1
|
Rugerio-Martínez CI, Ramos D, Segura-Olvera A, Murillo-Melo NM, Tapia-Guerrero YS, Argüello-García R, Leyva-García N, Hernández-Hernández O, Cisneros B, Suárez-Sánchez R. Dp71 Point Mutations Induce Protein Aggregation, Loss of Nuclear Lamina Integrity and Impaired Braf35 and Ibraf Function in Neuronal Cells. Int J Mol Sci 2022; 23:ijms231911876. [PMID: 36233175 PMCID: PMC9570083 DOI: 10.3390/ijms231911876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/04/2022] [Accepted: 10/04/2022] [Indexed: 11/16/2022] Open
Abstract
Dystrophin Dp71 is the most abundant product of the Duchenne muscular dystrophy gene in the nervous system, and mutations impairing its function have been associated with the neurodevelopmental symptoms present in a third of DMD patients. Dp71 is required for the clustering of neurotransmitter receptors and the neuronal differentiation of cultured cells; nonetheless, its precise role in neuronal cells remains to be poorly understood. In this study, we analyzed the effect of two pathogenic DMD gene point mutations on the Dp71 function in neurons. We engineered C272Y and E299del mutations to express GFP-tagged Dp71 protein variants in N1E-115 and SH-SY5Y neuronal cells. Unexpectedly, the ectopic expression of Dp71 mutants resulted in protein aggregation, which may be mechanistically caused by the effect of the mutations on Dp71 structure, as predicted by protein modeling and molecular dynamics simulations. Interestingly, Dp71 mutant variants acquired a dominant negative function that, in turn, dramatically impaired the distribution of different Dp71 protein partners, including β-dystroglycan, nuclear lamins A/C and B1, the high-mobility group (HMG)-containing protein (BRAF35) and the BRAF35-family-member inhibitor of BRAF35 (iBRAF). Further analysis of Dp71 mutants provided evidence showing a role for Dp71 in modulating both heterochromatin marker H3K9me2 organization and the neuronal genes’ expression, via its interaction with iBRAF and BRAF5.
Collapse
Affiliation(s)
- Claudia Ivette Rugerio-Martínez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico
| | - Daniel Ramos
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
| | - Abel Segura-Olvera
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
| | - Nadia Mireya Murillo-Melo
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
| | - Yessica Sarai Tapia-Guerrero
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
| | - Raúl Argüello-García
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico
| | - Norberto Leyva-García
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
| | - Oscar Hernández-Hernández
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
| | - Bulmaro Cisneros
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de Mexico 07360, Mexico
| | - Rocío Suárez-Sánchez
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación-Luis Guillermo Ibarra Ibarra, Ciudad de Mexico 14389, Mexico
- Correspondence: or ; Tel.: +52-55-5999-1000 (ext. 14710)
| |
Collapse
|
2
|
Overexpression of the dystrophins Dp40 and Dp40 L170P modifies neurite outgrowth and the protein expression profile of PC12 cells. Sci Rep 2022; 12:1410. [PMID: 35082358 PMCID: PMC8791958 DOI: 10.1038/s41598-022-05271-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/04/2022] [Indexed: 11/08/2022] Open
Abstract
Dp40 is ubiquitously expressed including the central nervous system. In addition to being present in the nucleus, membrane, and cytoplasm, Dp40 is detected in neurites and postsynaptic spines in hippocampal neurons. Although Dp40 is expressed from the same promoter as Dp71, its role in the cognitive impairment present in Duchenne muscular dystrophy patients is still unknown. Here, we studied the effects of overexpression of Dp40 and Dp40L170P during the neuronal differentiation of PC12 Tet-On cells. We found that Dp40 overexpression increased the percentage of PC12 cells with neurites and neurite length, while Dp40L170P overexpression decreased them compared to Dp40 overexpression. Two-dimensional gel electrophoresis analysis showed that the protein expression profile was modified in nerve growth factor-differentiated PC12-Dp40L170P cells compared to that of the control cells (PC12 Tet-On). The proteins α-internexin and S100a6, involved in cytoskeletal structure, were upregulated. The expression of vesicle-associated membrane proteins increased in differentiated PC12-Dp40 cells, in contrast to PC12-Dp40L170P cells, while neurofilament light-chain was decreased in both differentiated cells. These results suggest that Dp40 has an important role in the neuronal differentiation of PC12 cells through the regulation of proteins involved in neurofilaments and exocytosis of synaptic vesicles, functions that might be affected in PC12-Dp40L170P.
Collapse
|
3
|
Naidoo M, Anthony K. Dystrophin Dp71 and the Neuropathophysiology of Duchenne Muscular Dystrophy. Mol Neurobiol 2020; 57:1748-1767. [PMID: 31836945 PMCID: PMC7060961 DOI: 10.1007/s12035-019-01845-w] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/22/2019] [Indexed: 12/13/2022]
Abstract
Duchenne muscular dystrophy (DMD) is caused by frameshift mutations in the DMD gene that prevent the body-wide translation of its protein product, dystrophin. Besides a severe muscle phenotype, cognitive impairment and neuropsychiatric symptoms are prevalent. Dystrophin protein 71 (Dp71) is the major DMD gene product expressed in the brain and mutations affecting its expression are associated with the DMD neuropsychiatric syndrome. As with dystrophin in muscle, Dp71 localises to dystrophin-associated protein complexes in the brain. However, unlike in skeletal muscle; in the brain, Dp71 is alternatively spliced to produce many isoforms with differential subcellular localisations and diverse cellular functions. These include neuronal differentiation, adhesion, cell division and excitatory synapse organisation as well as nuclear functions such as nuclear scaffolding and DNA repair. In this review, we first describe brain involvement in DMD and the abnormalities observed in the DMD brain. We then review the gene expression, RNA processing and functions of Dp71. We review genotype-phenotype correlations and discuss emerging cellular/tissue evidence for the involvement of Dp71 in the neuropathophysiology of DMD. The literature suggests changes observed in the DMD brain are neurodevelopmental in origin and that their risk and severity is associated with a cumulative loss of distal DMD gene products such as Dp71. The high risk of neuropsychiatric syndromes in Duchenne patients warrants early intervention to achieve the best possible quality of life. Unravelling the function and pathophysiological significance of dystrophin in the brain has become a high research priority to inform the development of brain-targeting treatments for Duchenne.
Collapse
Affiliation(s)
- Michael Naidoo
- Centre for Physical Activity and Life Sciences, Faculty of Arts, Science and Technology, University of Northampton, University Drive, Northampton, Northamptonshire, NN1 5PH, UK
| | - Karen Anthony
- Centre for Physical Activity and Life Sciences, Faculty of Arts, Science and Technology, University of Northampton, University Drive, Northampton, Northamptonshire, NN1 5PH, UK.
| |
Collapse
|
4
|
Tian Y, Guo S, Chen C, Zhao L, Li Z, Yan Y. Gene sequence screening for manganese poisoning-susceptible genes and analysis of gene interaction effects. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2018; 64:60-69. [PMID: 30300793 DOI: 10.1016/j.etap.2018.09.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Manganese poisoning is a common occupational disease, studies have found that the susceptibility to manganese poisoning differs in individuals. We adopted genome-wide sequencing methods to screen for susceptibility genes involved in gene-mediated metabolic pathways from the perspective of manganese poisoning. We identified 18,439 genes in this study, including 14,272 known genes and 4398 new genes. We then selected 17 differential genes using p values, of which 7 genes were down-regulated and 10 genes were up-regulated. Possible interaction genes for each differential gene were selected according to the String database. Sgk1, HCRTr1, HspB1, Rem2, Oprd1, ATF5, and TRHr identified in this study may be involved in oxidative stress mechanisms, dopamine (DA) synthesis, and neuronal survival during apoptosis and may affect susceptibility to manganese poisoning.
Collapse
Affiliation(s)
- Yutian Tian
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250062, China; Shandong Academy Occupational Health and Occupational Medicine, 18877 Jingshi Road, Jinan 250062, China.
| | - Shuhan Guo
- Shandong University of Traditional Chinese Medicine, 4655 University Road, Science and Technology Park, Changqing District, Jinan 250355, China
| | - Cengceng Chen
- Jining Center for Disease Control and Prevention, 26 Yingcui Road, Jining 272000, China
| | - Li Zhao
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250062, China; Shandong Academy Occupational Health and Occupational Medicine, 18877 Jingshi Road, Jinan 250062, China
| | - Zhen Li
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250062, China; Shandong Academy Occupational Health and Occupational Medicine, 18877 Jingshi Road, Jinan 250062, China
| | - Yongjian Yan
- Shandong Academy Occupational Health and Occupational Medicine, 18877 Jingshi Road, Jinan 250062, China.
| |
Collapse
|
5
|
The dystrophin isoform Dp71e Δ71 is involved in neurite outgrowth and neuronal differentiation of PC12 cells. J Proteomics 2018; 191:80-87. [PMID: 29625189 DOI: 10.1016/j.jprot.2018.03.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 03/19/2018] [Accepted: 03/25/2018] [Indexed: 11/22/2022]
Abstract
The Dp71 protein is the most abundant dystrophin in the central nervous system (CNS). Several dystrophin Dp71 isoforms have been described and are classified into three groups, each with a different C-terminal end. However, the functions of Dp71 isoforms remain unknown. In the present study, we analysed the effect of Dp71eΔ71 overexpression on neuronal differentiation of PC12 Tet-On cells. Overexpression of dystrophin Dp71eΔ71 stimulates neuronal differentiation, increasing the percentage of cells with neurites and neurite length. According to 2-DE analysis, Dp71eΔ71 overexpression modified the protein expression profile of rat pheochromocytoma PC12 Tet-On cells that had been treated with neuronal growth factor (NGF) for nine days. Interestingly, all differentially expressed proteins were up-regulated compared to the control. The proteomic analysis showed that Dp71eΔ71 increases the expression of proteins with important roles in the differentiation process, such as HspB1, S100A6, and K8 proteins involved in the cytoskeletal structure and HCNP protein involved in neurotransmitter synthesis. The expression of neuronal marker TH was also up-regulated. Mass spectrometry data are available via ProteomeXchange with identifier PXD009114. SIGNIFICANCE: This study is the first to explore the role of the specific isoform Dp71eΔ71. The results obtained here support the hypothesis that the dystrophin Dp71eΔ71 isoform has an important role in the neurite outgrowth by regulating the levels of proteins involved in the cytoskeletal structure, such as HspB1, S100A6, and K8, and in neurotransmitter synthesis, such as HCNP and TH, biological processes required to stimulate neuronal differentiation.
Collapse
|