1
|
Pattamaprapanont P, Cooney EM, MacDonald TL, Paulo JA, Pan H, Dreyfuss JM, Lessard SJ. Matrisome proteomics reveals novel mediators of muscle remodeling with aerobic exercise training. Matrix Biol Plus 2024; 23:100159. [PMID: 39220302 PMCID: PMC11363848 DOI: 10.1016/j.mbplus.2024.100159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 07/29/2024] [Accepted: 07/30/2024] [Indexed: 09/04/2024] Open
Abstract
Skeletal muscle has a unique ability to remodel in response to stimuli such as contraction and aerobic exercise training. Phenotypic changes in muscle that occur with training such as a switch to a more oxidative fiber type, and increased capillary density contribute to the well-known health benefits of aerobic exercise. The muscle matrisome likely plays an important role in muscle remodeling with exercise. However, due to technical limitations in studying muscle ECM proteins, which are highly insoluble, little is known about the muscle matrisome and how it contributes to muscle remodeling. Here, we utilized two-fraction methodology to extract muscle proteins, combined with multiplexed tandem mass tag proteomic technology to identify 161 unique ECM proteins in mouse skeletal muscle. In addition, we demonstrate that aerobic exercise training induces remodeling of a significant proportion of the muscle matrisome. We performed follow-up experiments to validate exercise-regulated ECM targets in a separate cohort of mice using Western blotting and immunofluorescence imaging. Our data demonstrate that changes in several key ECM targets are strongly associated with muscle remodeling processes such as increased capillary density in mice. We also identify LOXL1 as a novel muscle ECM target associated with aerobic capacity in humans. In addition, publically available data and databases were used for in silico modeling to determine the likely cellular sources of exercise-induced ECM remodeling targets and identify ECM interaction networks. This work greatly enhances our understanding of ECM content and function in skeletal muscle and demonstrates an important role for ECM remodeling in the adaptive response to exercise. The raw MS data have been deposited to the ProteomeXchange with identifier PXD053003.
Collapse
Affiliation(s)
| | | | - Tara L. MacDonald
- Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Joao A. Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Hui Pan
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Jonathan M. Dreyfuss
- Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Sarah J. Lessard
- Research Division, Joslin Diabetes Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| |
Collapse
|
2
|
Dowling P, Trollet C, Negroni E, Swandulla D, Ohlendieck K. How Can Proteomics Help to Elucidate the Pathophysiological Crosstalk in Muscular Dystrophy and Associated Multi-System Dysfunction? Proteomes 2024; 12:4. [PMID: 38250815 PMCID: PMC10801633 DOI: 10.3390/proteomes12010004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/09/2024] [Accepted: 01/12/2024] [Indexed: 01/23/2024] Open
Abstract
This perspective article is concerned with the question of how proteomics, which is a core technique of systems biology that is deeply embedded in the multi-omics field of modern bioresearch, can help us better understand the molecular pathogenesis of complex diseases. As an illustrative example of a monogenetic disorder that primarily affects the neuromuscular system but is characterized by a plethora of multi-system pathophysiological alterations, the muscle-wasting disease Duchenne muscular dystrophy was examined. Recent achievements in the field of dystrophinopathy research are described with special reference to the proteome-wide complexity of neuromuscular changes and body-wide alterations/adaptations. Based on a description of the current applications of top-down versus bottom-up proteomic approaches and their technical challenges, future systems biological approaches are outlined. The envisaged holistic and integromic bioanalysis would encompass the integration of diverse omics-type studies including inter- and intra-proteomics as the core disciplines for systematic protein evaluations, with sophisticated biomolecular analyses, including physiology, molecular biology, biochemistry and histochemistry. Integrated proteomic findings promise to be instrumental in improving our detailed knowledge of pathogenic mechanisms and multi-system dysfunction, widening the available biomarker signature of dystrophinopathy for improved diagnostic/prognostic procedures, and advancing the identification of novel therapeutic targets to treat Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Capucine Trollet
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Elisa Negroni
- Center for Research in Myology U974, Sorbonne Université, INSERM, Myology Institute, 75013 Paris, France; (C.T.); (E.N.)
| | - Dieter Swandulla
- Institute of Physiology, Faculty of Medicine, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland;
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
3
|
Heezen LGM, Abdelaal T, van Putten M, Aartsma-Rus A, Mahfouz A, Spitali P. Spatial transcriptomics reveal markers of histopathological changes in Duchenne muscular dystrophy mouse models. Nat Commun 2023; 14:4909. [PMID: 37582915 PMCID: PMC10427630 DOI: 10.1038/s41467-023-40555-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 08/02/2023] [Indexed: 08/17/2023] Open
Abstract
Duchenne muscular dystrophy is caused by mutations in the DMD gene, leading to lack of dystrophin. Chronic muscle damage eventually leads to histological alterations in skeletal muscles. The identification of genes and cell types driving tissue remodeling is a key step to developing effective therapies. Here we use spatial transcriptomics in two Duchenne muscular dystrophy mouse models differing in disease severity to identify gene expression signatures underlying skeletal muscle pathology and to directly link gene expression to muscle histology. We perform deconvolution analysis to identify cell types contributing to histological alterations. We show increased expression of specific genes in areas of muscle regeneration (Myl4, Sparc, Hspg2), fibrosis (Vim, Fn1, Thbs4) and calcification (Bgn, Ctsk, Spp1). These findings are confirmed by smFISH. Finally, we use differentiation dynamic analysis in the D2-mdx muscle to identify muscle fibers in the present state that are predicted to become affected in the future state.
Collapse
Affiliation(s)
- L G M Heezen
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - T Abdelaal
- Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
- Systems and Biomedical Engineering Department, Faculty of Engineering Cairo University, Giza, Egypt
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - M van Putten
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - A Aartsma-Rus
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| | - A Mahfouz
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
- Leiden Computational Biology Center, Leiden University Medical Center, Leiden, The Netherlands
| | - P Spitali
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
4
|
Dowling P, Gargan S, Zweyer M, Swandulla D, Ohlendieck K. Extracellular Matrix Proteomics: The mdx-4cv Mouse Diaphragm as a Surrogate for Studying Myofibrosis in Dystrophinopathy. Biomolecules 2023; 13:1108. [PMID: 37509144 PMCID: PMC10377647 DOI: 10.3390/biom13071108] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
The progressive degeneration of the skeletal musculature in Duchenne muscular dystrophy is accompanied by reactive myofibrosis, fat substitution, and chronic inflammation. Fibrotic changes and reduced tissue elasticity correlate with the loss in motor function in this X-chromosomal disorder. Thus, although dystrophinopathies are due to primary abnormalities in the DMD gene causing the almost-complete absence of the cytoskeletal Dp427-M isoform of dystrophin in voluntary muscles, the excessive accumulation of extracellular matrix proteins presents a key histopathological hallmark of muscular dystrophy. Animal model research has been instrumental in the characterization of dystrophic muscles and has contributed to a better understanding of the complex pathogenesis of dystrophinopathies, the discovery of new disease biomarkers, and the testing of novel therapeutic strategies. In this article, we review how mass-spectrometry-based proteomics can be used to study changes in key components of the endomysium, perimysium, and epimysium, such as collagens, proteoglycans, matricellular proteins, and adhesion receptors. The mdx-4cv mouse diaphragm displays severe myofibrosis, making it an ideal model system for large-scale surveys of systematic alterations in the matrisome of dystrophic fibers. Novel biomarkers of myofibrosis can now be tested for their appropriateness in the preclinical and clinical setting as diagnostic, pharmacodynamic, prognostic, and/or therapeutic monitoring indicators.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children's Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology, Medical Faculty, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
5
|
Dowling P, Gargan S, Swandulla D, Ohlendieck K. Proteomic profiling of impaired excitation-contraction coupling and abnormal calcium handling in muscular dystrophy. Proteomics 2022; 22:e2200003. [PMID: 35902360 PMCID: PMC10078611 DOI: 10.1002/pmic.202200003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/19/2022] [Accepted: 07/25/2022] [Indexed: 11/06/2022]
Abstract
The X-linked inherited neuromuscular disorder Duchenne muscular dystrophy is characterised by primary abnormalities in the membrane cytoskeletal component dystrophin. The almost complete absence of the Dp427-M isoform of dystrophin in skeletal muscles renders contractile fibres more susceptible to progressive degeneration and a leaky sarcolemma membrane. This in turn results in abnormal calcium homeostasis, enhanced proteolysis and impaired excitation-contraction coupling. Biochemical and mass spectrometry-based proteomic studies of both patient biopsy specimens and genetic animal models of dystrophinopathy have demonstrated significant changes in the concentration and/or physiological function of essential calcium-regulatory proteins in dystrophin-lacking voluntary muscles. Abnormalities include dystrophinopathy-associated changes in voltage sensing receptors, calcium release channels, calcium pumps and calcium binding proteins. This review article provides an overview of the importance of the sarcolemmal dystrophin-glycoprotein complex and the wider dystrophin complexome in skeletal muscle and its linkage to depolarisation-induced calcium-release mechanisms and the excitation-contraction-relaxation cycle. Besides chronic inflammation, fat substitution and reactive myofibrosis, a major pathobiochemical hallmark of X-linked muscular dystrophy is represented by the chronic influx of calcium ions through the damaged plasmalemma in conjunction with abnormal intracellular calcium fluxes and buffering. Impaired calcium handling proteins should therefore be included in an improved biomarker signature of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
6
|
Gargan S, Dowling P, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic Identification of Markers of Membrane Repair, Regeneration and Fibrosis in the Aged and Dystrophic Diaphragm. Life (Basel) 2022; 12:1679. [PMID: 36362832 PMCID: PMC9696191 DOI: 10.3390/life12111679] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 10/13/2022] [Accepted: 10/20/2022] [Indexed: 07/30/2023] Open
Abstract
Deficiency in the membrane cytoskeletal protein dystrophin is the underlying cause of the progressive muscle wasting disease named Duchenne muscular dystrophy. In order to detect novel disease marker candidates and confirm the complexity of the pathobiochemical signature of dystrophinopathy, mass spectrometric screening approaches represent ideal tools for comprehensive biomarker discovery studies. In this report, we describe the comparative proteomic analysis of young versus aged diaphragm muscles from wild type versus the dystrophic mdx-4cv mouse model of X-linked muscular dystrophy. The survey confirmed the drastic reduction of the dystrophin-glycoprotein complex in the mdx-4cv diaphragm muscle and concomitant age-dependent changes in key markers of muscular dystrophy, including proteins involved in cytoskeletal organization, metabolite transportation, the cellular stress response and excitation-contraction coupling. Importantly, proteomic markers of the regulation of membrane repair, tissue regeneration and reactive myofibrosis were detected by mass spectrometry and changes in key proteins were confirmed by immunoblotting. Potential disease marker candidates include various isoforms of annexin, the matricellular protein periostin and a large number of collagens. Alterations in these proteoforms can be useful to evaluate adaptive, compensatory and pathobiochemical changes in the intracellular cytoskeleton, myofiber membrane integrity and the extracellular matrix in dystrophin-deficient skeletal muscle tissues.
Collapse
Affiliation(s)
- Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, German Center for Neurodegenerative Diseases, University of Bonn, D53127 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, D09 E432 Dublin, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, D09 E432 Dublin, Ireland
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23 F2H6 Maynooth, Ireland
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2H6 Maynooth, Ireland
| |
Collapse
|
7
|
Ohlendieck K, Swandulla D. Complexity of skeletal muscle degeneration: multi-systems pathophysiology and organ crosstalk in dystrophinopathy. Pflugers Arch 2021; 473:1813-1839. [PMID: 34553265 PMCID: PMC8599371 DOI: 10.1007/s00424-021-02623-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/07/2021] [Accepted: 09/08/2021] [Indexed: 02/07/2023]
Abstract
Duchenne muscular dystrophy is a highly progressive muscle wasting disorder due to primary abnormalities in one of the largest genes in the human genome, the DMD gene, which encodes various tissue-specific isoforms of the protein dystrophin. Although dystrophinopathies are classified as primary neuromuscular disorders, the body-wide abnormalities that are associated with this disorder and the occurrence of organ crosstalk suggest that a multi-systems pathophysiological view should be taken for a better overall understanding of the complex aetiology of X-linked muscular dystrophy. This article reviews the molecular and cellular effects of deficiency in dystrophin isoforms in relation to voluntary striated muscles, the cardio-respiratory system, the kidney, the liver, the gastrointestinal tract, the nervous system and the immune system. Based on the establishment of comprehensive biomarker signatures of X-linked muscular dystrophy using large-scale screening of both patient specimens and genetic animal models, this article also discusses the potential usefulness of novel disease markers for more inclusive approaches to differential diagnosis, prognosis and therapy monitoring that also take into account multi-systems aspects of dystrophinopathy. Current therapeutic approaches to combat muscular dystrophy are summarised.
Collapse
Affiliation(s)
- Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Co. Kildare, Maynooth, W23F2H6, Ireland.
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Co. Kildare, Maynooth, W23F2H6, Ireland.
| | - Dieter Swandulla
- Institute of Physiology, University of Bonn, 53115, Bonn, Germany.
| |
Collapse
|
8
|
Mass Spectrometric Profiling of Extraocular Muscle and Proteomic Adaptations in the mdx-4cv Model of Duchenne Muscular Dystrophy. Life (Basel) 2021; 11:life11070595. [PMID: 34206383 PMCID: PMC8304255 DOI: 10.3390/life11070595] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/15/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Extraocular muscles (EOMs) represent a specialized type of contractile tissue with unique cellular, physiological, and biochemical properties. In Duchenne muscular dystrophy, EOMs stay functionally unaffected in the course of disease progression. Therefore, it was of interest to determine their proteomic profile in dystrophinopathy. The proteomic survey of wild type mice and the dystrophic mdx-4cv model revealed a broad spectrum of sarcomere-associated proteoforms, including components of the thick filament, thin filament, M-band and Z-disk, as well as a variety of muscle-specific markers. Interestingly, the mass spectrometric analysis revealed unusual expression levels of contractile proteins, especially isoforms of myosin heavy chain. As compared to diaphragm muscle, both proteomics and immunoblotting established isoform MyHC14 as a new potential marker in wild type EOMs, in addition to the previously identified isoforms MyHC13 and MyHC15. Comparative proteomics was employed to establish alterations in the protein expression profile between normal EOMs and dystrophin-lacking EOMs. The analysis of mdx-4cv EOMs identified elevated levels of glycolytic enzymes and molecular chaperones, as well as decreases in mitochondrial enzymes. These findings suggest a process of adaptation in dystrophin-deficient EOMs via a bioenergetic shift to more glycolytic metabolism, as well as an efficient cellular stress response in EOMs in dystrophinopathy.
Collapse
|
9
|
Dowling P, Gargan S, Murphy S, Zweyer M, Sabir H, Swandulla D, Ohlendieck K. The Dystrophin Node as Integrator of Cytoskeletal Organization, Lateral Force Transmission, Fiber Stability and Cellular Signaling in Skeletal Muscle. Proteomes 2021; 9:9. [PMID: 33540575 PMCID: PMC7931087 DOI: 10.3390/proteomes9010009] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/22/2021] [Accepted: 01/27/2021] [Indexed: 12/13/2022] Open
Abstract
The systematic bioanalytical characterization of the protein product of the DMD gene, which is defective in the pediatric disorder Duchenne muscular dystrophy, led to the discovery of the membrane cytoskeletal protein dystrophin. Its full-length muscle isoform Dp427-M is tightly linked to a sarcolemma-associated complex consisting of dystroglycans, sarcoglyans, sarcospan, dystrobrevins and syntrophins. Besides these core members of the dystrophin-glycoprotein complex, the wider dystrophin-associated network includes key proteins belonging to the intracellular cytoskeleton and microtubular assembly, the basal lamina and extracellular matrix, various plasma membrane proteins and cytosolic components. Here, we review the central role of the dystrophin complex as a master node in muscle fibers that integrates cytoskeletal organization and cellular signaling at the muscle periphery, as well as providing sarcolemmal stabilization and contractile force transmission to the extracellular region. The combination of optimized tissue extraction, subcellular fractionation, advanced protein co-purification strategies, immunoprecipitation, liquid chromatography and two-dimensional gel electrophoresis with modern mass spectrometry-based proteomics has confirmed the composition of the core dystrophin complex at the sarcolemma membrane. Importantly, these biochemical and mass spectrometric surveys have identified additional members of the wider dystrophin network including biglycan, cavin, synemin, desmoglein, tubulin, plakoglobin, cytokeratin and a variety of signaling proteins and ion channels.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| | - Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| | - Sandra Murphy
- Newcastle Fibrosis Research Group, Newcastle University Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE24HH, UK;
| | - Margit Zweyer
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, University of Bonn, D53113 Bonn, Germany; (M.Z.); (H.S.)
| | - Hemmen Sabir
- Department of Neonatology and Paediatric Intensive Care, Children’s Hospital, University of Bonn, D53113 Bonn, Germany; (M.Z.); (H.S.)
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany;
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, W23F2H6 Maynooth, Co. Kildare, Ireland; (P.D.); (S.G.)
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23F2H6 Maynooth, Co. Kildare, Ireland
| |
Collapse
|
10
|
Genetic reduction of the extracellular matrix protein versican attenuates inflammatory cell infiltration and improves contractile function in dystrophic mdx diaphragm muscles. Sci Rep 2020; 10:11080. [PMID: 32632164 PMCID: PMC7338466 DOI: 10.1038/s41598-020-67464-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 05/12/2020] [Indexed: 11/09/2022] Open
Abstract
There is a persistent, aberrant accumulation of V0/V1 versican in skeletal muscles from patients with Duchenne muscular dystrophy and in diaphragm muscles from mdx mice. Versican is a provisional matrix protein implicated in fibrosis and inflammation in various disease states, yet its role in the pathogenesis of muscular dystrophy is not known. Here, female mdx and male hdf mice (haploinsufficient for the versican allele) were bred. In the resulting F1 mdx-hdf male pups, V0/V1 versican expression in diaphragm muscles was decreased by 50% compared to mdx littermates at 20-26 weeks of age. In mdx-hdf mice, spontaneous physical activity increased by 17% and there was a concomitant decrease in total energy expenditure and whole-body glucose oxidation. Versican reduction improved the ex vivo strength and endurance of diaphragm muscle strips. These changes in diaphragm contractile properties in mdx-hdf mice were associated with decreased monocyte and macrophage infiltration and a reduction in the proportion of fibres expressing the slow type I myosin heavy chain isoform. Given the high metabolic cost of inflammation in dystrophy, an attenuated inflammatory response may contribute to the effects of versican reduction on whole-body metabolism. Altogether, versican reduction ameliorates the dystrophic pathology of mdx-hdf mice as evidenced by improved diaphragm contractile function and increased physical activity.
Collapse
|
11
|
Gargan S, Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Identification of marker proteins of muscular dystrophy in the urine proteome from the mdx-4cv model of dystrophinopathy. Mol Omics 2020; 16:268-278. [PMID: 32211681 DOI: 10.1039/c9mo00182d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since the protein constituents of urine present a dynamic proteome that can reflect a variety of disease-related alterations in the body, the mass spectrometric survey of proteome-wide changes in urine promises new insights into pathogenic mechanisms. Urine can be investigated in a completely non-invasive way and provides valuable biomedical information on body-wide changes. In this report, we have focused on the urine proteome in X-linked muscular dystrophy using the established mdx-4cv mouse model of dystrophinopathy. In order to avoid potential artefacts due to the manipulation of the biofluid proteome prior to mass spectrometry, crude urine specimens were analyzed without the prior usage of centrifugation steps or concentration procedures. Comparative proteomics revealed 21 increased and 8 decreased proteins out of 870 identified urinary proteoforms using 50 μl of biofluid per investigated sample, i.e. 14 wild type versus 14 mdx-4cv specimens. Promising marker proteins that were almost exclusively found in mdx-4cv urine included nidogen, parvalbumin and titin. Interestingly, the mass spectrometric identification of urine-associated titin revealed a wide spread of peptides over the sequence of this giant muscle protein. The newly established urinomic signature of dystrophinopathy might be helpful for the design of non-invasive assays to improve diagnosis, prognosis, therapy-monitoring and evaluation of potential harmful side effects of novel treatments in the field of muscular dystrophy research.
Collapse
Affiliation(s)
- Stephen Gargan
- Department of Biology, Maynooth University, National University of Ireland, Maynooth W23F2H6, Co. Kildare, Ireland.
| | | | | | | | | |
Collapse
|
12
|
Dowling P, Zweyer M, Raucamp M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic and cell biological profiling of the renal phenotype of the mdx-4cv mouse model of Duchenne muscular dystrophy. Eur J Cell Biol 2019; 99:151059. [PMID: 31776009 DOI: 10.1016/j.ejcb.2019.151059] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/08/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023] Open
Abstract
The X-linked inherited muscle wasting disease Duchenne muscular dystrophy, which is caused by primary abnormalities in the membrane cytoskeletal protein dystrophin, is a multi-system disorder. Highly progressive forms of dystrophinopathy are associated with a complex secondary pathophysiology, including renal dysfunction. It was therefore of interest to carry out a systematic survey of potential proteome-wide changes in the kidney of the established mdx-4cv mouse model of dystrophinopathy. Of 5878 mass spectrometrically identified kidney proteins, 82 versus 142 proteins were shown to be decreased or increased, respectively, in association with muscular dystrophy. The most decreased versus increased protein species are the ACSM3 isoform of mitochondrial acyl-coenzyme A synthetase and the FABP1 isoform of fatty acid binding protein, respectively. Both proteomic findings were verified by immunofluorescence microscopy and immunoblot analysis. Interestingly, haematoxylin/eosin staining indicated diffuse whitish deposits in the mdx-4cv kidney, and an increased intensity of Sudan Black labelling of kidney cells revealed ectopic fat deposition. Although the proteomic results and cell biological findings do not demonstrate a direct functional link between increased FABP1 and fat accumulation, the results suggest that the up-regulation of FABP1 may be related to abnormal fat metabolism. This makes FABP1 potentially a novel pathobiochemical indicator for studying kidney abnormalities in the mdx-4cv model of dystrophinopathy.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth W23F2H6, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth W23F2H6, Co. Kildare, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany
| | - Maren Raucamp
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth W23F2H6, Co. Kildare, Ireland; Kathleen Lonsdale Institute for Human Health Research, Maynooth University, Maynooth W23F2H6, Co. Kildare, Ireland.
| |
Collapse
|
13
|
Choi YC, Hong JM, Park KD, Shin HY, Kim SM, Park HJ. Proteomic analysis of the skeletal muscles from dysferlinopathy patients. J Clin Neurosci 2019; 71:186-190. [PMID: 31439488 DOI: 10.1016/j.jocn.2019.08.068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 08/07/2019] [Indexed: 01/07/2023]
Abstract
Dysferlinopathy is an autosomal recessive disease caused by pathogenic variants in DYSF gene. We compared muscle protein extracts from dysferlinopathy patients and control subjects to identify new biomarkers of this myopathy. We reviewed the medical records from January 2002 to October 2016. Eight vastus lateralis muscle samples from five dysferlinopathy patients and three control subjects were selected. We separated proteins/peptides from all eight muscle protein extracts using two-dimensional electrophoresis (2DE). Data were acquired from liquid chromatography-mass spectrometry protein fragmentation patterns after comparing the spot volumes. Western blotting revealed total dysferlin loss in the dysferlinopathy patients but normal expression in the control subjects. 2DE indicated somewhat diverse protein constellations between the dysferlinopathy and control groups. Image analysis showed that 80 spots were differently expressed between two dysferlinopathy and one control samples. We selected 44 spots with consistently different volume between dysferlinopathy and control groups. Liquid chromatography-mass spectrometry indicated 26 differently expressed proteins. Western blotting revealed that creatine kinase M-type, carbonic anhydrase III (muscle specific) and desmin were significantly elevated in dysferlinopathy muscle. Additionally, four proteins (myosin light chain 1/3, skeletal muscle isoform; lamin A/C; ankyrin repeat domain 2; and eukaryotic translation initiation factor 5A-1) were inconsistently elevated in the dysferlinopathy samples. We confirmed the usefulness of the classic biomarker and have newly identified the altered expression of proteins in the skeletal muscles of dysferlinopathy patients.
Collapse
Affiliation(s)
- Young-Chul Choi
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Ji-Man Hong
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Kee Duk Park
- Departments of Neurology, Mokdong Hospital, Ewha Womans University School of Medicine, Seoul, Republic of Korea
| | - Ha Young Shin
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Min Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyung Jun Park
- Department of Neurology, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Republic of Korea.
| |
Collapse
|
14
|
Dowling P, Murphy S, Zweyer M, Raucamp M, Swandulla D, Ohlendieck K. Emerging proteomic biomarkers of X-linked muscular dystrophy. Expert Rev Mol Diagn 2019; 19:739-755. [PMID: 31359811 DOI: 10.1080/14737159.2019.1648214] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Introduction: Progressive skeletal muscle wasting is the manifesting symptom of Duchenne muscular dystrophy, an X-linked inherited disorder triggered by primary abnormalities in the DMD gene. The almost complete loss of dystrophin isoform Dp427 causes a multi-system pathology that features in addition to skeletal muscle weakness also late-onset cardio-respiratory deficiencies, impaired metabolism and abnormalities in the central nervous system. Areas covered: This review focuses on the mass spectrometry-based proteomic characterization of X-linked muscular dystrophy with special emphasis on the identification of novel biomarker candidates in skeletal muscle tissues, as well as non-muscle tissues and various biofluids. Individual sections focus on molecular and cellular aspects of the pathogenic changes in dystrophinopathy, proteomic workflows used in biomarker research, the proteomics of the dystrophin-glycoprotein complex and the potential usefulness of newly identified protein markers involved in fibre degeneration, fibrosis and inflammation. Expert opinion: The systematic application of large-scale proteomic surveys has identified a distinct cohort of both tissue- and biofluid-associated protein species with considerable potential for improving diagnostic, prognostic and therapy-monitoring procedures. Novel proteomic markers include components involved in fibre contraction, cellular signalling, ion homeostasis, cellular stress response, energy metabolism and the immune response, as well as maintenance of the cytoskeletal and extracellular matrix.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland , Kildare , Ireland.,Human Health Research Institute, Maynooth University , Kildare , Ireland
| | - Sandra Murphy
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University , Newcastle upon Tyne , UK
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn , Bonn , Germany
| | - Maren Raucamp
- Institute of Physiology II, University of Bonn , Bonn , Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland , Kildare , Ireland.,Human Health Research Institute, Maynooth University , Kildare , Ireland
| |
Collapse
|
15
|
Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Characterization of Contractile Proteins from Skeletal Muscle Using Gel-Based Top-Down Proteomics. Proteomes 2019; 7:proteomes7020025. [PMID: 31226838 PMCID: PMC6631179 DOI: 10.3390/proteomes7020025] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/22/2022] Open
Abstract
The mass spectrometric analysis of skeletal muscle proteins has used both peptide-centric and protein-focused approaches. The term 'top-down proteomics' is often used in relation to studying purified proteoforms and their post-translational modifications. Two-dimensional gel electrophoresis, in combination with peptide generation for the identification and characterization of intact proteoforms being present in two-dimensional spots, plays a critical role in specific applications of top-down proteomics. A decisive bioanalytical advantage of gel-based and top-down approaches is the initial bioanalytical focus on intact proteins, which usually enables the swift identification and detailed characterisation of specific proteoforms. In this review, we describe the usage of two-dimensional gel electrophoretic top-down proteomics and related approaches for the systematic analysis of key components of the contractile apparatus, with a special focus on myosin heavy and light chains and their associated regulatory proteins. The detailed biochemical analysis of proteins belonging to the thick and thin skeletal muscle filaments has decisively improved our biochemical understanding of structure-function relationships within the contractile apparatus. Gel-based and top-down proteomics has clearly established a variety of slow and fast isoforms of myosin, troponin and tropomyosin as excellent markers of fibre type specification and dynamic muscle transition processes.
Collapse
Affiliation(s)
- Paul Dowling
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
- MU Human Health Research Institute, Maynooth University, Maynooth, W23F2H6 Co. Kildare, Ireland.
| |
Collapse
|
16
|
Murphy S, Zweyer M, Raucamp M, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic profiling of the mouse diaphragm and refined mass spectrometric analysis of the dystrophic phenotype. J Muscle Res Cell Motil 2019; 40:9-28. [PMID: 30888583 DOI: 10.1007/s10974-019-09507-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/08/2019] [Indexed: 12/11/2022]
Abstract
The diaphragm is a crucial muscle involved in active inspiration and whole body homeostasis. Previous biochemical, immunochemical and cell biological investigations have established the distribution and fibre type-specific expression of key diaphragm proteins. Building on these findings, it was of interest to establish the entire experimentally assessable diaphragm proteome and verify the presence of specific protein isoforms within this specialized subtype of skeletal muscle. A highly sensitive Orbitrap Fusion Tribrid mass spectrometer was used for the systematic identification of the mouse diaphragm-associated protein population. Proteomics established 2925 proteins by high confidence peptide identification. Bioinformatics was used to determine the distribution of the main protein classes, biological processes and subcellular localization within the diaphragm proteome. Following the establishment of the respiratory muscle proteome with special emphasis on protein isoform expression in the contractile apparatus, the extra-sarcomeric cytoskeleton, the extracellular matrix and the excitation-contraction coupling apparatus, the mass spectrometric analysis of the diaphragm was extended to the refined identification of proteome-wide changes in X-linked muscular dystrophy. The comparative mass spectrometric profiling of the dystrophin-deficient diaphragm from the mdx-4cv mouse model of Duchenne muscular dystrophy identified 289 decreased and 468 increased protein species. Bioinformatics was employed to analyse the clustering of changes in protein classes and potential alterations in interaction patterns of proteins involved in metabolism, the contractile apparatus, proteostasis and the extracellular matrix. The detailed pathoproteomic profiling of the mdx-4cv diaphragm suggests highly complex alterations in a variety of crucial cellular processes due to deficiency in the membrane cytoskeletal protein dystrophin.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.,Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, 53115, Bonn, Germany
| | - Maren Raucamp
- Institute of Physiology II, University of Bonn, 53115, Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, 53115, Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
17
|
Murphy S, Dowling P, Zweyer M, Swandulla D, Ohlendieck K. Proteomic profiling of giant skeletal muscle proteins. Expert Rev Proteomics 2019; 16:241-256. [DOI: 10.1080/14789450.2019.1575205] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
- Newcastle Fibrosis Research Group, Institute of Cellular Medicine, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, Bonn, Germany
| | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|
18
|
Murphy S, Zweyer M, Henry M, Meleady P, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic profiling of liver tissue from the mdx- 4cv mouse model of Duchenne muscular dystrophy. Clin Proteomics 2018; 15:34. [PMID: 30386187 PMCID: PMC6205794 DOI: 10.1186/s12014-018-9212-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 10/23/2018] [Indexed: 12/30/2022] Open
Abstract
Background Duchenne muscular dystrophy is a highly complex multi-system disease caused by primary abnormalities in the membrane cytoskeletal protein dystrophin. Besides progressive skeletal muscle degeneration, this neuromuscular disorder is also associated with pathophysiological perturbations in many other organs including the liver. To determine potential proteome-wide alterations in liver tissue, we have used a comparative and mass spectrometry-based approach to study the dystrophic mdx-4cv mouse model of dystrophinopathy. Methods The comparative proteomic profiling of mdx-4cv versus wild type liver extracts was carried out with an Orbitrap Fusion Tribrid mass spectrometer. The distribution of identified liver proteins within protein families and potential protein interaction patterns were analysed by systems bioinformatics. Key findings on fatty acid binding proteins were confirmed by immunoblot analysis and immunofluorescence microscopy. Results The proteomic analysis revealed changes in a variety of protein families, affecting especially fatty acid, carbohydrate and amino acid metabolism, biotransformation, the cellular stress response and ion handling in the mdx-4cv liver. Drastically increased protein species were identified as fatty acid binding protein FABP5, ferritin and calumenin. Decreased liver proteins included phosphoglycerate kinase, apolipoprotein and perilipin. The drastic change in FABP5 was independently verified by immunoblotting and immunofluorescence microscopy. Conclusions The proteomic results presented here indicate that the intricate and multifaceted pathogenesis of the mdx-4cv model of dystrophinopathy is associated with secondary alterations in the liver affecting especially fatty acid transportation. Since FABP5 levels were also shown to be elevated in serum from dystrophic mice, this protein might be a useful indicator for monitoring liver changes in X-linked muscular dystrophy.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- 2Institute of Physiology II, University of Bonn, 53115 Bonn, Germany
| | - Michael Henry
- 3National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- 3National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Rustam R Mundegar
- 2Institute of Physiology II, University of Bonn, 53115 Bonn, Germany
| | - Dieter Swandulla
- 2Institute of Physiology II, University of Bonn, 53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
19
|
Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Chemical crosslinking analysis of β-dystroglycan in dystrophin-deficient skeletal muscle. HRB Open Res 2018; 1:17. [PMID: 35528858 PMCID: PMC9039762 DOI: 10.12688/hrbopenres.12846.2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Background: In Duchenne muscular dystrophy, primary abnormalities in the membrane cytoskeletal protein dystrophin trigger the loss of sarcolemmal linkage between the extracellular matrix component laminin-211 and the intracellular cortical actin membrane cytoskeleton. The disintegration of the dystrophin-associated glycoprotein complex renders the plasma membrane of contractile fibres more susceptible to micro-rupturing, which is associated with abnormal calcium handling and impaired cellular signalling in dystrophinopathy. Methods: The oligomerisation pattern of β-dystroglycan, an integral membrane protein belonging to the core dystrophin complex, was studied using immunoprecipitation and chemical crosslinking analysis. A homo-bifunctional and non-cleavable agent with water-soluble and amine-reactive properties was employed to study protein oligomerisation in normal versus dystrophin-deficient skeletal muscles. Crosslinker-induced protein oligomerisation was determined by a combination of gel-shift analysis and immunoblotting. Results: Although proteomics was successfully applied for the identification of dystroglycan as a key component of the dystrophin-associated glycoprotein complex in the muscle membrane fraction, mass spectrometric analysis did not efficiently recognize this relatively low-abundance protein after immunoprecipitation or chemical crosslinking. As an alternative approach, comparative immunoblotting was used to evaluate the effects of chemical crosslinking. Antibody decoration of the crosslinked microsomal protein fraction from wild type versus the
mdx-4cv mouse model of dystrophinopathy revealed oligomers that contain β-dystroglycan. The protein exhibited a comparable reduction in gel electrophoretic mobility in both normal and dystrophic samples. The membrane repair proteins dysferlin and myoferlin, which are essential components of fibre regeneration, as well as the caveolae-associated protein cavin-1, were also shown to exist in high-molecular mass complexes. Conclusions: The muscular dystrophy-related reduction in the concentration of β-dystroglycan, which forms in conjunction with its extracellular binding partner α-dystroglycan a critical plasmalemmal receptor for laminin-211, does not appear to alter its oligomeric status. Thus, independent of direct interactions with dystrophin, this sarcolemmal glycoprotein appears to exist in a supramolecular assembly in muscle.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, Bonn, D‑53115, Germany
| | | | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, Bonn, D‑53115, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
20
|
Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Chemical crosslinking analysis of β-dystroglycan in dystrophin-deficient skeletal muscle. HRB Open Res 2018; 1:17. [PMID: 35528858 PMCID: PMC9039762 DOI: 10.12688/hrbopenres.12846.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2018] [Indexed: 07/30/2023] Open
Abstract
Background: In Duchenne muscular dystrophy, primary abnormalities in the membrane cytoskeletal protein dystrophin trigger the loss of sarcolemmal linkage between the extracellular matrix component laminin-211 and the intracellular cortical actin membrane cytoskeleton. The disintegration of the dystrophin-associated glycoprotein complex renders the plasma membrane of contractile fibres more susceptible to micro-rupturing, which is associated with abnormal calcium handling and impaired cellular signalling in dystrophinopathy. Methods: The oligomerisation pattern of β-dystroglycan, an integral membrane protein belonging to the core dystrophin complex, was studied using immunoprecipitation and chemical crosslinking analysis. A homo-bifunctional and non-cleavable agent with water-soluble and amine-reactive properties was employed to study protein oligomerisation in normal versus dystrophin-deficient skeletal muscles. Crosslinker-induced protein oligomerisation was determined by a combination of gel-shift analysis and immunoblotting. Results: Although proteomics was successfully applied for the identification of dystroglycan as a key component of the dystrophin-associated glycoprotein complex in the muscle membrane fraction, mass spectrometric analysis did not efficiently recognize this relatively low-abundance protein after immunoprecipitation or chemical crosslinking. As an alternative approach, comparative immunoblotting was used to evaluate the effects of chemical crosslinking. Antibody decoration of the crosslinked microsomal protein fraction from wild type versus the mdx-4cv mouse model of dystrophinopathy revealed oligomers that contain β-dystroglycan. The protein exhibited a comparable reduction in gel electrophoretic mobility in both normal and dystrophic samples. The membrane repair proteins dysferlin and myoferlin, which are essential components of fibre regeneration, as well as the caveolae-associated protein cavin-1, were also shown to exist in high-molecular mass complexes. Conclusions: The muscular dystrophy-related reduction in the concentration of β-dystroglycan, which forms in conjunction with its extracellular binding partner α-dystroglycan a critical plasmalemmal receptor for laminin-211, does not appear to alter its oligomeric status. Thus, independent of direct interactions with dystrophin, this sarcolemmal glycoprotein appears to exist in a supramolecular assembly in muscle.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, Bonn, D‑53115, Germany
| | | | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, Bonn, D‑53115, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
21
|
Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic identification of elevated saliva kallikrein levels in the mdx-4cv mouse model of Duchenne muscular dystrophy. Biochem Biophys Rep 2018; 18:100541. [PMID: 31193643 PMCID: PMC6537026 DOI: 10.1016/j.bbrep.2018.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 04/30/2018] [Accepted: 05/23/2018] [Indexed: 12/21/2022] Open
Abstract
Dystrophinopathies are multi-system disorders that affect the skeletal musculature, the cardio-respiratory system and the central nervous system. The systematic screening of suitable biofluids for released or altered proteins promises new insights into the highly complex pathophysiology of X-linked muscular dystrophy. However, standard detection approaches using antibody-based assays often fail to reproducibly detect low-abundance protein isoforms in dilute biological fluids. In contrast, mass spectrometric screening approaches enable the proteome-wide identification of minor protein changes in biofluids. This report describes the findings from the comparative proteomic analysis of whole saliva samples from wild type versus the established mdx-4cv mouse model of highly progressive muscular dystrophy, focusing on the kallikrein protein family. Kallikrein-1 (Klk1) and 13 Klk1-related peptidases were identified in saliva and serum from normal mice. Comparative proteomics revealed elevated saliva levels of the Klk1-related peptidases Klk1-b1, Klk1-b5 and Klk-b22, as well as an increased Klk-1 concentration, which agrees with higher Klk-1 levels in serum from mdx-4cv mice. This indicates altered cellular signaling, extracellular matrix remodeling and an altered immune response in the mdx-4cv mouse, and establishes liquid biopsy procedures as suitable bioanalytical tools for the systematic survey of complex pathobiochemical changes in animal models of muscular dystrophy.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany
| | - Rustam R Mundegar
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
22
|
Murphy S, Zweyer M, Henry M, Meleady P, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic analysis of the sarcolemma-enriched fraction from dystrophic mdx-4cv skeletal muscle. J Proteomics 2018; 191:212-227. [PMID: 29408692 DOI: 10.1016/j.jprot.2018.01.015] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/12/2018] [Accepted: 01/28/2018] [Indexed: 02/07/2023]
Abstract
The highly progressive neuromuscular disorder dystrophinopathy is triggered by primary abnormalities in the Dmd gene, which causes cytoskeletal instability and loss of sarcolemmal integrity. Comparative organellar proteomics was employed to identify sarcolemma-associated proteins with an altered concentration in dystrophic muscle tissue from the mdx-4cv mouse model of dystrophinopathy. A lectin agglutination method was used to prepare a sarcolemma-enriched fraction and resulted in the identification of 190 significantly changed protein species. Proteomics established differential expression patterns for key components of the muscle plasma membrane, cytoskeletal network, extracellular matrix, metabolic pathways, cellular stress response, protein synthesis, immune response and neuromuscular junction. The deficiency in dystrophin and drastic reduction in dystrophin-associated proteins appears to trigger (i) enhanced membrane repair involving myoferlin, dysferlin and annexins, (ii) increased protein synthesis and the compensatory up-regulation of cytoskeletal proteins, (iii) the decrease in the scaffolding protein periaxin and myelin PO involved in myelination of motor neurons, (iv) complex changes in bioenergetic pathways, (v) elevated levels of molecular chaperones to prevent proteotoxic effects, (vi) increased collagen deposition causing reactive myofibrosis, (vii) disturbed ion homeostasis at the sarcolemma and associated membrane systems, and (viii) a robust inflammatory response by the innate immune system in response to chronic muscle damage. SIGNIFICANCE: Duchenne muscular dystrophy is a devastating muscle wasting disease and represents the most frequently inherited neuromuscular disorder in humans. Genetic abnormalities in the Dmd gene cause a loss of sarcolemmal integrity and highly progressive muscle fibre degeneration. Changes in the neuromuscular system are associated with necrosis, fibrosis and inflammation. In order to evaluate secondary changes in the sarcolemma membrane system due to the lack of the membrane cytoskeletal protein dystrophin, comparative organellar proteomics was used to study the mdx-4cv mouse model of dystrophinopathy. Mass spectrometric analyses identified a variety of altered components of the extracellular matrix-sarcolemma-cytoskeleton axis in dystrophic muscles. This included proteins involved in membrane repair, cytoskeletal restoration, calcium homeostasis, cellular signalling, stress response, neuromuscular transmission and reactive myofibrosis, as well as immune cell infiltration. These pathobiochemical alterations agree with the idea of highly complex secondary changes in X-linked muscular dystrophy and support the concept that micro-rupturing of the dystrophin-deficient plasma membrane is at the core of muscle wasting pathology.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Rustam R Mundegar
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany
| | - Dieter Swandulla
- Institute of Physiology II, University of Bonn, D-53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
23
|
Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic serum biomarkers for neuromuscular diseases. Expert Rev Proteomics 2018; 15:277-291. [DOI: 10.1080/14789450.2018.1429923] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, Bonn, Germany
| | | | | | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Ireland
| |
Collapse
|
24
|
Abstract
Duchenne muscular dystrophy is a highly progressive neuromuscular disorder caused by primary abnormalities in the Dmd gene encoding the membrane cytoskeletal protein dystrophin. Dystrophinopathies are multi-systems disorders that are characterized by severe skeletal muscle wasting, with loss of independent ambulation in the early teenage years, followed by cardio-respiratory complications and premature death. Nonprogressive cognitive impairments are estimated to affect approximately one-third of dystrophic children. To identify the molecular mechanisms behind the impaired brain function in dystrophinopathy, liquid chromatography-based mass spectrometry offers an unbiased and technology-driven approach. In this chapter, we give a detailed description of a label-free mass spectrometric method to investigate proteome-wide changes in the dystrophin-deficient brain from a genetic mouse model of Duchenne muscular dystrophy.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland Maynooth, Callan Building, North Campus, Maynooth, Co. Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland Maynooth, Callan Building, North Campus, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
25
|
Dziki JL, Badylak SF. Extracellular Matrix for Myocardial Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1098:151-171. [PMID: 30238370 DOI: 10.1007/978-3-319-97421-7_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Multiple strategies have been investigated to restore functional myocardium following injury or disease including the local administration of cytokines or chemokines, stem/progenitor cell therapy, mechanical circulatory support, pharmacologic use, and the use of inductive biomaterials. The use of xenogeneic biologic scaffolds composed of extracellular matrix (ECM) has been shown to facilitate functional restoration of several tissues and organs including the esophagus, skeletal muscle, skin, and myocardium, among others. The present chapter describes the current understanding of specific components of biologic scaffolds composed of ECM, the mechanisms by which ECM bioscaffolds promote constructive cardiac remodeling after injury, determinants of remodeling outcome, and the versatility of ECM as a potential cardiac therapeutic.
Collapse
Affiliation(s)
- Jenna L Dziki
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA.,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Stephen F Badylak
- McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA, USA. .,Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Mashinchian O, Pisconti A, Le Moal E, Bentzinger CF. The Muscle Stem Cell Niche in Health and Disease. Curr Top Dev Biol 2017; 126:23-65. [PMID: 29305000 DOI: 10.1016/bs.ctdb.2017.08.003] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The regulation of stem cells that maintain and regenerate postnatal tissues depends on extrinsic signals originating from their microenvironment, commonly referred to as the stem cell niche. Complex higher-order regulatory interrelationships with the tissue and factors in the systemic circulation are integrated and propagated to the stem cells through the niche. The stem cell niche in skeletal muscle tissue is both a paradigm for a structurally and functionally relatively static niche that maintains stem cell quiescence during tissue homeostasis, and a highly dynamic regenerative niche that is subject to extensive structural remodeling and a flux of different support cell populations. Conditions ranging from aging to chronically degenerative skeletal muscle diseases affect the composition of the niche and thereby impair the regenerative potential of muscle stem cells. A holistic and integrative understanding of the extrinsic mechanisms regulating muscle stem cells in health and disease in a broad systemic context will be imperative for the identification of regulatory hubs in the niche interactome that can be targeted to maintain, restore, or enhance the regenerative capacity of muscle tissue. Here, we review the microenvironmental regulation of muscle stem cells, summarize how niche dysfunction can contribute to disease, and discuss emerging therapeutic implications.
Collapse
Affiliation(s)
- Omid Mashinchian
- Nestlé Institute of Health Sciences, Lausanne, Switzerland; École Polytechnique Fédérale de Lausanne, Doctoral Program in Biotechnology and Bioengineering, Lausanne, Switzerland
| | - Addolorata Pisconti
- Institute of Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Emmeran Le Moal
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - C Florian Bentzinger
- Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, QC, Canada.
| |
Collapse
|
27
|
Murphy S, Brinkmeier H, Krautwald M, Henry M, Meleady P, Ohlendieck K. Proteomic profiling of the dystrophin complex and membrane fraction from dystrophic mdx muscle reveals decreases in the cytolinker desmoglein and increases in the extracellular matrix stabilizers biglycan and fibronectin. J Muscle Res Cell Motil 2017; 38:251-268. [DOI: 10.1007/s10974-017-9478-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 08/05/2017] [Indexed: 01/14/2023]
|
28
|
Murphy S, Ohlendieck K. Mass spectrometric identification of dystrophin, the protein product of the Duchenne muscular dystrophy gene, in distinct muscle surface membranes. Int J Mol Med 2017; 40:1078-1088. [PMID: 28765879 PMCID: PMC5593493 DOI: 10.3892/ijmm.2017.3082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/22/2017] [Indexed: 12/21/2022] Open
Abstract
Supramolecular membrane complexes of low abundance are difficult to study by routine bioanalytical techniques. The plasmalemmal complex consisting of sarcoglycans, dystroglycans, dystrobrevins and syntrophins, which is closely associated with the membrane cytoskeletal protein dystrophin, represents such a high‑molecular‑mass protein assembly in skeletal muscles. The almost complete loss of the dystrophin isoform Dp427‑M and concomitant reduction in the dystrophin‑associated glycoprotein complex is the underlying cause of the highly progressive neuromuscular disorder named Duchenne muscular dystrophy. This gives the detailed characterization of the dystrophin complex considerable pathophysiological importance. In order to carry out a comprehensive mass spectrometric identification of the dystrophin‑glycoprotein complex, in this study, we used extensive subcellular fractionation and enrichment procedures prior to subproteomic analysis. Mass spectrometry identified high levels of full‑length dystrophin isoform Dp427‑M, α/β‑dystroglycans, α/β/γ/δ‑sarcoglycans, α1/β1/β2‑syntrophins and α/β‑dystrobrevins in highly purified sarcolemma vesicles. By contrast, lower levels were detected in transverse tubules and no components of the dystrophin complex were identified in triads. For comparative purposes, the presence of organellar marker proteins was studied in crude surface membrane preparations vs. enriched fractions from the sarcolemma, transverse tubules and triad junctions using gradient gel electrophoresis and on‑membrane digestion. This involved the subproteomic assessment of various ion‑regulatory proteins and excitation‑contraction coupling components. The comparative profiling of skeletal muscle fractions established a relatively restricted subcellular localization of the dystrophin‑glycoprotein complex in the muscle fibre periphery by proteomic means and clearly demonstrated the absence of dystrophin from triad junctions by sensitive mass spectrometric analysis.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co Kildare, Ireland
| |
Collapse
|
29
|
Abstract
Communication between cells enables them to coordinate their activity and is crucial for the differentiation, development, and function of tissues and multicellular organisms. Cell-cell communication is discussed almost exclusively as having a chemical or electrical origin. Only recently, a new mode of cell communication was elucidated: mechanical communication through the extracellular matrix (ECM). Cells can communicate mechanically by responding either to mechanical deformations generated by their neighbors or to a change in the mechanical properties of the ECM induced by a neighboring cell. This newly resolved mode of communication possesses unique features that complement the cellular ability to receive and share information, and to consequently act in a cooperative way with surrounding cells. Herein, we review several examples of mechanical communication, discuss their unique properties, and comment on the major challenges facing the field.
Collapse
Affiliation(s)
- Liel Sapir
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Shelly Tzlil
- Faculty of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 32000, Israel.
| |
Collapse
|
30
|
Murphy S, Dowling P, Zweyer M, Henry M, Meleady P, Mundegar RR, Swandulla D, Ohlendieck K. Proteomic profiling of mdx-4cv serum reveals highly elevated levels of the inflammation-induced plasma marker haptoglobin in muscular dystrophy. Int J Mol Med 2017; 39:1357-1370. [PMID: 28440464 PMCID: PMC5428965 DOI: 10.3892/ijmm.2017.2952] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Accepted: 03/29/2017] [Indexed: 12/12/2022] Open
Abstract
X-linked muscular dystrophy is caused by primary abnormalities in the Dmd gene and is characterized by the almost complete loss of the membrane cytoskeletal protein dystrophin, which triggers sarcolemmal instability, abnormal calcium homeostasis, increased proteolysis and impaired excitation-contraction coupling. In addition to progressive necrosis, crucial secondary pathologies are represented by myofibrosis and the invasion of immune cells in damaged muscle fibres. In order to determine whether these substantial changes within the skeletal musculature are reflected by an altered rate of protein release into the circulatory system or other plasma fluctuations, we used label-free mass spectrometry to characterize serum from the mdx-4cv model of Duchenne muscular dystrophy. Comparative proteomics revealed a large number of increased vs. decreased protein species in mdx-4cv serum. A serum component with greatly elevated levels was identified as the inflammation-inducible plasma marker haptoglobin. This acute phase response protein is usually secreted in relation to tissue damage and sterile inflammation. Both immunoblot analyses and enzyme-linked immunosorbent assays confirmed the increased concentration of haptoglobin in crude mdx-4cv serum. This suggests that haptoglobin, in conjunction with other altered serum proteins, represents a novel diagnostic, prognostic and/or therapy-monitoring biomarker candidate to evaluate the inflammatory response in the mdx-4cv animal model of dystrophinopathy.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, D‑53115 Bonn, Germany
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland
| | - Rustam R Mundegar
- Department of Physiology II, University of Bonn, D‑53115 Bonn, Germany
| | - Dieter Swandulla
- Department of Physiology II, University of Bonn, D‑53115 Bonn, Germany
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
31
|
Molekulare Pathogenese der Fibrose bei Muskeldystrophie vom Typ Duchenne. DER PATHOLOGE 2017; 38:21-29. [DOI: 10.1007/s00292-017-0265-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Murphy S, Dowling P, Zweyer M, Mundegar RR, Henry M, Meleady P, Swandulla D, Ohlendieck K. Proteomic analysis of dystrophin deficiency and associated changes in the aged mdx-4cv heart model of dystrophinopathy-related cardiomyopathy. J Proteomics 2016; 145:24-36. [DOI: 10.1016/j.jprot.2016.03.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 02/19/2016] [Accepted: 03/02/2016] [Indexed: 12/27/2022]
|
33
|
Arecco N, Clarke CJ, Jones FK, Simpson DM, Mason D, Beynon RJ, Pisconti A. Elastase levels and activity are increased in dystrophic muscle and impair myoblast cell survival, proliferation and differentiation. Sci Rep 2016; 6:24708. [PMID: 27241590 PMCID: PMC4886533 DOI: 10.1038/srep24708] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/04/2016] [Indexed: 01/31/2023] Open
Abstract
In Duchenne muscular dystrophy, progressive loss of muscle tissue is accompanied by fibrosis, chronic inflammation and reduced muscle regenerative capacity. Although much is known about the development of fibrosis and chronic inflammation in muscular dystrophy, less is known about how they are mechanistically linked to loss of muscle regenerative capacity. We have developed a proteomics method to discover dystrophy-associated changes in the muscle progenitor cell niche, which identified serine proteases, and especially neutrophil elastase, as candidates. We show that elastase activity is increased in dystrophic (mdx4cv) muscle and impairs myoblast survival in culture. While the effect of elastase on C2C12 cell survival correlates with the kinetics of elastase-mediated degradation of the substrate to which the cells adhere, the effect of elastase on satellite cell-derived primary myoblast growth and differentiation is substrate-independent and even more dramatic than the effect on C2C12 cells, suggesting a detrimental role for elastase on myogenesis in vivo. Additionally, elastase impairs differentiation of both primary and C2C12 myoblasts into myotubes. Our findings evidence the importance of neutrophil-mediated inflammation in muscular dystrophy and indicate elastase-mediated regulation of myoblast behaviour as a potential mechanism underlying loss of regenerative capacity in dystrophic muscle.
Collapse
Affiliation(s)
- N Arecco
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - C J Clarke
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - F K Jones
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - D M Simpson
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.,Centre for Proteome Research, University of Liverpool, Liverpool L69 7ZB, UK
| | - D Mason
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.,Centre for Cell Imaging, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| | - R J Beynon
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK.,Centre for Proteome Research, University of Liverpool, Liverpool L69 7ZB, UK
| | - A Pisconti
- Department of Biochemistry, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 7ZB, UK
| |
Collapse
|
34
|
Murphy S, Ohlendieck K. The biochemical and mass spectrometric profiling of the dystrophin complexome from skeletal muscle. Comput Struct Biotechnol J 2015; 14:20-7. [PMID: 26793286 PMCID: PMC4688399 DOI: 10.1016/j.csbj.2015.11.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/05/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
The development of advanced mass spectrometric methodology has decisively enhanced the analytical capabilities for studies into the composition and dynamics of multi-subunit protein complexes and their associated components. Large-scale complexome profiling is an approach that combines the systematic isolation and enrichment of protein assemblies with sophisticated mass spectrometry-based identification methods. In skeletal muscles, the membrane cytoskeletal protein dystrophin of 427 kDa forms tight interactions with a variety of sarcolemmal, cytosolic and extracellular proteins, which in turn associate with key components of the extracellular matrix and the intracellular cytoskeleton. A major function of this enormous assembly of proteins, including dystroglycans, sarcoglycans, syntrophins, dystrobrevins, sarcospan, laminin and cortical actin, is postulated to stabilize muscle fibres during the physical tensions of continuous excitation-contraction-relaxation cycles. This article reviews the evidence from recent proteomic studies that have focused on the characterization of the dystrophin-glycoprotein complex and its central role in the establishment of the cytoskeleton-sarcolemma-matrisome axis. Proteomic findings suggest a close linkage of the core dystrophin complex with a variety of protein species, including tubulin, vimentin, desmin, annexin, proteoglycans and collagens. Since the almost complete absence of dystrophin is the underlying cause for X-linked muscular dystrophy, a more detailed understanding of the composition, structure and plasticity of the dystrophin complexome may have considerable biomedical implications.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
35
|
Murphy S, Zweyer M, Mundegar RR, Henry M, Meleady P, Swandulla D, Ohlendieck K. Concurrent Label-Free Mass Spectrometric Analysis of Dystrophin Isoform Dp427 and the Myofibrosis Marker Collagen in Crude Extracts from mdx-4cv Skeletal Muscles. Proteomes 2015; 3:298-327. [PMID: 28248273 PMCID: PMC5217383 DOI: 10.3390/proteomes3030298] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 08/18/2015] [Accepted: 09/03/2015] [Indexed: 01/06/2023] Open
Abstract
The full-length dystrophin protein isoform of 427 kDa (Dp427), the absence of which represents the principal abnormality in X-linked muscular dystrophy, is difficult to identify and characterize by routine proteomic screening approaches of crude tissue extracts. This is probably related to its large molecular size, its close association with the sarcolemmal membrane, and its existence within a heterogeneous glycoprotein complex. Here, we used a careful extraction procedure to isolate the total protein repertoire from normal versus dystrophic mdx-4cv skeletal muscles, in conjunction with label-free mass spectrometry, and successfully identified Dp427 by proteomic means. In contrast to a considerable number of previous comparative studies of the total skeletal muscle proteome, using whole tissue proteomics we show here for the first time that the reduced expression of this membrane cytoskeletal protein is the most significant alteration in dystrophinopathy. This agrees with the pathobiochemical concept that the almost complete absence of dystrophin is the main defect in Duchenne muscular dystrophy and that the mdx-4cv mouse model of dystrophinopathy exhibits only very few revertant fibers. Significant increases in collagens and associated fibrotic marker proteins, such as fibronectin, biglycan, asporin, decorin, prolargin, mimecan, and lumican were identified in dystrophin-deficient muscles. The up-regulation of collagen in mdx-4cv muscles was confirmed by immunofluorescence microscopy and immunoblotting. Thus, this is the first mass spectrometric study of crude tissue extracts that puts the proteomic identification of dystrophin in its proper pathophysiological context.
Collapse
Affiliation(s)
- Sandra Murphy
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Co. Kildare, Ireland.
| | - Margit Zweyer
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Rustam R Mundegar
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Michael Henry
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | - Paula Meleady
- National Institute for Cellular Biotechnology, Dublin City University, Dublin 9, Ireland.
| | - Dieter Swandulla
- Department of Physiology II, University of Bonn, Bonn D-53115, Germany.
| | - Kay Ohlendieck
- Department of Biology, Maynooth University, National University of Ireland, Maynooth Co. Kildare, Ireland.
| |
Collapse
|