1
|
Liu ZH, Teixeira JMC, Zhang O, Tsangaris TE, Li J, Gradinaru CC, Head-Gordon T, Forman-Kay JD. Local Disordered Region Sampling (LDRS) for ensemble modeling of proteins with experimentally undetermined or low confidence prediction segments. Bioinformatics 2023; 39:btad739. [PMID: 38060268 PMCID: PMC10733734 DOI: 10.1093/bioinformatics/btad739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/30/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023] Open
Abstract
SUMMARY The Local Disordered Region Sampling (LDRS, pronounced loaders) tool is a new module developed for IDPConformerGenerator, a previously validated approach to model intrinsically disordered proteins (IDPs). The IDPConformerGenerator LDRS module provides a method for generating all-atom conformations of intrinsically disordered protein regions at N- and C-termini of and in loops or linkers between folded regions of an existing protein structure. These disordered elements often lead to missing coordinates in experimental structures or low confidence in predicted structures. Requiring only a pre-existing PDB or mmCIF formatted structural template of the protein with missing coordinates or with predicted confidence scores and its full-length primary sequence, LDRS will automatically generate physically meaningful conformational ensembles of the missing flexible regions to complete the full-length protein. The capabilities of the LDRS tool of IDPConformerGenerator include modeling phosphorylation sites using enhanced Monte Carlo-Side Chain Entropy, transmembrane proteins within an all-atom bilayer, and multi-chain complexes. The modeling capacity of LDRS capitalizes on the modularity, the ability to be used as a library and via command-line, and the computational speed of the IDPConformerGenerator platform. AVAILABILITY AND IMPLEMENTATION The LDRS module is part of the IDPConformerGenerator modeling suite, which can be downloaded from GitHub at https://github.com/julie-forman-kay-lab/IDPConformerGenerator. IDPConformerGenerator is written in Python3 and works on Linux, Microsoft Windows, and Mac OS versions that support DSSP. Users can utilize LDRS's Python API for scripting the same way they can use any part of IDPConformerGenerator's API, by importing functions from the "idpconfgen.ldrs_helper" library. Otherwise, LDRS can be used as a command line interface application within IDPConformerGenerator. Full documentation is available within the command-line interface as well as on IDPConformerGenerator's official documentation pages (https://idpconformergenerator.readthedocs.io/en/latest/).
Collapse
Affiliation(s)
- Zi Hao Liu
- Molecular Medicine Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - João M C Teixeira
- Molecular Medicine Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
| | - Oufan Zhang
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, United States
| | - Thomas E Tsangaris
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Jie Li
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, United States
| | - Claudiu C Gradinaru
- Department of Physics, University of Toronto, Toronto, ON M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, ON L5L 1C6, Canada
| | - Teresa Head-Gordon
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, Berkeley, CA 94720, United States
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720-1460, United States
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA 94720-1462, United States
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA 94720-1762, United States
| | - Julie D Forman-Kay
- Molecular Medicine Program, Hospital for Sick Children, Toronto, ON M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
2
|
Liu ZH, Teixeira JM, Zhang O, Tsangaris TE, Li J, Gradinaru CC, Head-Gordon T, Forman-Kay JD. Local Disordered Region Sampling (LDRS) for Ensemble Modeling of Proteins with Experimentally Undetermined or Low Confidence Prediction Segments. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.25.550520. [PMID: 37546943 PMCID: PMC10402175 DOI: 10.1101/2023.07.25.550520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The Local Disordered Region Sampling (LDRS, pronounced loaders) tool, developed for the IDPConformerGenerator platform (Teixeira et al. 2022), provides a method for generating all-atom conformations of intrinsically disordered regions (IDRs) at N- and C-termini of and in loops or linkers between folded regions of an existing protein structure. These disordered elements often lead to missing coordinates in experimental structures or low confidence in predicted structures. Requiring only a pre-existing PDB structure of the protein with missing coordinates or with predicted confidence scores and its full-length primary sequence, LDRS will automatically generate physically meaningful conformational ensembles of the missing flexible regions to complete the full-length protein. The capabilities of the LDRS tool of IDPConformerGenerator include modeling phosphorylation sites using enhanced Monte Carlo Side Chain Entropy (MC-SCE) (Bhowmick and Head-Gordon 2015), transmembrane proteins within an all-atom bilayer, and multi-chain complexes. The modeling capacity of LDRS capitalizes on the modularity, ability to be used as a library and via command-line, and computational speed of the IDPConformerGenerator platform.
Collapse
Affiliation(s)
- Zi Hao Liu
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - João M.C. Teixeira
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Oufan Zhang
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States of America
- Department of Chemistry, University of California, Berkeley, California 94720-1460 United States of America
| | - Thomas E. Tsangaris
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Jie Li
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States of America
- Department of Chemistry, University of California, Berkeley, California 94720-1460 United States of America
| | - Claudiu C. Gradinaru
- Department of Physics, University of Toronto, Toronto, Ontario M5S 1A7, Canada
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario L5L 1C6, Canada
| | - Teresa Head-Gordon
- Pitzer Center for Theoretical Chemistry, University of California, Berkeley, California 94720, United States of America
- Department of Chemistry, University of California, Berkeley, California 94720-1460 United States of America
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, California 94720-1462, United States of America
- Department of Bioengineering, University of California, Berkeley, California 94720-1762, United States of America
| | - Julie D. Forman-Kay
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
3
|
Brotzakis ZF, Lindstedt PR, Taylor RJ, Rinauro DJ, Gallagher NCT, Bernardes GJL, Vendruscolo M. A Structural Ensemble of a Tau-Microtubule Complex Reveals Regulatory Tau Phosphorylation and Acetylation Mechanisms. ACS CENTRAL SCIENCE 2021; 7:1986-1995. [PMID: 34963892 PMCID: PMC8704032 DOI: 10.1021/acscentsci.1c00585] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Indexed: 05/12/2023]
Abstract
Tau is a microtubule-associated protein that regulates the stability of microtubules. We use metainference cryoelectron microscopy, an integrative structural biology approach, to determine an ensemble of conformations representing the structure and dynamics of a tau-microtubule complex comprising the entire microtubule-binding region of tau (residues 202-395). We thus identify the ground state of the complex and a series of excited states of lower populations. A comparison of the interactions in these different states reveals positions along the tau sequence that are important to determine the overall stability of the tau-microtubule complex. This analysis leads to the identification of positions where phosphorylation and acetylation events have destabilizing effects, which we validate by using site-specific post-translationally modified tau variants obtained by chemical mutagenesis. Taken together, these results illustrate how the simultaneous determination of ground and excited states of macromolecular complexes reveals functional and regulatory mechanisms.
Collapse
Affiliation(s)
- Z. Faidon Brotzakis
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Philip R. Lindstedt
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Ross J. Taylor
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Dillon J. Rinauro
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Nicholas C. T. Gallagher
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Gonçalo J. L. Bernardes
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina
Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028 Lisboa, Portugal
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
4
|
Goretzki B, Guhl C, Tebbe F, Harder JM, Hellmich UA. Unstructural Biology of TRP Ion Channels: The Role of Intrinsically Disordered Regions in Channel Function and Regulation. J Mol Biol 2021; 433:166931. [PMID: 33741410 DOI: 10.1016/j.jmb.2021.166931] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Revised: 03/02/2021] [Accepted: 03/06/2021] [Indexed: 12/13/2022]
Abstract
The first genuine high-resolution single particle cryo-electron microscopy structure of a membrane protein determined was a transient receptor potential (TRP) ion channel, TRPV1, in 2013. This methodical breakthrough opened up a whole new world for structural biology and ion channel aficionados alike. TRP channels capture the imagination due to the sheer endless number of tasks they carry out in all aspects of animal physiology. To date, structures of at least one representative member of each of the six mammalian TRP channel subfamilies as well as of a few non-mammalian families have been determined. These structures were instrumental for a better understanding of TRP channel function and regulation. However, all of the TRP channel structures solved so far are incomplete since they miss important information about highly flexible regions found mostly in the channel N- and C-termini. These intrinsically disordered regions (IDRs) can represent between a quarter to almost half of the entire protein sequence and act as important recruitment hubs for lipids and regulatory proteins. Here, we analyze the currently available TRP channel structures with regard to the extent of these "missing" regions and compare these findings to disorder predictions. We discuss select examples of intra- and intermolecular crosstalk of TRP channel IDRs with proteins and lipids as well as the effect of splicing and post-translational modifications, to illuminate their importance for channel function and to complement the prevalently discussed structural biology of these versatile and fascinating proteins with their equally relevant 'unstructural' biology.
Collapse
Affiliation(s)
- Benedikt Goretzki
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Charlotte Guhl
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany; TransMED - Mainz Research School of Translational Medicine, Johannes Gutenberg-University, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany
| | - Frederike Tebbe
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany
| | - Jean-Martin Harder
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany
| | - Ute A Hellmich
- Faculty of Chemistry and Earth Sciences, Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller-University, Humboldtstrasse 10, 07743 Jena, Germany; Centre for Biomolecular Magnetic Resonance (BMRZ), Goethe-University, Max-von-Laue-Strasse 9, 60438 Frankfurt, Germany; TransMED - Mainz Research School of Translational Medicine, Johannes Gutenberg-University, University Medical Center, Langenbeckstr. 1, 55131 Mainz, Germany; Cluster of Excellence Balance of the Microverse, Friedrich-Schiller-University, 07743 Jena, Germany.
| |
Collapse
|
5
|
Protein Dynamics Enables Phosphorylation of Buried Residues in Cdk2/Cyclin-A-Bound p27. Biophys J 2020; 119:2010-2018. [PMID: 33147476 DOI: 10.1016/j.bpj.2020.06.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/22/2020] [Accepted: 06/26/2020] [Indexed: 11/21/2022] Open
Abstract
Proteins carry out a wide range of functions that are tightly regulated in space and time. Protein phosphorylation is the most common post-translation modification of proteins and plays a key role in the regulation of many biological processes. The finding that many phosphorylated residues are not solvent exposed in the unphosphorylated state opens several questions for understanding the mechanism that underlies phosphorylation and how phosphorylation may affect protein structures. First, because kinases need access to the phosphorylated residue, how do such buried residues become modified? Second, once phosphorylated, what are the structural effects of phosphorylation of buried residues, and do they lead to changed conformational dynamics? We have used the ternary complex between p27Kip1 (p27), Cdk2, and cyclin A to study these questions using enhanced sampling molecular dynamics simulations. In line with previous NMR and single-molecule fluorescence experiments, we observe transient exposure of Tyr88 in p27, even in its unphosphorylated state. Once Tyr88 is phosphorylated, we observe a coupling to a second site, thus making Tyr74 more easily exposed and thereby the target for a second phosphorylation step. Our observations provide atomic details on how protein dynamics plays a role in modulating multisite phosphorylation in p27, thus supplementing previous experimental observations. More generally, we discuss how the observed phenomenon of transient exposure of buried residues may play a more general role in regulating protein function.
Collapse
|
6
|
Lapteva YS, Vologzhannikova AA, Sokolov AS, Ismailov RG, Uversky VN, Permyakov SE. In Vitro N-Terminal Acetylation of Bacterially Expressed Parvalbumins by N-Terminal Acetyltransferases from Escherichia coli. Appl Biochem Biotechnol 2020; 193:1365-1378. [PMID: 32394317 DOI: 10.1007/s12010-020-03324-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 04/23/2020] [Indexed: 11/28/2022]
Abstract
Most eukaryotic proteins are N-terminally acetylated (Nt-acetylated) by specific N-terminal acetyltransferases (NATs). Although this co-/post-translational protein modification may affect different aspects of protein functioning, it is typically neglected in studies of bacterially expressed eukaryotic proteins, lacking this modification. To overcome this limitation of bacterial expression, we have probed the efficiency of recombinant Escherichia coli NATs (RimI, RimJ, and RimL) with regard to in vitro Nt-acetylation of several parvalbumins (PAs) expressed in E. coli. PA is a calcium-binding protein of vertebrates, which is sensitive to Nt-acetylation. Our analyses revealed that only metal-free PAs were prone to Nt-acetylation (up to 100%), whereas Ca2+ binding abolished this modification, thereby indicating that Ca2+-induced structural stabilization of PAs impedes their Nt-acetylation. RimJ and RimL were active towards all PAs with N-terminal serine. Their activity towards PAs beginning with alanine was PA-specific, suggesting the importance of the subsequent residues. RimI showed the least activity regardless of the PA studied. Overall, NATs from E. coli are suited for post-translational Nt-acetylation of bacterially expressed eukaryotic proteins with decreased structural stability.
Collapse
Affiliation(s)
- Yulia S Lapteva
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia.
| | - Alisa A Vologzhannikova
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia
| | - Andrey S Sokolov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia
| | - Ramis G Ismailov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia
| | - Vladimir N Uversky
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia. .,Department of Molecular Medicine and USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.
| | - Sergei E Permyakov
- Institute for Biological Instrumentation of the Russian Academy of Sciences, Federal Research Center "Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences", Pushchino, Moscow Region, 142290, Russia
| |
Collapse
|
7
|
Astl L, Verkhivker GM. Dynamic View of Allosteric Regulation in the Hsp70 Chaperones by J-Domain Cochaperone and Post-Translational Modifications: Computational Analysis of Hsp70 Mechanisms by Exploring Conformational Landscapes and Residue Interaction Networks. J Chem Inf Model 2020; 60:1614-1631. [DOI: 10.1021/acs.jcim.9b01045] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Lindy Astl
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
| | - Gennady M. Verkhivker
- Graduate Program in Computational and Data Sciences, Keck Center for Science and Engineering, Schmid College of Science and Technology, Chapman University, One University Drive, Orange, California 92866, United States
- Depatment of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Irvine, California 92618, United States
| |
Collapse
|
8
|
Craveur P, Narwani TJ, Rebehmed J, de Brevern AG. Investigation of the impact of PTMs on the protein backbone conformation. Amino Acids 2019; 51:1065-1079. [DOI: 10.1007/s00726-019-02747-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 05/18/2019] [Indexed: 12/17/2022]
|
9
|
Tsytlonok M, Sanabria H, Wang Y, Felekyan S, Hemmen K, Phillips AH, Yun MK, Waddell MB, Park CG, Vaithiyalingam S, Iconaru L, White SW, Tompa P, Seidel CAM, Kriwacki R. Dynamic anticipation by Cdk2/Cyclin A-bound p27 mediates signal integration in cell cycle regulation. Nat Commun 2019; 10:1676. [PMID: 30976006 PMCID: PMC6459857 DOI: 10.1038/s41467-019-09446-w] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 03/06/2019] [Indexed: 01/07/2023] Open
Abstract
p27Kip1 is an intrinsically disordered protein (IDP) that inhibits cyclin-dependent kinase (Cdk)/cyclin complexes (e.g., Cdk2/cyclin A), causing cell cycle arrest. Cell division progresses when stably Cdk2/cyclin A-bound p27 is phosphorylated on one or two structurally occluded tyrosine residues and a distal threonine residue (T187), triggering degradation of p27. Here, using an integrated biophysical approach, we show that Cdk2/cyclin A-bound p27 samples lowly-populated conformations that provide access to the non-receptor tyrosine kinases, BCR-ABL and Src, which phosphorylate Y88 or Y88 and Y74, respectively, thereby promoting intra-assembly phosphorylation (of p27) on distal T187. Even when tightly bound to Cdk2/cyclin A, intrinsic flexibility enables p27 to integrate and process signaling inputs, and generate outputs including altered Cdk2 activity, p27 stability, and, ultimately, cell cycle progression. Intrinsic dynamics within multi-component assemblies may be a general mechanism of signaling by regulatory IDPs, which can be subverted in human disease. The cyclin-dependent kinase (Cdk) inhibitor p27Kip1 (p27) folds upon binding to Cdk/cyclin complexes and during cell cycle progression p27 becomes phosphorylated, which triggers its ubiquitination and degradation. Here the authors use an integrated approach and show that Cdk2/cyclin A-bound p27 samples lowly-populated conformations that dynamically anticipate the sequential steps of the signaling cascade.
Collapse
Affiliation(s)
- Maksym Tsytlonok
- VIB Center for Structural Biology, Vrije Universiteit Brussel, Pleinlaan, 2 1050, Brussels, Belgium
| | - Hugo Sanabria
- Department of Physics and Astronomy, Clemson University, Clemson, SC, 29634, USA.,Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Yuefeng Wang
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.,Department of Radiation Oncology, West Cancer Center and Research Institute, Memphis, TN, 38138, USA
| | - Suren Felekyan
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Katherina Hemmen
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany
| | - Aaron H Phillips
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Mi-Kyung Yun
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - M Brett Waddell
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.,Molecular Interaction Analysis Shared Resource, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38103, USA
| | - Cheon-Gil Park
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Sivaraja Vaithiyalingam
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA.,Molecular Interaction Analysis Shared Resource, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38103, USA
| | - Luigi Iconaru
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Stephen W White
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA
| | - Peter Tompa
- VIB Center for Structural Biology, Vrije Universiteit Brussel, Pleinlaan, 2 1050, Brussels, Belgium. .,Institute of Enzymology, Research Centre for Natural Sciences of the Hungarian Academy of Sciences, Budapest, Hungary.
| | - Claus A M Seidel
- Lehrstuhl für Molekulare Physikalische Chemie, Heinrich-Heine-Universität, 40225, Düsseldorf, Germany.
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children's Research Hospital, 262 Danny Thomas Place, Memphis, TN, 38105, USA. .,Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Sciences Center, Memphis, TN, 38163, USA.
| |
Collapse
|
10
|
Lei W, Xu Y, Su J, Chong CM, Su HX, Luo J, Fang EF, Bao Z, Chen G. Applications of high-throughput ‘omics’ data in the study of frailty. TRANSLATIONAL MEDICINE OF AGING 2019. [DOI: 10.1016/j.tma.2019.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
11
|
Triantaphyllopoulos KA, Baltoumas FA, Hamodrakas SJ. Structural characterization and molecular dynamics simulations of the caprine and bovine solute carrier family 11 A1 (SLC11A1). J Comput Aided Mol Des 2018; 33:265-285. [PMID: 30543052 DOI: 10.1007/s10822-018-0179-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/03/2018] [Indexed: 12/22/2022]
Abstract
Natural Resistance-Associated Macrophage Proteins are a family of transmembrane divalent metal ion transporters, with important implications in life of both bacteria and mammals. Among them, the Solute Carrier family 11 member A1 (SLC11A1) has been implicated with susceptibility to infection by Mycobacterium avium subspecies paratuberculosis (MAP), potentially causing Crohn's disease in humans and paratuberculosis (PTB) in ruminants. Our previous research had focused on sequencing the mRNA of the caprine slc11a1 gene and pinpointed polymorphisms that contribute to caprine SLC11A1's susceptibility to infection by MAP in PTB. Despite its importance, little is known on the structural/dynamic features of mammalian SLC11A1 that may influence its function under normal or pathological conditions at the protein level. In this work we studied the structural architecture of SLC11A1 in Capra hircus and Bos taurus through molecular modeling, molecular dynamics simulations in different, functionally relevant configurations, free energy calculations of protein-metal interactions and sequence conservation analysis. The results of this study propose a three dimensional structure for SLC11A1 with conserved sequence and structural features and provide hints for a potential mechanism through which divalent metal ion transport is conducted. Given the importance of SLC11A1 in susceptibility to PTB, this study provides a framework for further studies on the structure and dynamics of SLC11A1 in other organisms, to gain 3D structural insight into the macromolecular arrangements of SLC11A1 but also suggesting a potential mechanism which divalent metal ion transport is conducted.
Collapse
Affiliation(s)
- Kostas A Triantaphyllopoulos
- Department of Animal Breeding and Husbandry, Faculty of Animal Science and Aquaculture, School of Agricultural Production, Infrastructure and Environment, Agricultural University of Athens, 75 Iera Odos St., 11855, Athens, Greece.
| | - Fotis A Baltoumas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| | - Stavros J Hamodrakas
- Section of Cell Biology and Biophysics, Department of Biology, School of Sciences, National and Kapodistrian University of Athens, Panepistimiopolis, 15701, Athens, Greece
| |
Collapse
|
12
|
Conformational entropy of a single peptide controlled under force governs protease recognition and catalysis. Proc Natl Acad Sci U S A 2018; 115:11525-11530. [PMID: 30341218 DOI: 10.1073/pnas.1803872115] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
An immense repertoire of protein chemical modifications catalyzed by enzymes is available as proteomics data. Quantifying the impact of the conformational dynamics of the modified peptide remains challenging to understand the decisive kinetics and amino acid sequence specificity of these enzymatic reactions in vivo, because the target peptide must be disordered to accommodate the specific enzyme-binding site. Here, we were able to control the conformation of a single-molecule peptide chain by applying mechanical force to activate and monitor its specific cleavage by a model protease. We found that the conformational entropy impacts the reaction in two distinct ways. First, the flexibility and accessibility of the substrate peptide greatly increase upon mechanical unfolding. Second, the conformational sampling of the disordered peptide drives the specific recognition, revealing force-dependent reaction kinetics. These results support a mechanism of peptide recognition based on conformational selection from an ensemble that we were able to quantify with a torsional free-energy model. Our approach can be used to predict how entropy affects site-specific modifications of proteins and prompts conformational and mechanical selectivity.
Collapse
|
13
|
Darling AL, Uversky VN. Intrinsic Disorder and Posttranslational Modifications: The Darker Side of the Biological Dark Matter. Front Genet 2018; 9:158. [PMID: 29780404 PMCID: PMC5945825 DOI: 10.3389/fgene.2018.00158] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 04/17/2018] [Indexed: 01/05/2023] Open
Abstract
Intrinsically disordered proteins (IDPs) and intrinsically disordered protein regions (IDPRs) are functional proteins and domains that devoid stable secondary and/or tertiary structure. IDPs/IDPRs are abundantly present in various proteomes, where they are involved in regulation, signaling, and control, thereby serving as crucial regulators of various cellular processes. Various mechanisms are utilized to tightly regulate and modulate biological functions, structural properties, cellular levels, and localization of these important controllers. Among these regulatory mechanisms are precisely controlled degradation and different posttranslational modifications (PTMs). Many normal cellular processes are associated with the presence of the right amounts of precisely activated IDPs at right places and in right time. However, wrecked regulation of IDPs/IDPRs might be associated with various human maladies, ranging from cancer and neurodegeneration to cardiovascular disease and diabetes. Pathogenic transformations of IDPs/IDPRs are often triggered by altered PTMs. This review considers some of the aspects of IDPs/IDPRs and their normal and aberrant regulation by PTMs.
Collapse
Affiliation(s)
- April L Darling
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States
| | - Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, United States.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, Russia
| |
Collapse
|
14
|
The present and the future of motif-mediated protein-protein interactions. Curr Opin Struct Biol 2018; 50:162-170. [PMID: 29730529 DOI: 10.1016/j.sbi.2018.04.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 02/07/2018] [Accepted: 04/11/2018] [Indexed: 01/14/2023]
Abstract
Protein-protein interactions (PPIs) are essential to governing virtually all cellular processes. Of particular importance are the versatile motif-mediated interactions (MMIs), which are thus far underrepresented in available interaction data. This is largely due to technical difficulties inherent in the properties of MMIs, but due to the increasing recognition of the vital roles of MMIs in biology, several systematic approaches have recently been developed to detect novel MMIs. Consequently, rapidly growing numbers of motifs are being identified and pursued further for therapeutic applications. In this review, we discuss the current understanding on the diverse functions and disease-relevance of MMIs, the key methodologies for detection of MMIs, and the potential of MMIs for drug development.
Collapse
|
15
|
Stetz G, Tse A, Verkhivker GM. Dissecting Structure-Encoded Determinants of Allosteric Cross-Talk between Post-Translational Modification Sites in the Hsp90 Chaperones. Sci Rep 2018; 8:6899. [PMID: 29720613 PMCID: PMC5932063 DOI: 10.1038/s41598-018-25329-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 04/19/2018] [Indexed: 01/19/2023] Open
Abstract
Post-translational modifications (PTMs) represent an important regulatory instrument that modulates structure, dynamics and function of proteins. The large number of PTM sites in the Hsp90 proteins that are scattered throughout different domains indicated that synchronization of multiple PTMs through a combinatorial code can be invoked as an important mechanism to orchestrate diverse chaperone functions and recognize multiple client proteins. In this study, we have combined structural and coevolutionary analysis with molecular simulations and perturbation response scanning analysis of the Hsp90 structures to characterize functional role of PTM sites in allosteric regulation. The results reveal a small group of conserved PTMs that act as global mediators of collective dynamics and allosteric communications in the Hsp90 structures, while the majority of flexible PTM sites serve as sensors and carriers of the allosteric structural changes. This study provides a comprehensive structural, dynamic and network analysis of PTM sites across Hsp90 proteins, identifying specific role of regulatory PTM hotspots in the allosteric mechanism of the Hsp90 cycle. We argue that plasticity of a combinatorial PTM code in the Hsp90 may be enacted through allosteric coupling between effector and sensor PTM residues, which would allow for timely response to structural requirements of multiple modified enzymes.
Collapse
Affiliation(s)
- Gabrielle Stetz
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Amanda Tse
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America
| | - Gennady M Verkhivker
- Department of Computational and Data Sciences, Schmid College of Science and Technology, Chapman University, Orange, California, United States of America.
- Chapman University School of Pharmacy, Irvine, California, United States of America.
| |
Collapse
|
16
|
Korkuć P, Walther D. Towards understanding the crosstalk between protein post-translational modifications: Homo- and heterotypic PTM pair distances on protein surfaces are not random. Proteins 2016; 85:78-92. [PMID: 27802577 DOI: 10.1002/prot.25200] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/29/2016] [Accepted: 10/20/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Paula Korkuć
- Max Planck Institute for Molecular Plant Physiology; Am Mühlenberg 1 Potsdam-Golm 14476 Germany
| | - Dirk Walther
- Max Planck Institute for Molecular Plant Physiology; Am Mühlenberg 1 Potsdam-Golm 14476 Germany
| |
Collapse
|
17
|
Berezovsky IN, Guarnera E, Zheng Z, Eisenhaber B, Eisenhaber F. Protein function machinery: from basic structural units to modulation of activity. Curr Opin Struct Biol 2016; 42:67-74. [PMID: 27865209 DOI: 10.1016/j.sbi.2016.10.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 09/26/2016] [Accepted: 10/31/2016] [Indexed: 11/29/2022]
Abstract
Contemporary protein structure is a result of the trade off between the laws of physics and the evolutionary selection. The polymer nature of proteins played a decisive role in establishing the basic structural and functional units of soluble proteins. We discuss how these elementary building blocks work in the hierarchy of protein domain structure, co-translational folding, as well as in enzymatic activity and molecular interactions. Next, we consider modulators of the protein function, such as intermolecular interactions, disorder-to-order transitions, and allosteric signaling, acting via interference with the protein's structural dynamics. We also discuss the post-translational modifications, which is a complementary intricate mechanism evolved for regulation of protein functions and interactions. In conclusion, we assess an anticipated contribution of discussed topics to the future advancements in the field.
Collapse
Affiliation(s)
- Igor N Berezovsky
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; Department of Biological Sciences (DBS), National University of Singapore (NUS), 8 Medical Drive, Singapore 117579, Singapore.
| | - Enrico Guarnera
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Zejun Zheng
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Birgit Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore
| | - Frank Eisenhaber
- Bioinformatics Institute (BII), Agency for Science, Technology and Research (A*STAR), 30 Biopolis Street, #07-01, Matrix, Singapore 138671, Singapore; School of Computer Engineering (SCE), Nanyang Technological University (NTU), 50 Nanyang Drive, Singapore 637553, Singapore
| |
Collapse
|
18
|
The Recipe for Protein Sequence-Based Function Prediction and Its Implementation in the ANNOTATOR Software Environment. Methods Mol Biol 2016; 1415:477-506. [PMID: 27115649 DOI: 10.1007/978-1-4939-3572-7_25] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
19
|
Alam N, Zimmerman L, Wolfson NA, Joseph CG, Fierke CA, Schueler-Furman O. Structure-Based Identification of HDAC8 Non-histone Substrates. Structure 2016; 24:458-68. [PMID: 26933971 PMCID: PMC5590822 DOI: 10.1016/j.str.2016.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/26/2016] [Accepted: 02/05/2016] [Indexed: 11/17/2022]
Abstract
HDAC8 is a member of the family of histone deacetylases (HDACs) that catalyze the deacetylation of acetyl lysine residues within histone and non-histone proteins. The recent identification of novel non-histone HDAC8 substrates such as SMC3, ERRα, and ARID1A indicates a complex functionality of this enzyme in cellular homeostasis. To discover additional HDAC8 substrates, we developed a comprehensive, structure-based approach based on Rosetta FlexPepBind, a protocol that evaluates peptide-binding ability to a receptor from structural models of this interaction. Here we adapt this protocol to identify HDAC8 substrates using peptide sequences extracted from proteins with known acetylated sites. The many new in vitro HDAC8 peptide substrates identified in this study suggest that numerous cellular proteins are HDAC8 substrates, thus expanding our view of the acetylome and its regulation by HDAC8.
Collapse
Affiliation(s)
- Nawsad Alam
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Lior Zimmerman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel
| | - Noah A Wolfson
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Caleb G Joseph
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Carol A Fierke
- Department of Biological Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA; Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem 91120, Israel.
| |
Collapse
|
20
|
Kurotani A, Sakurai T. In Silico Analysis of Correlations between Protein Disorder and Post-Translational Modifications in Algae. Int J Mol Sci 2015; 16:19812-35. [PMID: 26307970 PMCID: PMC4581327 DOI: 10.3390/ijms160819812] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 12/23/2022] Open
Abstract
Recent proteome analyses have reported that intrinsically disordered regions (IDRs) of proteins play important roles in biological processes. In higher plants whose genomes have been sequenced, the correlation between IDRs and post-translational modifications (PTMs) has been reported. The genomes of various eukaryotic algae as common ancestors of plants have also been sequenced. However, no analysis of the relationship to protein properties such as structure and PTMs in algae has been reported. Here, we describe correlations between IDR content and the number of PTM sites for phosphorylation, glycosylation, and ubiquitination, and between IDR content and regions rich in proline, glutamic acid, serine, and threonine (PEST) and transmembrane helices in the sequences of 20 algae proteomes. Phosphorylation, O-glycosylation, ubiquitination, and PEST preferentially occurred in disordered regions. In contrast, transmembrane helices were favored in ordered regions. N-glycosylation tended to occur in ordered regions in most of the studied algae; however, it correlated positively with disordered protein content in diatoms. Additionally, we observed that disordered protein content and the number of PTM sites were significantly increased in the species-specific protein clusters compared to common protein clusters among the algae. Moreover, there were specific relationships between IDRs and PTMs among the algae from different groups.
Collapse
Affiliation(s)
- Atsushi Kurotani
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| | - Tetsuya Sakurai
- RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
| |
Collapse
|