been identified that provide us with valuable information to conduct a comprehensive analysis on seminal plasma and spermatozoa components and their functions. These analyses have allowed a better understanding of the blood-testis barrier functions, the molecular mechanisms underlying spermatogenesis, spermatozoa maturation, motility signaling, and competition as well as the mechanism of cryodamage to sperm structure and functions. To extend, proteins that undergo posttranslational modification, such as phosphorylation and oxidation in response to spermatozoa motility activation and cryopreservation, respectively, have been identified. Proteomic studies resulted in identification of potential proteins that can be used as biomarkers for sperm quality and freezability to enable the control of artificial reproduction, and to improve methods for long-term preservation (cryopreservation) of sperm. The different proteins expressed in the spermatozoa of neomales and normal males can also provide new insights into development of methods for separating X and Y fish sperm, and changes in the protein profiles in haploid and diploid spermatozoa will provide new perspectives to better understand the mechanism of male polyploidy. Overall, the knowledge gained by proteomic and metabolomic studies is important from basic to applied sciences for the development and/or optimisation of techniques in controlled fish reproduction.
Collapse
Affiliation(s)
- Mariola A Dietrich
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Joanna Nynca
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Andrzej Ciereszko
- Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
19
|
Bai C, Kang N, Zhao J, Dai J, Gao H, Chen Y, Dong H, Huang C, Dong Q. Cryopreservation disrupts lipid rafts and heat shock proteins in yellow catfish sperm. Cryobiology 2019; 87:32-39. [PMID: 30876909 DOI: 10.1016/j.cryobiol.2019.03.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 03/06/2019] [Accepted: 03/08/2019] [Indexed: 11/25/2022]
Abstract
Lipid rafts and associated membrane proteins (flotillin, caveolin) play important roles in cell signaling and sperm fertilization while heat shock proteins (Hsp) ensure properly protein folding to fulfill their physiological functions. The markedly reduced fertility in thawed sperm after cryopreservation could result from disrupted membrane lipid rafts and these proteins. To explore the effect of sperm cryopreservation on lipid rafts and heat shock proteins, we compared lipid raft integrity, and the expression levels of lipid raft associated proteins (Flot-1, Flot-2, Cav-1) as well as heat shock proteins (Hsp90, Hsp70) in fresh and thawed sperm cryopreserved under different scenarios in yellow catfish. We found higher lipid raft integrity, higher protein expression levels of Flot-1, Flot-2, Cav-1, Hsp90, and Hsp70 in fresh sperm samples than in thawed sperm samples, in thawed sperm samples cryopreserved with optimal cooling rate than those cryopreserved with sub-optimal cooling rate, and in thawed sperm samples cryopreserved with extenders supplemented with cholesterol than those supplemented with methyl-β-cyclodextrin (for cholesterol removal). Our findings indicate that lipid raft integrity, and expression levels of Flot-1, Flot-2, Cav-1, Hsp90, and Hsp70 are clearly associated with sperm quality, and together they may play a cumulative role in reduced fertility associated with thawed sperm in aquatic species.
Collapse
Affiliation(s)
- Chenglian Bai
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Ning Kang
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Junping Zhao
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Jun Dai
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Hui Gao
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Yuanhong Chen
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Haojia Dong
- Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Changjiang Huang
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China
| | - Qiaoxiang Dong
- The Second Affiliated Hospital and Yuying Children's Hospital, Wenzhou Medical University, Wenzhou 325035, PR China; Institute of Environmental Safety and Human Health, Wenzhou Medical University, Wenzhou 325035, PR China.
| |
Collapse
|
20
|
Al-Otaibi NAS, Cassoli JS, Martins-de-Souza D, Slater NKH, Rahmoune H. Human leukemia cells (HL-60) proteomic and biological signatures underpinning cryo-damage are differentially modulated by novel cryo-additives. Gigascience 2019; 8:giy155. [PMID: 30535373 PMCID: PMC6394207 DOI: 10.1093/gigascience/giy155] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 07/02/2018] [Accepted: 11/26/2018] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cryopreservation is a routinely used methodology for prolonged storage of viable cells. The use of cryo-protective agents (CPAs) such as dimethylsulfoxide (DMSO), glycerol, or trehalose is paramount to reducing cellular cryo-injury, but their effectiveness is still limited. The current study focuses on establishing and modulating the proteomic and the corresponding biological profiles associated with the cryo-injury of human leukemia (HL-60) cells cryopreserved in DMSO alone or DMSO +/- novel CPAs (e.g., nigerose [Nig] or salidroside [Sal]). FINDINGS To reduce cryo-damage, HL-60 cells were cultured prior and post cryopreservation in malondialdehyde Roswell Park Memorial Institute medium-1640 media +/- Nig or Sal. Shotgun proteomic analysis showed significant alterations in the levels of proteins in cells cryopreserved in Nig or Sal compared to DMSO. Nig mostly affected cellular metabolism and energy pathways, whereas Sal increased the levels of proteins associated with DNA repair/duplication, RNA transcription, and cell proliferation. Validation testing showed that the proteome profile associated with Sal was correlated with a 2.8-fold increase in cell proliferative rate. At the functional level, both Nig and Sal increased glutathione reductase (0.0012±6.19E-05 and 0.0016±3.04E-05 mU/mL, respectively) compared to DMSO controls (0.0003±3.7E-05 mU/mL) and reduced cytotoxicity by decreasing lactate dehydrogenase activities (from -2.5 to -4.75 fold) and lipid oxidation (-1.6 fold). In contrast, only Nig attenuated protein carbonylation or oxidation. CONCLUSIONS We have identified key molecules and corresponding functional pathways underpinning the effect of cryopreservation (+/- CPAs) of HL-60 cells. We also validated the proteomic findings by identifying the corresponding biological profiles associated with promoting an anti-oxidative environment post cryopreservation. Nig or Sal in comparison to DMSO showed differential or additive effects in regard to reducing cryo-injury and enhancing cell survival/proliferation post thaw. These results can provide useful insight to cryo-damage and the design of enhanced cryomedia formulation.
Collapse
Affiliation(s)
- Noha A S Al-Otaibi
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
- King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, P.O Box 6086, Riyadh 11442, Saudi Arabia
| | - Juliana S Cassoli
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Nigel K H Slater
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| | - Hassan Rahmoune
- Department of Chemical Engineering & Biotechnology, University of Cambridge, Philippa Fawcett Drive, Cambridge CB3 0AS, United Kingdom
| |
Collapse
|
21
|
Mayer I. The Role of Reproductive Sciences in the Preservation and Breeding of Commercial and Threatened Teleost Fishes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1200:187-224. [PMID: 31471798 DOI: 10.1007/978-3-030-23633-5_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The teleost fishes are the largest and most diverse vertebrate group, accounting for nearly half of all known vertebrate species. Teleost fish exhibit greater species diversity than any other group of vertebrates and this is reflected in the unique variety of different reproductive strategies displayed by fish. Fish have always been an important resource for humans worldwide, especially as food. While wild capture fisheries have historically been the main source of fish, the farming of fish (aquaculture) is increasingly becoming the more dominant source of food fish, and is predicted to account for 60% of total global fish production by 2030.Fishes are increasingly threatened by a wide range of anthropogenic impacts, including loss of habitat, pollution, invasive species and over-exploitation. In addition, climate change, especially the consequences of global warming, can impact fish at all levels of biological organization from the individual to the population level, influencing both physiological and ecological processes in a variety of direct and indirect ways. As such, there is an urgent need to protect and conserve the huge genetic diversity offered by this diverse vertebrate group, not just as a source of genes for contemporary breeding and for protection against the consequences of climate change and disease, but also as part of our national heritage. While the cryopreservation of reproductive cells is a means of achieving these objectives, currently only fish sperm can be successfully frozen. Due to their large size, large yolk compartment, low membrane permeability and high chilling sensitivity, successful and reproducible protocols for the cryopreservation of fish oocytes and embryos still remains elusive. However, significant advances have been made in the cryopreservation of primordial germ cells as an alternative means of conserving both paternal and maternal genomes. Although more research needs to be carried out on how these cells can be optimally applied to emerging reproductive technologies, including transplantation techniques and surrogate broodstock technologies, the successful cryopreservation of fish germ cells, and the establishment of genetic resource banks, offers the possibility of both conserving and restoring threatened species. Further, current and future conservation efforts need to consider the impact of climate change in both in situ conservation and reintroduction efforts.In conclusion, it is anticipated that the successful cryopreservation of fish germplasm will result in a range of economic, ecological and societal benefits. In partnership with emerging assisted reproductive technologies, the successful cryopreservation of fish germplasm will lead to more efficient reproduction in aquaculture, assist selective breeding programmes, and be of crucial importance to future species conservation actions.
Collapse
Affiliation(s)
- Ian Mayer
- Norwegian University of Life Sciences, Faculty of Veterinary Medicine, Oslo, Norway.
| |
Collapse
|
22
|
Ran MX, Li Y, Zhang Y, Liang K, Ren YN, Zhang M, Zhou GB, Zhou YM, Wu K, Wang CD, Huang Y, Luo B, Qazi IH, Zhang HM, Zeng CJ. Transcriptome Sequencing Reveals the Differentially Expressed lncRNAs and mRNAs Involved in Cryoinjuries in Frozen-Thawed Giant Panda ( Ailuropoda melanoleuca) Sperm. Int J Mol Sci 2018; 19:ijms19103066. [PMID: 30297640 PMCID: PMC6212861 DOI: 10.3390/ijms19103066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/03/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Sperm cryopreservation and artificial insemination are important methods for giant panda breeding and preservation of extant genetic diversity. Lower conception rates limit the use of artificial insemination with frozen-thawed giant panda sperm, due to the lack of understanding of the cryodamaging or cryoinjuring mechanisms in cryopreservation. Long non-coding RNAs (lncRNAs) are involved in regulating spermatogenesis. However, their roles during cryopreservation remain largely unexplored. Therefore, this study aimed to identify differentially expressed lncRNAs and mRNAs associated with cryodamage or freeze tolerance in frozen-thawed sperm through high throughput sequencing. A total of 61.05 Gb clean reads and 22,774 lncRNA transcripts were obtained. From the sequencing results, 1477 significantly up-regulated and 1,396 significantly down-regulated lncRNA transcripts from fresh and frozen-thawed sperm of giant panda were identified. GO and KEGG showed that the significantly dysregulated lncRNAs and mRNAs were mainly involved in regulating responses to cold stress and apoptosis, such as the integral component of membrane, calcium transport, and various signaling pathways including PI3K-Akt, p53 and cAMP. Our work is the first systematic profiling of lncRNA and mRNA in fresh and frozen-thawed giant panda sperm, and provides valuableinsights into the potential mechanism of cryodamage in sperm.
Collapse
Affiliation(s)
- Ming-Xia Ran
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yuan Li
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Yan Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Kai Liang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying-Nan Ren
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ming Zhang
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Guang-Bin Zhou
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Ying-Min Zhou
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Kai Wu
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Cheng-Dong Wang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Yan Huang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Bo Luo
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Izhar Hyder Qazi
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
- Department of Veterinary Anatomy & Histology, Faculty of Bio-Sciences, Shaheed Benazir Bhutto University of Veterinary and Animal Sciences, Sakrand 67210, Pakistan.
| | - He-Min Zhang
- China Conservation and Research Center for the Giant Panda, Wolong 473000, China.
| | - Chang-Jun Zeng
- College of Animal Sciences and Technology, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
23
|
Sublethal sperm freezing damage: Manifestations and solutions. Theriogenology 2018; 118:172-181. [DOI: 10.1016/j.theriogenology.2018.06.006] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 05/28/2018] [Accepted: 06/10/2018] [Indexed: 01/30/2023]
|
24
|
Abstract
Two-dimensional difference gel electrophoresis (2D-DIGE) appears to be especially useful in quantitative approaches, allowing the co-separation of proteins of control samples from proteins of treatment/disease samples on the same gel, eliminating gel-to-gel variability. The principle of 2D-DIGE is to label proteins prior to isoelectric focusing and use three spectrally resolvable fluorescent dyes, allowing the independent labeling of control and experimental samples. This procedure makes it possible to reduce the number of gels in an experiment, allowing the accurate and reproducible quantification of multiple samples. 2D-DIGE has been found to be an excellent methodical tool in several areas of fish research, including environmental pollution and toxicology, the mechanisms of development and disorders, reproduction, nutrition, evolution, and ecology.
Collapse
Affiliation(s)
- Joanna Nynca
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Mariola A Dietrich
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| |
Collapse
|
25
|
Pini T, Rickard JP, Leahy T, Crossett B, Druart X, de Graaf SP. Cryopreservation and egg yolk medium alter the proteome of ram spermatozoa. J Proteomics 2018; 181:73-82. [PMID: 29627624 DOI: 10.1016/j.jprot.2018.04.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Revised: 02/23/2018] [Accepted: 04/01/2018] [Indexed: 12/26/2022]
Abstract
Cryopreservation causes significant lethal and sub-lethal damage to spermatozoa. In order to improve freezing outcomes, a comprehensive understanding of sub-lethal damage is required. Cryopreservation induced changes to sperm proteins have been investigated in several species, but few have employed currently available state of the art, data independent acquisition mass spectrometry (MS) methods. We used the SWATH LC-MS method to quantitatively profile proteomic changes to ram spermatozoa following exposure to egg yolk and cryopreservation. Egg yolk contributed 15 proteins to spermatozoa, including vitellogenins, apolipoproteins and complement component C3. Cryopreservation significantly altered the abundance of 51 proteins. Overall, 27 proteins increased (e.g. SERPINB1, FER) and 24 proteins decreased (e.g. CCT subunits, CSNK1G2, TOM1L1) in frozen thawed ram spermatozoa, compared to fresh spermatozoa. Chaperones constituted 20% of the proteins lost from spermatozoa following cryopreservation. These alterations may interfere with both normal cellular functioning and the ability of frozen thawed spermatozoa to appropriately respond to stress. This is the first study to apply SWATH mass spectrometry techniques to characterise proteins contributed by egg yolk based freezing media and to profile cryopreservation induced proteomic changes to ram spermatozoa. SIGNIFICANCE This study profiles changes to the sperm proteome induced by exposure to egg yolk based media and the process of cryopreservation, and the biological consequences are discussed.
Collapse
Affiliation(s)
- T Pini
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia.
| | - J P Rickard
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - T Leahy
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| | - B Crossett
- Sydney Mass Spectrometry, The University of Sydney, NSW 2006, Australia
| | - X Druart
- UMR6175 INRA, CNRS-Université de Tours-Haras Nationaux, Station de Physiologie de la Reproduction et des Comportements, Institut National de la Recherche Agronomique, 37380 Nouzilly, France
| | - S P de Graaf
- Faculty of Science, School of Life and Environmental Sciences, The University of Sydney, NSW 2006, Australia
| |
Collapse
|
26
|
Foxn1 expression in keratinocytes is stimulated by hypoxia: further evidence of its role in skin wound healing. Sci Rep 2018; 8:5425. [PMID: 29615703 PMCID: PMC5882803 DOI: 10.1038/s41598-018-23794-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/21/2018] [Indexed: 01/09/2023] Open
Abstract
Recent studies have shown that the transcription factor Foxn1, which is expressed in keratinocytes, is involved in the skin wound healing process, yet how Foxn1 functions remains largely unknown. Our latest data indicate that Foxn1 drives skin healing via engagement in re-epithelization and the epithelial-mesenchymal transition (EMT) process. In the present study, 2D-DIGE proteomic profiling analysis of in vitro cultured keratinocytes transfected with adenoviral vector carrying Foxn1-GFP or GFP alone (control) revealed forty proteins with differential abundance between the compared groups. Among the proteins with Foxn1-dependent expression, several enable adaptation to hypoxia. Subsequent experiments revealed that hypoxic conditions (1% O2) stimulate endogenous and exogenous (transfected Ad-Foxn1) Foxn1 expression in cultured keratinocytes. A proteomics analysis also identified proteins that can act as a factors controlling the balance between cell proliferation, differentiation and apoptosis in response to Foxn1. We also showed that in C57BL/6 keratinocytes, the stimulation of Foxn1 by hypoxia is accompanied by increases in Mmp-9 expression. These data corroborate the detected co-localization of Foxn1 and Mmp-9 expression in vivo in post-wounding skin samples of Foxn1::Egfp transgenic mice. Together, our data indicate that Foxn1 orchestrates cellular changes in keratinocytes in both physiological (self-renewal) and pathological (skin wound healing) contexts.
Collapse
|
27
|
Xin M, Shaliutina-Kolesova A, Sterba J, Konik P, Boryshpolets S, Rodina M, Li P, Nian R, Linhart O. Impact of cryopreservation on sterlet, Acipenser ruthenus sperm motility and proteome. Anim Reprod Sci 2018; 192:280-289. [PMID: 29610058 DOI: 10.1016/j.anireprosci.2018.03.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/17/2018] [Accepted: 03/26/2018] [Indexed: 01/17/2023]
Abstract
Fish sperm cryopreservation is a well-established technique allowing for artificial insemination on a commercial scale. The extent of proteome alterations in seminal plasma and sperm due to cryopreservation, however, is not known. This study was conducted to evaluate the effect of cryopreservation on motility variables of sterlet Acipenser ruthenus sperm and to detect the differences in protein profiles of fresh and cryopreserved sterlet sperm and seminal plasma. Fresh sperm had 89 ± 3% motility and 160 ± 14 μm/s curvilinear velocity at 15 s post-activation. The motility rate of cryopreserved sperm (37 ± 5%) was less at 15 s post-activation. No difference (ANOVA; P > 0.05) in mean curvilinear velocity of fresh and cryopreserved sperm was detected. The protein profiles of seminal plasma and sperm were characterized using comparative proteomics to determine the influence of cryopreservation. Six altered protein spots in seminal plasma and thirteen altered spots in sperm were detected in fresh and thawed sperm. Subsequent protein characterization suggested that the proteins identified were involved in sperm metabolism, cytoskeleton, and stress response. The results broaden the understanding of the effects of cryopreservation and identify the proteins associated with cryo-injury. These data may help to determine the function of altered proteins and provide new insights into improving sperm cryopreservation.
Collapse
Affiliation(s)
- Miaomiao Xin
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 38925 Vodnany, Czech Republic; Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.
| | - Anna Shaliutina-Kolesova
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 38925 Vodnany, Czech Republic
| | - Jan Sterba
- University of South Bohemia in Ceske Budejovice, Faculty of Science, Institute of Chemistry and Biochemistry, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic; Biology Centre of Academy of Sciences of the Czech Republic, Institute of Parasitology, Branisovska 31, 37005 Ceske Budejovice, Czech Republic
| | - Peter Konik
- University of South Bohemia in Ceske Budejovice, Faculty of Science, Institute of Chemistry and Biochemistry, Branisovska 1760, 37005 Ceske Budejovice, Czech Republic
| | - Sergii Boryshpolets
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 38925 Vodnany, Czech Republic
| | - Marek Rodina
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 38925 Vodnany, Czech Republic
| | - Ping Li
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 38925 Vodnany, Czech Republic; Sino-Czech Joint Laboratory for Fish Conservation and Biotechnology, Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China
| | - Rui Nian
- CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China
| | - Otomar Linhart
- University of South Bohemia in Ceske Budejovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, Zatisi 728/II, 38925 Vodnany, Czech Republic
| |
Collapse
|
28
|
Nynca J, Adamek M, Ciereszko A. Identification of differentially expressed proteins in testicular semen of sex-reversed female (XX) and normal male (XY) rainbow trout. J Anim Sci 2018; 95:3173-3183. [PMID: 28727099 DOI: 10.2527/jas.2017.1517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Masculinized females, named sex-reversed females (SRF), have a male phenotype but retain the female genotype (XX) and all spermatozoa produced in their testes carry the X chromosome. Masculinization of females leads to incomplete testicular development and the production of lower-quality semen. The mechanism of masculinization is unknown at present. Therefore, the aim of our study was to identify differentially abundant proteins in testicular semen of normal males and SRF using a difference in-gel electrophoresis approach. Masculinization seemed to not lead to significant changes in the testicular seminal plasma proteome, but did have an impact on the proteome of SRF and normal male sperm. We identified 26 proteins enriched ( < 0.05) in testicular male spermatozoa compared to SRF. A total of 28 proteins were also found to be differentially expressed ( < 0.05) in testicular SRF sperm in comparison to normal males. Bioinformatic analysis highlighted pathways associated with energy production for normal male spermatozoa and pathways related to protein remodeling for SRF sperm. Normal male spermatozoa seemed to be equipped with proteins participating in diverse metabolic pathways, focusing on producing the energy required for sperm movement. On the other hand, SRF spermatozoa were characterized by the enhanced expression of proteins associated with cytoskeletal structures and those related to remodeling, which could indicate that spermatogenesis and spermiogenesis are not fully accomplished. These results can be the basis for further research on the molecular mechanisms of masculinization and toward the development of a method for separating X and Y fish sperm.
Collapse
|
29
|
Wei F, Yu L, Li R, Zhang X, Zhang X, Zhang Y, Wang Y, Wang H, Liang J, Ma R, Qi H, Qin Q, Zhang R, Zhu S, Li C. Studies of the cryopreservation condition of Gymnocypris przewalskii spermatozoa. Anim Reprod Sci 2017; 188:13-20. [PMID: 29129306 DOI: 10.1016/j.anireprosci.2017.10.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 09/21/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
The endemic naked carp (Gymnocypris przewalskii Kessler, 1876) plays an important role in the maintenance of the distinctive ecological system of Lake Qinghai at 3.2km altitude on the Qinghai-Tibet Plateau in China. This study aimed to develop a cryopreservation protocol for Gymnocypris przewalskii spermatozoa. Semen was collected from mature individuals during migration and frozen using the liquid nitrogen vapor method. The influence of different cryoprotectants and three extenders on the post-thaw quality of the sperm was analyzed. The highest sperm motility rate and longest motility time after cryopreservation were achieved by combining Ringer's solution with 15% ethylene glycol (P<0.05). The fertilization rate of this cryopreserved semen was 15.26±4.54%. This study thus provides a valuable method for the cryopreservation of the sperm of this important endangered fish species.
Collapse
Affiliation(s)
- Fulei Wei
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Luxian Yu
- Gymnocypris przewalskii Rescue Centre, Xining, 810016, China
| | - Ruihong Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Xia Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Xuehan Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Ya Zhang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Yuqing Wang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Hongchao Wang
- Gymnocypris przewalskii Rescue Centre, Xining, 810016, China
| | - Jian Liang
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Rui Ma
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Hongfang Qi
- Gymnocypris przewalskii Rescue Centre, Xining, 810016, China
| | - Qiwei Qin
- Key Laboratory for the Sustainable Utilization of Marine Bio-resources, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Rongqing Zhang
- Institute of Marine Biotechnology, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | - Shihai Zhu
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China
| | - Changzhong Li
- State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University, Xining, 810016, China.
| |
Collapse
|
30
|
Nynca J, Arnold G, Fröhlich T, Ciereszko A. Proteomic identification of rainbow trout blood plasma proteins and their relationship to seminal plasma proteins. Proteomics 2017; 17. [DOI: 10.1002/pmic.201600460] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 03/31/2017] [Accepted: 04/07/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Joanna Nynca
- Department of Gametes and Embryo Biology; Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; Olsztyn Poland
| | - Georg Arnold
- Laboratory for Functional Genome Analysis; Gene Center and Department of Biochemistry; Ludwig-Maximilians-Universität; Munich Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis; Gene Center and Department of Biochemistry; Ludwig-Maximilians-Universität; Munich Germany
| | - Andrzej Ciereszko
- Department of Gametes and Embryo Biology; Institute of Animal Reproduction and Food Research; Polish Academy of Sciences; Olsztyn Poland
| |
Collapse
|
31
|
Nynca J, Dietrich MA, Adamek M, Steinhagen D, Bilińska B, Hejmej A, Ciereszko A. Purification, characterization and expression of transferrin from rainbow trout seminal plasma. Comp Biochem Physiol B Biochem Mol Biol 2017; 208-209:38-46. [DOI: 10.1016/j.cbpb.2017.04.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 04/04/2017] [Accepted: 04/04/2017] [Indexed: 11/24/2022]
|
32
|
Martínez-Páramo S, Horváth Á, Labbé C, Zhang T, Robles V, Herráez P, Suquet M, Adams S, Viveiros A, Tiersch TR, Cabrita E. Cryobanking of aquatic species. AQUACULTURE (AMSTERDAM, NETHERLANDS) 2017; 472:156-177. [PMID: 29276317 PMCID: PMC5737826 DOI: 10.1016/j.aquaculture.2016.05.042] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
This review is focused on the applications of genome cryobanking of aquatic species including freshwater and marine fish, as well as invertebrates. It also reviews the latest advances in cryobanking of model species, widely used by the scientific community worldwide, because of their applications in several fields. The state of the art of cryopreservation of different cellular types (sperm, oocytes, embryos, somatic cells and primordial germ cells or early spermatogonia) is discussed focusing on the advantages and disadvantages of each procedure according to different applications. A special review on the need of standardization of protocols has also been carried out. In summary, this comprehensive review provides information on the practical details of applications of genome cryobanking in a range of aquatic species worldwide, including the cryobanks established in Europe, USA, Brazil, Australia and New Zealand, the species and type of cells that constitute these banks and the utilization of the samples preserved. STATEMENT OF RELEVANCE This review compiles the last advances on germplasm cryobanking of freshwater and marine fish species and invertebrates, with high value for commercial aquaculture or conservation. It is reviewed the most promising cryopreservation protocols for different cell types, embryos and larvae that could be applied in programs for genetic improvement, broodstock management or conservation of stocks to guarantee culture production.
Collapse
Affiliation(s)
- Sonia Martínez-Páramo
- CCMAR-Centre of Marine Sciences, University of Algarve, Campus Gambelas, 8005-139 Faro, Portugal
| | - Ákos Horváth
- Department of Aquaculture, Szent István University, H-2100 Gödöllő, Hungary
| | - Catherine Labbé
- INRA, Fish Physiology and Genomics, Campus de Beaulieu, F-35000 Rennes, France
| | - Tiantian Zhang
- Faculty of Science and Technology, Bournemouth University, Talbot Campus, Fern Barrow, Poole, Dorset BH12 5BB, United Kingdom
| | - Vanesa Robles
- IEO, Spanish Oceanographic Institute, Santander Oceanographic Centre, El Bocal, Barrio Corbanera s/n Bocal, 39012 Monte, Santander, Spain
| | - Paz Herráez
- Department of Molecular Biology and INDEGSAL, University of León, 24071 León, Spain
| | - Marc Suquet
- IFREMER, PFOM Dept, Stn Expt Argenton, UMR, 6539 Argenton, France
| | - Serean Adams
- Cawthron Institute, Private Bag 2, Nelson 7042, New Zealand
- AgResearch, Private Bag 3123, Ruakura, Hamilton 3240, New Zealand
| | - Ana Viveiros
- Department of Animal Sciences, Federal University of Lavras, UFLA, MG 37200-000, Brazil
| | - Terrence R. Tiersch
- Aquatic Germplasm and Genetic Resources Center, School of Renewable Natural Resources, Louisiana State University Agricultural Center, Baton Rouge, LA, USA
| | - Elsa Cabrita
- CCMAR-Centre of Marine Sciences, University of Algarve, Campus Gambelas, 8005-139 Faro, Portugal
| |
Collapse
|
33
|
Dietrich MA, Arnold GJ, Fröhlich T, Otte KA, Dietrich GJ, Ciereszko A. Proteomic analysis of extracellular medium of cryopreserved carp (Cyprinus carpio L.) semen. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2015; 15:49-57. [DOI: 10.1016/j.cbd.2015.05.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Revised: 05/12/2015] [Accepted: 05/27/2015] [Indexed: 10/23/2022]
|