1
|
Hsu ZS, Engel EA, Enquist LW, Koyuncu OO. Neuronal expression of herpes simplex virus-1 VP16 protein induces pseudorabies virus escape from silencing and reactivation. J Virol 2024; 98:e0056124. [PMID: 38869285 PMCID: PMC11264692 DOI: 10.1128/jvi.00561-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/15/2024] [Indexed: 06/14/2024] Open
Abstract
Alpha herpesvirus (α-HV) particles enter their hosts from mucosal surfaces and efficiently maintain fast transport in peripheral nervous system (PNS) axons to establish infections in the peripheral ganglia. The path from axons to distant neuronal nuclei is challenging to dissect due to the difficulty of monitoring early events in a dispersed neuron culture model. We have established well-controlled, reproducible, and reactivateable latent infections in compartmented rodent neurons by infecting physically isolated axons with a small number of viral particles. This system not only recapitulates the physiological infection route but also facilitates independent treatment of isolated cell bodies or axons. Consequently, this system enables study not only of the stimuli that promote reactivation but also the factors that regulate the initial switch from productive to latent infection. Adeno-associated virus (AAV)-mediated expression of herpes simplex-1 (HSV-1) VP16 alone in neuronal cell bodies enabled the escape from silencing of incoming pseudorabies virus (PRV) genomes. Furthermore, the expression of HSV VP16 alone reactivated a latent PRV infection in this system. Surprisingly, the expression of PRV VP16 protein supported neither PRV escape from silencing nor reactivation. We compared transcription transactivation activity of both VP16 proteins in primary neurons by RNA sequencing and found that these homolog viral proteins produce different gene expression profiles. AAV-transduced HSV VP16 specifically induced the expression of proto-oncogenes including c-Jun and Pim2. In addition, HSV VP16 induces phosphorylation of c-Jun in neurons, and when this activity is inhibited, escape of PRV silencing is dramatically reduced.IMPORTANCEDuring latency, alpha herpesvirus genomes are silenced yet retain the capacity to reactivate. Currently, host and viral protein interactions that determine the establishment of latency, induce escape from genome silencing or reactivation are not completely understood. By using a compartmented neuronal culture model of latency, we investigated the effect of the viral transcriptional activator, VP16 on pseudorabies virus (PRV) escape from genome silencing. This model recapitulates the physiological infection route and enables the study of the stimuli that regulate the initial switch from a latent to productive infection. We investigated the neuronal transcriptional activation profiles of two homolog VP16 proteins (encoded by HSV-1 or PRV) and found distinct gene activation signatures leading to diverse infection outcomes. This study contributes to understanding of how alpha herpesvirus proteins modulate neuronal gene expression leading to the initiation of a productive or a latent infection.
Collapse
Affiliation(s)
- Zhi-Shan Hsu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Esteban A. Engel
- Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey, USA
| | - Lynn W. Enquist
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
| | - Orkide O. Koyuncu
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, USA
- Microbiology and Molecular Genetics Department, University of California Irvine, Irvine, California, USA
| |
Collapse
|
2
|
Zhao Z, Liu X, Zong Y, Shi X, Sun Y. Cellular Processes Induced by HSV-1 Infections in Vestibular Neuritis. Viruses 2023; 16:12. [PMID: 38275947 PMCID: PMC10819745 DOI: 10.3390/v16010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
Herpesvirus is a prevalent pathogen that primarily infects human epithelial cells and has the ability to reside in neurons. In the field of otolaryngology, herpesvirus infection primarily leads to hearing loss and vestibular neuritis and is considered the primary hypothesis regarding the pathogenesis of vestibular neuritis. In this review, we provide a summary of the effects of the herpes virus on cellular processes in both host cells and immune cells, with a focus on HSV-1 as illustrative examples.
Collapse
Affiliation(s)
- Zhengdong Zhao
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Xiaozhou Liu
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Yanjun Zong
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Xinyu Shi
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
| | - Yu Sun
- Department of Otorhinolaryngology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; (Z.Z.); (X.L.); (Y.Z.); (X.S.)
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan 430022, China
| |
Collapse
|
3
|
Ding X, Neumann DM, Zhu L. Host factors associated with either VP16 or VP16-induced complex differentially affect HSV-1 lytic infection. Rev Med Virol 2022; 32:e2394. [PMID: 36069169 PMCID: PMC9786836 DOI: 10.1002/rmv.2394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 07/15/2022] [Accepted: 08/25/2022] [Indexed: 12/30/2022]
Abstract
Herpes simplex virus type 1 (HSV-1) is an important human pathogen with neurotropism. Following lytic infection in mucosal or skin epithelium, life-long latency is established mainly in sensory neurons, which can periodically reactivate by stress, leading to recurrent disease and virus transmission. During the virus's productive infection, the tegument protein VP16, a component of HSV-1 virion, is physically associated with two cellular factors, host cell factor-1 (HCF-1), and POU domain protein Oct-1, to construct the VP16-induced complex, which is essential to stimulate immediate early (IE)-gene transcription as well as initiate the lytic programme. Apart from HCF-1 and Oct-1, VP16 also associates with a series of other host factors, making a VP16-induced regulatory switch to either activate or inactivate virus gene transcription. In addition, VP16 has effects on distinct signalling pathways via binding to various host molecules that are essentially related to innate immune responses, RNA polymerases, molecular chaperones, and virus infection-induced host shutoff. VP16 also functionally compensates for given host factors, such as PPAR-γ and ß-catenin. In this review, we provide an overview of the updated insights on the interplay between VP16 and the host factors that coordinate virus infection.
Collapse
Affiliation(s)
- Xiuyan Ding
- Institute of Life Science and Green DevelopmentSchool of Life ScienceHebei UniversityBaodingChina
| | - Donna M. Neumann
- Department of Ophthalmology and Visual SciencesUniversity of Wisconsin‐MadisonMadisonWisconsinUSA
| | - Liqian Zhu
- Institute of Life Science and Green DevelopmentSchool of Life ScienceHebei UniversityBaodingChina,College of Veterinary MedicineYangzhou UniversityYangzhouChina,Key Laboratory of Microbial Diversity Research and Application of Hebei ProvinceCollege of Life ScienceHebei UniversityBaodingChina
| |
Collapse
|
4
|
Frasson I, Soldà P, Nadai M, Lago S, Richter SN. Parallel G-quadruplexes recruit the HSV-1 transcription factor ICP4 to promote viral transcription in herpes virus-infected human cells. Commun Biol 2021; 4:510. [PMID: 33931711 PMCID: PMC8087788 DOI: 10.1038/s42003-021-02035-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 03/26/2021] [Indexed: 02/03/2023] Open
Abstract
G-quadruplexes (G4s) are four-stranded nucleic acid structures abundant at gene promoters. They can adopt several distinctive conformations. G4s have been shown to form in the herpes simplex virus-1 (HSV-1) genome during its viral cycle. Here by cross-linking/pull-down assay we identified ICP4, the major HSV-1 transcription factor, as the protein that most efficiently interacts with viral G4s during infection. ICP4 specific and direct binding and unfolding of parallel G4s, including those present in HSV-1 immediate early gene promoters, induced transcription in vitro and in infected cells. This mechanism was also exploited by ICP4 to promote its own transcription. Proximity ligation assay allowed visualization of G4-protein interaction at the single selected G4 in cells. G4 ligands inhibited ICP4 binding to G4s. Our results indicate the existence of a well-defined G4-viral protein network that regulates the productive HSV-1 cycle. They also point to G4s as elements that recruit transcription factors to activate transcription in cells.
Collapse
Affiliation(s)
- Ilaria Frasson
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Paola Soldà
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Matteo Nadai
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sara Lago
- Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Sara N Richter
- Department of Molecular Medicine, University of Padua, Padua, Italy.
| |
Collapse
|
5
|
Cheng JT, Wang YY, Zhu LZ, Zhang Y, Cai WQ, Han ZW, Zhou Y, Wang XW, Peng XC, Xiang Y, Yang HY, Cui SZ, Ma Z, Liu BR, Xin HW. Novel transcription regulatory sequences and factors of the immune evasion protein ICP47 (US12) of herpes simplex viruses. Virol J 2020; 17:101. [PMID: 32650799 PMCID: PMC7377220 DOI: 10.1186/s12985-020-01365-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Herpes simplex virus (HSV) can cause encephalitis. Its infected cell polypeptide 47 (ICP47), encoded by immediate-early gene US12, promotes immune escape. ICP47 was modified in the clinically approved oncolytic HSV (oHSV) T-Vec. However, transcription regulatory sequence (TRS) and transcription regulatory factor (TRF) of HSV US12 are seldom reported. METHODS Previously, our laboratory isolated a new HSV strain named HSV-1-LXMW from a male patient with oral herpes in Beijing, China. Firstly, the genetic tree was used to analyze its genetic relationship. The US12 TRS and TRF in HSV-1-LXMW were found by using predictive software. Secondly, the further verification by the multi-sequence comparative analysis shown that the upstream DNA sequence of HSV US12 gene contained the conserved region. Finally, the results of literature search shown that the expression of transcription factors was related to the tissue affinity of HSV-1 and HSV-2, so as to increase the new understanding of the transcriptional regulation of HSV biology and oncolytic virus (OVs) therapy. RESULTS Here we reported the transcriptional regulation region sequence of our new HSV-1-LXMW, and its close relationship with HSV-1-CR38 and HSV-1-17. Importantly we identified eight different kinds of novel TRSs and TRFs of HSV US12 for the first time, and found they are conserved among HSV-1 (c-Rel, Elk-1, Pax-4), HSV-2 (Oct-1, CF2-II, E74A, StuAp) or both HSVs (HNF-4). The TRFs c-Rel and Oct-1 are biologically functional respectively in immune escape and viral replication during HSV infection. CONCLUSIONS Our findings have important implication to HSV biology, infection, immunity and oHSVs.
Collapse
Affiliation(s)
- Jun-Ting Cheng
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Ying-Ying Wang
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Lin-Zhong Zhu
- Department of Interventional Therapy, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute. 52, Fucheng Road, Haidian District, Beijing, 100142, China
| | - Ying Zhang
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Wen-Qi Cai
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Zi-Wen Han
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Yang Zhou
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Xian-Wang Wang
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Laboratory Medicine, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China
| | - Xiao-Chun Peng
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Ying Xiang
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China
| | - Hui-Yu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Zhaowu Ma
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China.
| | - Bing-Rong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Hong-Wu Xin
- Laboratory of Oncology, School of Basic Medicine, Health Science Center, Yangtze University, 1 Nanhuan Road, Jingzhou, 434023, Hubei, China. .,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, 434023, Hubei, China. .,Lianjiang People's Hospital, Guangdong, 524400, China.
| |
Collapse
|
6
|
Duck Enteritis Virus VP16 Antagonizes IFN- β-Mediated Antiviral Innate Immunity. J Immunol Res 2020; 2020:9630452. [PMID: 32537474 PMCID: PMC7255046 DOI: 10.1155/2020/9630452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Duck enteritis virus (DEV) can successfully evade the host innate immune responses and establish a lifelong latent infection in the infected host. However, the study about how DEV escapes host innate immunity is still deficient up to now. In this study, for the first time, we identified a viral protein VP16 by which DEV can obviously downregulate the production of IFN-β in duck embryo fibroblast (DEF). Our results showed that ectopic expression of VP16 decreased duck IFN-β (duIFN-β) promoter activation and significantly inhibited the mRNA transcription of IFN-β. Further study showed that VP16 can also obviously inhibit the mRNA transcription of interferon-stimulated genes (ISGs), such as myxovirus resistance protein (Mx) and interferon-induced oligoadenylate synthetase-like (OASL). Furthermore, we found that this anti-interferon activity of VP16 depended on its N-terminus (aa1-200). Coexpression analysis revealed that VP16 selectively blocked duIFN-β promoter activity at the duIRF7 level rather than duIRF1. Based on the results of coimmunoprecipitation analysis (co-IP) and indirect immunofluorescence assay (IFA), VP16 was able to bind to duck IRF7 (duIRF7) directly, but did not interact with duck IRF1 (duIRF1) in vitro.
Collapse
|
7
|
Conserved G-Quadruplexes Regulate the Immediate Early Promoters of Human Alphaherpesviruses. Molecules 2019; 24:molecules24132375. [PMID: 31252527 PMCID: PMC6651000 DOI: 10.3390/molecules24132375] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 06/24/2019] [Accepted: 06/26/2019] [Indexed: 01/15/2023] Open
Abstract
Human Alphaherpesviruses comprise three members, herpes simplex virus (HSV) 1 and 2 and varicella zoster virus (VZV). These viruses are characterized by a lytic cycle in epithelial cells and latency in the nervous system, with lifelong infections that may periodically reactivate and lead to serious complications, especially in immunocompromised patients. The mechanisms that regulate viral transcription have not been fully elucidated, but the master role of the immediate early (IE) genes has been established. G-quadruplexes are non-canonical nucleic-acid structures that control transcription, replication, and recombination in many organisms including viruses and that represent attractive antiviral targets. In this work, we investigate the presence, conservation, folding and activity of G-quadruplexes in the IE promoters of the Alphaherpesviruses. Our analysis shows that all IE promoters in the genome of HSV-1, HSV-2 and VZV contain fully conserved G-quadruplex forming sequences. These comprise sequences with long loops and bulges, and thus deviating from the classic G-quadruplex motifs. Moreover, their location is both on the leading and lagging strand and in some instances they contain exuberant G-tracts. Biophysical and biological analysis proved that all sequences actually fold into G-quadruplex under physiological conditions and can be further stabilized by the G-quadruplex ligand BRACO-19, with subsequent impairment of viral IE gene transcription in cells. These results help shed light on the control of viral transcription and indicate new viral targets to design drugs that impair the early steps of Alphaherpesviruses. In addition, they validate the significance of G-quadruplexes in the general regulation of viral cycles.
Collapse
|
8
|
Drayman N, Patel P, Vistain L, Tay S. HSV-1 single-cell analysis reveals the activation of anti-viral and developmental programs in distinct sub-populations. eLife 2019; 8:e46339. [PMID: 31090537 PMCID: PMC6570482 DOI: 10.7554/elife.46339] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 05/11/2019] [Indexed: 12/12/2022] Open
Abstract
Viral infection is usually studied at the population level by averaging over millions of cells. However, infection at the single-cell level is highly heterogeneous, with most infected cells giving rise to no or few viral progeny while some cells produce thousands. Analysis of Herpes Simplex virus 1 (HSV-1) infection by population-averaged measurements has taught us a lot about the course of viral infection, but has also produced contradictory results, such as the concurrent activation and inhibition of type I interferon signaling during infection. Here, we combine live-cell imaging and single-cell RNA sequencing to characterize viral and host transcriptional heterogeneity during HSV-1 infection of primary human cells. We find extreme variability in the level of viral gene expression among individually infected cells and show that these cells cluster into transcriptionally distinct sub-populations. We find that anti-viral signaling is initiated in a rare group of abortively infected cells, while highly infected cells undergo cellular reprogramming to an embryonic-like transcriptional state. This reprogramming involves the recruitment of β-catenin to the host nucleus and viral replication compartments, and is required for late viral gene expression and progeny production. These findings uncover the transcriptional differences in cells with variable infection outcomes and shed new light on the manipulation of host pathways by HSV-1.
Collapse
Affiliation(s)
- Nir Drayman
- Institute for Molecular EngineeringThe University of ChicagoChicagoUnited States
- Institute for Genomics and Systems BiologyThe University of ChicagoChicagoUnited States
| | - Parthiv Patel
- Institute for Molecular EngineeringThe University of ChicagoChicagoUnited States
- Institute for Genomics and Systems BiologyThe University of ChicagoChicagoUnited States
| | - Luke Vistain
- Institute for Molecular EngineeringThe University of ChicagoChicagoUnited States
- Institute for Genomics and Systems BiologyThe University of ChicagoChicagoUnited States
| | - Savaş Tay
- Institute for Molecular EngineeringThe University of ChicagoChicagoUnited States
- Institute for Genomics and Systems BiologyThe University of ChicagoChicagoUnited States
| |
Collapse
|
9
|
Tognarelli EI, Palomino TF, Corrales N, Bueno SM, Kalergis AM, González PA. Herpes Simplex Virus Evasion of Early Host Antiviral Responses. Front Cell Infect Microbiol 2019; 9:127. [PMID: 31114761 PMCID: PMC6503643 DOI: 10.3389/fcimb.2019.00127] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/10/2019] [Indexed: 12/21/2022] Open
Abstract
Herpes simplex viruses type 1 (HSV-1) and type 2 (HSV-2) have co-evolved with humans for thousands of years and are present at a high prevalence in the population worldwide. HSV infections are responsible for several illnesses including skin and mucosal lesions, blindness and even life-threatening encephalitis in both, immunocompetent and immunocompromised individuals of all ages. Therefore, diseases caused by HSVs represent significant public health burdens. Similar to other herpesviruses, HSV-1 and HSV-2 produce lifelong infections in the host by establishing latency in neurons and sporadically reactivating from these cells, eliciting recurrences that are accompanied by viral shedding in both, symptomatic and asymptomatic individuals. The ability of HSVs to persist and recur in otherwise healthy individuals is likely given by the numerous virulence factors that these viruses have evolved to evade host antiviral responses. Here, we review and discuss molecular mechanisms used by HSVs to evade early innate antiviral responses, which are the first lines of defense against these viruses. A comprehensive understanding of how HSVs evade host early antiviral responses could contribute to the development of novel therapies and vaccines to counteract these viruses.
Collapse
Affiliation(s)
- Eduardo I Tognarelli
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Tomás F Palomino
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Nicolás Corrales
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile.,Departamento de Endocrinología, Facultad de Medicina, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo A González
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
10
|
Wang YY, Lyu YN, Xin HY, Cheng JT, Liu XQ, Wang XW, Peng XC, Xiang Y, Xin VW, Lu CB, Ren BX, Liang YF, Ji JF, Ma Z, Cui SZ, Xin HW. Identification of Putative UL54 (ICP27) Transcription Regulatory Sequences Binding to Oct-1, v-Myb, Pax-6 and Hairy in Herpes Simplex Viruses. J Cancer 2019; 10:430-440. [PMID: 30719137 PMCID: PMC6360293 DOI: 10.7150/jca.29787] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 10/23/2018] [Indexed: 02/03/2023] Open
Abstract
An oncolytic herpes simplex virus (oHSV) has proven amenable in oncolytic virotherapy and was approved to treat melanoma. The immediate-early (IE) protein ICP27 encoded by gene UL54 is essential for HSV infection. Post-transcriptional modification of UL54 would increase tumor targeting of oHSVs. However, UL54 gene transcription regulatory sequences and factors were not reported yet. Here we isolated a new strain LXMW of type 1 HSV (HSV-1-LXMW) in China and found it's closely related to HSV-1 strains Patton and H129 in the US by the first and next generation DNA sequencing viral DNA phylogenetic analysis. Using a weight matrix-based program Match, we found the UL54 transcription regulatory sequences binding to the transcription factors Oct-1, v-Myb and Pax-6 in HSV-1-LXMW, while the sequences binding to Oct-1 and Hairy in a HSV-2 strain. Further validation showed that HSV-1 and HSV-2 shared the common sequence binding to Oct-1, but had unique sequences to bind v-Myb and Pax-6, or Hairy, respectively, by DNA sequence alignment of total 11 HSV strains. The published results howed that the expression of transcription factors is consistent with the tissue tropism of HSV-1 and HSV-2. In the current article a new HSV-1 strain LXMW was isolated and its putative HSV UL54 transcription regulatory sequences and factors were identified for the first time. Our findings highlight the new understanding of the principles of transcriptional regulation in HSV biology and oncolytic virotherapy.
Collapse
Affiliation(s)
- Ying-Ying Wang
- The First School of Clinical Medicine, Department of Medicine, Yangtze University, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Yan-Ning Lyu
- Institute for Infectious Diseases and Endemic Diseases Prevention and Control, Beijing Center for Diseases Prevention and Control, Beijing, 100013, China
| | - Hong-Yi Xin
- Animal Health Biotechnology, Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604
| | - Jun-Ting Cheng
- The First School of Clinical Medicine, Department of Medicine, Yangtze University, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Xiao-Qin Liu
- The First School of Clinical Medicine, Department of Medicine, Yangtze University, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.,Department of Medical Imaging, School of Basic Medicine, Yangtze University, Jingzhou, Hubei 434023, China
| | - Xian-Wang Wang
- The First School of Clinical Medicine, Department of Medicine, Yangtze University, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.,Department of Laboratory Medicine, School of Basic Medicine, Yangtze University, 1 Nanhuan Road, Jingzhou, Hubei 434023, China
| | - Xiao-Chun Peng
- The First School of Clinical Medicine, Department of Medicine, Yangtze University, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.,Department of Pathophysiology, School of Basic Medicine, Yangtze University, Jingzhou, Hubei 434023, China
| | - Ying Xiang
- The First School of Clinical Medicine, Department of Medicine, Yangtze University, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Victoria W Xin
- Montgomery Blair High School Magnet Program Class of 2020, Silver Spring, MD 20901-2451, USA
| | - Cheng-Biao Lu
- Laboratory of Neuronal Network and Brain Diseases Modulation, School of Medicine, Yangtze University, Jingzhou, Hubei Province, China
| | - Bo-Xu Ren
- The First School of Clinical Medicine, Department of Medicine, Yangtze University, Jingzhou, Hubei 434023, China.,Department of Pathophysiology, School of Basic Medicine, Yangtze University, Jingzhou, Hubei 434023, China
| | - Yan-Fang Liang
- Department of Radiology, Guangzhou Medical University Cancer Hospital, Guangzhou, China
| | - Jia-Fu Ji
- Gastrointestinal Cancer Center, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhaowu Ma
- The First School of Clinical Medicine, Department of Medicine, Yangtze University, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| | - Shu-Zhong Cui
- Department of Theromotherapy, Guangzhou Medical University Cancer Hospital, Guangzhou, China
| | - Hong-Wu Xin
- The First School of Clinical Medicine, Department of Medicine, Yangtze University, Jingzhou, Hubei 434023, China.,Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China.,Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou, Hubei 434023, China
| |
Collapse
|
11
|
Tada S, Hamada M, Yura Y. Proteomic Analysis of Secretomes of Oncolytic Herpes Simplex Virus-Infected Squamous Cell Carcinoma Cells. Cancers (Basel) 2018; 10:cancers10020028. [PMID: 29360750 PMCID: PMC5836060 DOI: 10.3390/cancers10020028] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/03/2018] [Accepted: 01/15/2018] [Indexed: 01/06/2023] Open
Abstract
Oncolytic herpes simplex virus type 1 (HSV-1) strain RH2 induced immunogenic cell death (ICD) with the release and surface exposure of damage-associated molecular patterns (DAMPs) in squamous cell carcinoma (SCC) SCCVII cells. The supernatants of RH2-infected SCCVII cells also exhibited antitumor ability by intratumoral administration in SCCVII tumor-bearing mice. The supernatants of RH2-infected cells and mock-infected cells were concentrated to produce Med24 and MedC for proteomic analyses. In Med24, the up- and down-regulated proteins were observed. Proteins including filamin, tubulin, t-complex protein 1 (TCP-1), and heat shock proteins (HSPs), were up-regulated, while extracellular matrix (ECM) proteins were markedly down-regulated. Viral proteins were detected in Med 24. These results indicate that HSV-1 RH2 infection increases the release of danger signal proteins and viral gene products, but decreases the release of ECM components. These changes may alter the tumor microenvironment (TME) and contribute to enhancement of anti-tumor immunity against SCC.
Collapse
Affiliation(s)
- Shinya Tada
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Masakazu Hamada
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| | - Yoshiaki Yura
- Department of Oral and Maxillofacial Surgery, Osaka University Graduate School of Dentistry, Suita, Osaka 565-0871, Japan.
| |
Collapse
|
12
|
Dembowski JA, Deluca NA. Purification of Viral DNA for the Identification of Associated Viral and Cellular Proteins. J Vis Exp 2017. [PMID: 28892026 DOI: 10.3791/56374] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The goal of this protocol is to isolate herpes simplex virus type 1 (HSV-1) DNA from infected cells for the identification of associated viral and cellular proteins by mass spectrometry. Although proteins that interact with viral genomes play major roles in determining the outcome of infection, a comprehensive analysis of viral genome associated proteins was not previously feasible. Here we demonstrate a method that enables the direct purification of HSV-1 genomes from infected cells. Replicating viral DNA is selectively labeled with modified nucleotides that contain an alkyne functional group. Labeled DNA is then specifically and irreversibly tagged via the covalent attachment of biotin azide via a copper(I)-catalyzed azide-alkyne cycloaddition or click reaction. Biotin-tagged DNA is purified on streptavidin-coated beads and associated proteins are eluted and identified by mass spectrometry. This method enables the selective targeting and isolation of HSV-1 replication forks or whole genomes from complex biological environments. Furthermore, adaptation of this approach will allow for the investigation of various aspects of herpesviral infection, as well as the examination of the genomes of other DNA viruses.
Collapse
Affiliation(s)
- Jill A Dembowski
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine;
| | - Neal A Deluca
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine;
| |
Collapse
|
13
|
Inhibition of O-Linked N-Acetylglucosamine Transferase Reduces Replication of Herpes Simplex Virus and Human Cytomegalovirus. J Virol 2015; 89:8474-83. [PMID: 26041297 DOI: 10.1128/jvi.01002-15] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 05/27/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED O-linked N-acetylglucosamine (O-GlcNAc) transferase (OGT) is an essential cellular enzyme that posttranslationally modifies nuclear and cytoplasmic proteins via O-linked addition of a single N-acetylglucosamine (GlcNAc) moiety. Among the many targets of OGT is host cell factor 1 (HCF-1), a transcriptional regulator that is required for transactivation of the immediate-early genes of herpes simplex virus (HSV). HCF-1 is synthesized as a large precursor that is proteolytically cleaved by OGT, which may regulate its biological function. In this study, we tested whether inhibition of the enzymatic activity of OGT with a small molecule inhibitor, OSMI-1, affects initiation of HSV immediate-early gene expression and viral replication. We found that inhibiting OGT's enzymatic activity significantly decreased HSV replication. The major effect of the inhibitor occurred late in the viral replication cycle, when it reduced the levels of late proteins and inhibited capsid formation. However, depleting OGT levels with small interfering RNA (siRNA) reduced the expression of HSV immediate-early genes, in addition to reducing viral yields. In this study, we identified OGT as a novel cellular factor involved in HSV replication. Our results obtained using a small molecule inhibitor and siRNA depletion suggest that OGT's glycosylation and scaffolding functions play distinct roles in the replication cycle of HSV. IMPORTANCE Antiviral agents can target viral or host gene products essential for viral replication. O-GlcNAc transferase (OGT) is an important cellular enzyme that catalyzes the posttranslational addition of GlcNAc sugar residues to hundreds of nuclear and cytoplasmic proteins, and this modification regulates their activity and function. Some of the known OGT targets are cellular proteins that are critical for the expression of herpes simplex virus (HSV) genes, suggesting a role for OGT in the replication cycle of HSV. In this study, we found that OGT is required for efficient expression of viral genes and for assembly of new virions. Thus, we identify OGT as a novel host factor involved in the replication of HSV and a potential target for antiviral therapy.
Collapse
|
14
|
Barrier-to-Autointegration Factor 1 (BAF/BANF1) Promotes Association of the SETD1A Histone Methyltransferase with Herpes Simplex Virus Immediate-Early Gene Promoters. mBio 2015; 6:e00345-15. [PMID: 26015494 PMCID: PMC4447252 DOI: 10.1128/mbio.00345-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
We have shown previously that A-type lamins and intranuclear localization of the herpes simplex virus (HSV) genome are critical for the formation of the VP16 activator complex on HSV immediate-early (IE) gene promoters in murine cells, which implies a critical role for lamin A and its associated proteins in HSV gene expression. Because barrier-to-autointegration factor 1 (BAF/BANF1) has been thought to bridge chromosomes to the nuclear lamina, we hypothesized that BAF might mediate viral genome targeting to the nuclear lamina. We found that overexpression of BAF enhances HSV-1 replication and knockdown of BAF decreases HSV gene expression, delays the kinetics of viral early replication compartment formation, and reduces viral yield compared to those in control small interfering RNA-transfected cells. However, BAF depletion did not affect genome complex targeting to the nuclear periphery. Instead, we found that the levels of a histone-modifying enzyme, SETD1A methyltransferase, and histone H3 lysine 4 trimethylation were reduced on IE and early (E) gene promoters in BAF-depleted cells during HSV lytic infection. Our results demonstrate a novel function of BAF as an epigenetic regulator of HSV lytic infection. We hypothesize that BAF facilitates IE and E gene expression by recruiting the SETD1A methyltransferase to viral IE and E gene promoters. The nuclear lamina is composed of lamin proteins and numerous lamina-associated proteins. Previously, the chromatin structure of DNA localized proximally to the lamina was thought to be characterized by heterochromatin marks associated with silenced genes. However, recent studies indicate that both heterochromatin- and euchromatin-rich areas coexist on the lamina. This paradigm suggests that lamins and lamina-associated proteins dynamically regulate epigenetic modifications of specific genes in different locations. Our goal is to understand how the lamina and its associated proteins regulate the epigenetics of genes through the study of HSV infection of human cells. We have shown previously that A-type lamins are critical for HSV genome targeting to the nuclear lamina and epigenetic regulation in viral replication. In this study, we found that another lamina-associated protein, BAF, regulates HSV gene expression through an epigenetic mechanism, which provides basic insights into the nuclear lamina and its associated proteins’ roles in epigenetic regulation.
Collapse
|