1
|
Wang J, Cui X, Wang W, Wang J, Zhang Q, Guo X, Liang Y, Lin S, Chu B, Cui D. Microfluidic-based electrically driven particle manipulation techniques for biomedical applications. RSC Adv 2025; 15:167-198. [PMID: 39758908 PMCID: PMC11697266 DOI: 10.1039/d4ra05571c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 09/29/2024] [Indexed: 01/07/2025] Open
Abstract
Microfluidic chips exhibit unique advantages in both economy and rapidity, particularly for the separation and detection of biomolecules. In this review, we first introduced the mechanisms of several electrically driven methods, such as electrophoresis, dielectrophoresis, electro-wetting and electro-rotation. We then discussed in detail the application of these methods in nucleic acid analysis, protein manipulation and cell treatment. In addition, we outlined the considerations for material selection, manufacturing processes and structural design of microfluidic chips based on electrically driven mechanisms.
Collapse
Affiliation(s)
- Jiulin Wang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai JiaoTong University Shanghai 200240 PR China
| | - Xinyuan Cui
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine Shanghai 200025 PR China
| | - Wei Wang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai JiaoTong University Shanghai 200240 PR China
| | - Junhao Wang
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai JiaoTong University Shanghai 200240 PR China
| | - Quili Zhang
- First Affiliated Hospital, Henan University School of Medicine Kaifeng 475000 PR China
| | - Xiaonan Guo
- First Affiliated Hospital, Henan University School of Medicine Kaifeng 475000 PR China
| | - Yanfeng Liang
- First Affiliated Hospital, Henan University School of Medicine Kaifeng 475000 PR China
| | - Shujin Lin
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai JiaoTong University Shanghai 200240 PR China
| | - Bingfeng Chu
- Department of Stomatology, The First Medical Centre, Chinese PLA General Hospital Beijing 100853 PR China
| | - Daxiang Cui
- Institute of Nano Biomedicine and Engineering, School of Sensing Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai JiaoTong University Shanghai 200240 PR China
- First Affiliated Hospital, Henan University School of Medicine Kaifeng 475000 PR China
| |
Collapse
|
2
|
Mousseau CB, Hu DD, Schultz SR, Champion MM. Quenching Trypsin Is Unnecessary in Filter-Based Bottom-Up Proteomics. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:2028-2031. [PMID: 38982799 PMCID: PMC11313428 DOI: 10.1021/jasms.4c00143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/27/2024] [Accepted: 06/28/2024] [Indexed: 07/11/2024]
Abstract
Quenching digestions in proteomics prior to analysis is routine in order to eliminate residual protease activity. Residual activity leads to overdigestion, nonspecific star-activity, and back-exchange in isotopic 18O quantitation. Chemical and isobaric labeling (e.g., TMT/iTRAQ) of proteins or peptides for mass spectrometry-based proteomics is generally incompatible with ubiquitous postdigestion acidification. This necessitates buffer exchange and pH adjustments. We demonstrate that quenching is unnecessary with peptides generated from protein filter-traps, as trypsin activity and intact trypsin are negligible in the eluate from these preparations. Labeling can be directly performed on enzymatic digests from these methods, improving recovery, throughput, and ease of automation.
Collapse
Affiliation(s)
- C. Bruce Mousseau
- Department
of Chemistry and Biochemistry, andBerthiaume Institute for Precision
Health, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Daniel D. Hu
- Department
of Chemistry and Biochemistry, andBerthiaume Institute for Precision
Health, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Sadie R. Schultz
- Department
of Chemistry and Biochemistry, andBerthiaume Institute for Precision
Health, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Matthew M. Champion
- Department
of Chemistry and Biochemistry, andBerthiaume Institute for Precision
Health, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
3
|
Yu A, Zhao J, Peng W, Yadav SPS, Molitoris BA, Wagner MC, Mechref Y. Proteomics profiling of kidney brush border membrane from rats using LC-MS/MS analysis. Proteomics Clin Appl 2023; 17:e2200063. [PMID: 36189891 DOI: 10.1002/prca.202200063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/12/1912] [Accepted: 09/30/2022] [Indexed: 03/15/2023]
Abstract
PURPOSE Chronic kidney disease (CKD) is defined by a reduced renal function, that is, glomerular filtration rate, and the extent of kidney damage is assessed by determining serum creatinine levels and proteins in urine, diagnosed as proteinuria/albuminuria. Albuminuria increases with age and can result from glomerular and/or proximal tubule (PT) alterations. Brush border membranes (BBMs) on PT cells are important in maintaining the stability of PT functions. EXPERIMENTAL DESIGN An LC-MS/MS bottom-up proteomics analysis of BBMs from four groups of rat models was applied to investigate protein abundance alterations associated with CKD progression. Moreover, systems biology analyses were used to identify key proteins that can provide insight into the different regulated molecular pathways and processes associated with CKD. RESULTS Our results indicated that 303 proteins showed significantly altered expressions from the severe CKD BBM group when compared to the control. Focusing on renal diseases, several proteins including Ctnnb1, Fah, and Icam1 were annotated to kidney damage and urination disorder. The up-regulation of Ctnnb1 (β-catenin) could contribute to CKD through the regulation of the WNT signaling pathway. CONCLUSION AND CLINICAL RELEVANCE Overall, the study of protein abundance changes in BBMs from rat models helps to reveal protein corrections with important pathways and regulator effects involved in CKD. Although this study is focused on rat models, the results provided more information for a deeper insight into possible CKD mechanisms in humans.
Collapse
Affiliation(s)
- Aiying Yu
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Jingfu Zhao
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Wenjing Peng
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| | - Shiv Pratap S Yadav
- Nephrology Division, Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Bruce A Molitoris
- Nephrology Division, Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Mark C Wagner
- Nephrology Division, Department of Medicine, Indiana University, Indianapolis, Indiana, USA
| | - Yehia Mechref
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas, USA
| |
Collapse
|
4
|
Luo RY, Wong C, Xia JQ, Glader BE, Shi RZ, Zehnder JL. Neutral-Coating Capillary Electrophoresis Coupled with High-Resolution Mass Spectrometry for Top-Down Identification of Hemoglobin Variants. Clin Chem 2023; 69:56-67. [PMID: 36308334 DOI: 10.1093/clinchem/hvac171] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 08/30/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Identification of hemoglobin (Hb) variants is of significant value in the clinical diagnosis of hemoglobinopathy. However, conventional methods for identification of Hb variants in clinical laboratories can be inadequate due to the lack of structural characterization. We describe the use of neutral-coating capillary electrophoresis coupled with high-resolution mass spectrometry (CE-HR-MS) to achieve high-performance top-down identification of Hb variants. METHODS An Orbitrap Q-Exactive Plus mass spectrometer was coupled with an ECE-001 capillary electrophoresis (CE) unit through an EMASS-II ion source. A PS1 neutral-coating capillary was used for CE. Samples of red blood cells were lysed in water and diluted in 10 mM ammonium formate buffer for analysis. Deconvolution of raw mass spectrometry data was carried out to merge multiple charge states and isotopic peaks of an analyte to obtain its monoisotopic mass. RESULTS The neutral-coating CE could baseline separate individual Hb subunits dissociated from intact Hb forms, and the HR-MS could achieve both intact-protein analysis and top-down analysis of analytes. A number of patient samples that contain Hb subunit variants were analyzed, and the variants were successfully identified using the CE-HR-MS method. CONCLUSIONS The CE-HR-MS method has been demonstrated as a useful tool for top-down identification of Hb variants. With the ability to characterize the primary structures of Hb subunits, the CE-HR-MS method has significant advantages to complement or partially replace the conventional methods for the identification of Hb variants.
Collapse
Affiliation(s)
- Ruben Yiqi Luo
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.,Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| | - Carolyn Wong
- Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| | | | - Bertil E Glader
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.,Department of Pediatrics, School of Medicine, Stanford University, Stanford, CA, USA
| | - Run-Zhang Shi
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.,Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| | - James L Zehnder
- Department of Pathology, School of Medicine, Stanford University, Stanford, CA, USA.,Clinical Laboratories, Stanford Health Care, Palo Alto, CA, USA
| |
Collapse
|
5
|
Larder CE, Iskandar MM, Sabally K, Kubow S. Complementary and efficient methods for di- and tri-peptide analysis and amino acid quantification from simulated gastrointestinal digestion of collagen hydrolysate. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Abstract
Peptides play a crucial role in many vitally important functions of living organisms. The goal of peptidomics is the identification of the "peptidome," the whole peptide content of a cell, organ, tissue, body fluid, or organism. In peptidomic or proteomic studies, capillary electrophoresis (CE) is an alternative technique for liquid chromatography. It is a highly efficient and fast separation method requiring extremely low amounts of sample. In peptidomic approaches, CE is commonly combined with mass spectrometric (MS) detection. Most often, CE is coupled with electrospray ionization MS and less frequently with matrix-assisted laser desorption/ionization MS. CE-MS has been employed in numerous studies dealing with determination of peptide biomarkers in different body fluids for various diseases, or in food peptidomic research for the analysis and identification of peptides with special biological activities. In addition to the above topics, sample preparation techniques commonly applied in peptidomics before CE separation and possibilities for peptide identification and quantification by CE-MS or CE-MS/MS methods are discussed in this chapter.
Collapse
|
7
|
Investigating the position of the separation capillary and emitter tube tips in a nanoflow sheath-liquid CE-ESI-MS interface to decouple the ESI potential. Talanta 2021; 228:122212. [PMID: 33773698 DOI: 10.1016/j.talanta.2021.122212] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022]
Abstract
Robust decoupling of the ESI potential from the separation potential in CE-ESI-MS interfaces is very important for the high performance of the CE-ESI-MS devices and their applications for highly sensitive analyses of ionogenic compounds. In this study, we utilize a nanoflow sheath-liquid CE-ESI-MS interface composed of a quartz emitter and a separation fused silica capillary treated by etching, which are threaded to cross coupling for sheath liquid and electrode connection. Specifically, we have tested the ability of the interface to decouple the ESI potential from the separation potential at different positions of the separation capillary and ESI emitter tube tips. The interface with the separation capillary tip protruding the emitter tip by 20 μm did not provide sufficient robustness. The real ESI potential (delivered as 2.0 kV from the independent high voltage power supply HV2) ranged from 2.1 kV to 4.5 kV depending on the applied separation voltage (12.0-20.0 kV, provided by the power supply HV1) and electric conductivity of the background electrolyte (BGE) used. The interface robustness was partially improved when the capillary tip was aligned with the emitter tip. However, the complete decoupling of the spray and separation potentials was achieved only when the capillary tip was retracted 20 μm inside the emitter. In this arrangement, the ESI potential was stable and independent of both the separation potential (voltage) and the BGE conductivity. Moreover, this setting provided better sensitivity for the CE-ESI-MS analysis of selected drugs and benzylpyridinium cations than the setup with the capillary tip aligned with or protruding the emitter tip.
Collapse
|
8
|
Kartsova L, Makeeva D, Kravchenko A, Moskvichev D, Polikarpova D. Capillary electrophoresis as a powerful tool for the analyses of bacterial samples. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116110] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
9
|
Harnessing the power of electrophoresis and chromatography: Offline coupling of reverse phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry for peptide mapping for monoclonal antibodies. J Chromatogr A 2020; 1620:460954. [DOI: 10.1016/j.chroma.2020.460954] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
|
10
|
Lombard-Banek C, Schiel JE. Mass Spectrometry Advances and Perspectives for the Characterization of Emerging Adoptive Cell Therapies. Molecules 2020; 25:E1396. [PMID: 32204371 PMCID: PMC7144572 DOI: 10.3390/molecules25061396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/06/2020] [Accepted: 03/11/2020] [Indexed: 12/12/2022] Open
Abstract
Adoptive cell therapy is an emerging anti-cancer modality, whereby the patient's own immune cells are engineered to express T-cell receptor (TCR) or chimeric antigen receptor (CAR). CAR-T cell therapies have advanced the furthest, with recent approvals of two treatments by the Food and Drug Administration of Kymriah (trisagenlecleucel) and Yescarta (axicabtagene ciloleucel). Recent developments in proteomic analysis by mass spectrometry (MS) make this technology uniquely suited to enable the comprehensive identification and quantification of the relevant biochemical architecture of CAR-T cell therapies and fulfill current unmet needs for CAR-T product knowledge. These advances include improved sample preparation methods, enhanced separation technologies, and extension of MS-based proteomic to single cells. Innovative technologies such as proteomic analysis of raw material quality attributes (MQA) and final product quality attributes (PQA) may provide insights that could ultimately fuel development strategies and lead to broad implementation.
Collapse
Affiliation(s)
- Camille Lombard-Banek
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| | - John E. Schiel
- National Institute of Standards and Technology, Gaithersburg, MD 20899, USA;
- Institute for Bioscience and Biotechnology Research, Rockville, MD 20850, USA
| |
Collapse
|
11
|
Cheng J, Morin GB, Chen DDY. Bottom‐up proteomics of envelope proteins extracted from spinach chloroplast via high organic content CE‐MS. Electrophoresis 2020; 41:370-378. [DOI: 10.1002/elps.201900452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 01/08/2020] [Accepted: 01/11/2020] [Indexed: 01/31/2023]
Affiliation(s)
- Jianhui Cheng
- Department of ChemistryUniversity of British Columbia Vancouver BC Canada
| | - Gregg B. Morin
- Michael Smith Genome Sciences CentreBritish Columbia Cancer Agency Vancouver BC Canada
- Department of Medical GeneticsUniversity of British Columbia Vancouver BC Canada
| | - David D. Y. Chen
- Department of ChemistryUniversity of British Columbia Vancouver BC Canada
| |
Collapse
|
12
|
Gomes FP, Yates JR. Recent trends of capillary electrophoresis-mass spectrometry in proteomics research. MASS SPECTROMETRY REVIEWS 2019; 38:445-460. [PMID: 31407381 PMCID: PMC6800771 DOI: 10.1002/mas.21599] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Progress in proteomics research has led to a demand for powerful analytical tools with high separation efficiency and sensitivity for confident identification and quantification of proteins, posttranslational modifications, and protein complexes expressed in cells and tissues. This demand has significantly increased interest in capillary electrophoresis-mass spectrometry (CE-MS) in the past few years. This review provides highlights of recent advances in CE-MS for proteomics research, including a short introduction to top-down mass spectrometry and native mass spectrometry (native MS), as well as a detailed overview of CE methods. Both the potential and limitations of these methods for the analysis of proteins and peptides in synthetic and biological samples and the challenges of CE methods are discussed, along with perspectives about the future direction of CE-MS. @ 2019 Wiley Periodicals, Inc. Mass Spec Rev 00:1-16, 2019.
Collapse
Affiliation(s)
| | - John R. Yates
- Correspondent author: , Phone number: (858) 784-8862, Departments of Molecular Medicine and Neurobiology, 10550 North Torrey Pines Road, SR302B, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
13
|
Pandeswari PB, Sabareesh V. Middle-down approach: a choice to sequence and characterize proteins/proteomes by mass spectrometry. RSC Adv 2018; 9:313-344. [PMID: 35521579 PMCID: PMC9059502 DOI: 10.1039/c8ra07200k] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/11/2018] [Indexed: 12/27/2022] Open
Abstract
Owing to rapid growth in the elucidation of genome sequences of various organisms, deducing proteome sequences has become imperative, in order to have an improved understanding of biological processes. Since the traditional Edman method was unsuitable for high-throughput sequencing and also for N-terminus modified proteins, mass spectrometry (MS) based methods, mainly based on soft ionization modes: electrospray ionization and matrix-assisted laser desorption/ionization, began to gain significance. MS based methods were adaptable for high-throughput studies and applicable for sequencing N-terminus blocked proteins/peptides too. Consequently, over the last decade a new discipline called 'proteomics' has emerged, which encompasses the attributes necessary for high-throughput identification of proteins. 'Proteomics' may also be regarded as an offshoot of the classic field, 'biochemistry'. Many protein sequencing and proteomic investigations were successfully accomplished through MS dependent sequence elucidation of 'short proteolytic peptides (typically: 7-20 amino acid residues), which is called the 'shotgun' or 'bottom-up (BU)' approach. While the BU approach continues as a workhorse for proteomics/protein sequencing, attempts to sequence intact proteins without proteolysis, called the 'top-down (TD)' approach started, due to ambiguities in the BU approach, e.g., protein inference problem, identification of proteoforms and the discovery of posttranslational modifications (PTMs). The high-throughput TD approach (TD proteomics) is yet in its infancy. Nevertheless, TD characterization of purified intact proteins has been useful for detecting PTMs. With the hope to overcome the pitfalls of BU and TD strategies, another concept called the 'middle-down (MD)' approach was put forward. Similar to BU, the MD approach also involves proteolysis, but in a restricted manner, to produce 'longer' proteolytic peptides than the ones usually obtained in BU studies, thereby providing better sequence coverage. In this regard, special proteases (OmpT, Sap9, IdeS) have been used, which can cleave proteins to produce longer proteolytic peptides. By reviewing ample evidences currently existing in the literature that is predominantly on PTM characterization of histones and antibodies, herein we highlight salient features of the MD approach. Consequently, we are inclined to claim that the MD concept might have widespread applications in future for various research areas, such as clinical, biopharmaceuticals (including PTM analysis) and even for general/routine characterization of proteins including therapeutic proteins, but not just limited to analysis of histones or antibodies.
Collapse
Affiliation(s)
- P Boomathi Pandeswari
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| | - Varatharajan Sabareesh
- Advanced Centre for Bio Separation Technology (CBST), Vellore Institute of Technology (VIT) Vellore Tamil Nadu 632014 India
| |
Collapse
|
14
|
Štěpánová S, Kašička V. Recent developments and applications of capillary and microchip electrophoresis in proteomics and peptidomics (2015-mid 2018). J Sep Sci 2018; 42:398-414. [DOI: 10.1002/jssc.201801090] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/15/2018] [Accepted: 11/16/2018] [Indexed: 12/27/2022]
Affiliation(s)
- Sille Štěpánová
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague 6 Czechia
| | - Václav Kašička
- Institute of Organic Chemistry and Biochemistry; The Czech Academy of Sciences; Prague 6 Czechia
| |
Collapse
|
15
|
|
16
|
Mikšík I. Coupling of CE-MS for protein and peptide analysis. J Sep Sci 2018; 42:385-397. [PMID: 30238606 DOI: 10.1002/jssc.201800817] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022]
Abstract
The review is focused on the latest developments in the analysis of proteins and peptides by capillary electrophoresis techniques coupled to mass spectrometry. First, the methodology and instrumentation are overviewed. In this section, recent progress in capillary electrophoresis with mass spectrometry interfaces and capillary electrophoresis with matrix-assisted laser desorption/ionization is mentioned, as well as separation tasks. The second part is devoted to applications-mainly bottom-up and top-down proteomics. It is obvious that capillary electrophoresis with mass spectrometry methods are well suited for peptide and protein analysis (proteomic research) and it is described how these techniques are complementary and not competitive with the often used liquid chromatography with mass spectrometry methods.
Collapse
Affiliation(s)
- Ivan Mikšík
- Institute of Physiology, Academy of Sciences of the Czech Republic, Prague 4, Czech Republic
| |
Collapse
|
17
|
Characterization of a nanoflow sheath liquid interface and comparison to a sheath liquid and a sheathless porous-tip interface for CE-ESI-MS in positive and negative ionization. Anal Bioanal Chem 2018; 410:5265-5275. [DOI: 10.1007/s00216-018-1179-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/24/2018] [Accepted: 05/30/2018] [Indexed: 01/22/2023]
|
18
|
Chen D, Shen X, Sun L. Strong cation exchange-reversed phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry platform with high peak capacity for deep bottom-up proteomics. Anal Chim Acta 2018; 1012:1-9. [PMID: 29475469 DOI: 10.1016/j.aca.2018.01.037] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/19/2018] [Accepted: 01/22/2018] [Indexed: 11/29/2022]
Abstract
Two-dimensional (2D) liquid chromatography (LC)-tandem mass spectrometry (MS/MS) are typically employed for deep bottom-up proteomics, and the state-of-the-art 2D-LC-MS/MS has approached over 8000 protein identifications (IDs) from mammalian cell lines or tissues in 1-3 days of mass spectrometer time. Capillary zone electrophoresis (CZE)-MS/MS has been suggested as an alternative to LC-MS/MS for bottom-up proteomics. CZE-MS/MS and LC-MS/MS are complementary in protein/peptide ID from complex proteome digests because CZE and LC are orthogonal for peptide separation. In addition, the migration time of peptides from CZE-MS can be predicted accurately, which is invaluable for evaluating the confidence of peptide ID from the database search and even guiding the database search. However, the number of protein IDs from complex proteomes using CZE-MS/MS is still much lower than the state of the art using 2D-LC-MS/MS. In this work, for the first time, we established a strong cation exchange (SCX)-reversed phase LC (RPLC)-CZE-MS/MS platform for deep bottom-up proteomics. The platform identified around 8200 protein groups and 65,000 unique peptides from a mouse brain proteome digest in 70 h. The data represents the largest bottom-up proteomics dataset using CZE-MS/MS and provides a valuable resource for further improving the tool for prediction of peptide migration time in CZE. The peak capacity of the orthogonal SCX-RPLC-CZE platform was estimated to be around 7000. SCX-RPLC-CZE-MS/MS produced comparable numbers of protein and peptide IDs with 2D-LC-MS/MS (8200 vs. 8900 protein groups, 65,000 vs. 70,000 unique peptides) from the mouse brain proteome digest using comparable instrument time. This is the first time that CZE-MS/MS showed its capability to approach comparable performance to the state-of-the-art 2D-LC-MS/MS for deep proteomic sequencing. SCX-RPLC-CZE-MS/MS and 2D-LC-MS/MS showed good complementarity in protein and peptide IDs and combining those two methods improved the number of protein group and unique peptide IDs by nearly 10% and over 40%, respectively, compared with 2D-LC-MS/MS alone.
Collapse
Affiliation(s)
- Daoyang Chen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA
| | - Xiaojing Shen
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA.
| |
Collapse
|
19
|
Zhong Z, Mao S, Lin H, Lin JM, Lin J. Comparative proteomics of cancer stem cells in osteosarcoma using ultra-high-performance liquid chromatography and Orbitrap Fusion mass spectrometer. Talanta 2018; 178:362-368. [DOI: 10.1016/j.talanta.2017.09.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 09/13/2017] [Accepted: 09/17/2017] [Indexed: 01/04/2023]
|
20
|
Recent trends and analytical challenges in plant bioactive peptide separation, identification and validation. Anal Bioanal Chem 2018; 410:3425-3444. [PMID: 29353433 DOI: 10.1007/s00216-018-0852-x] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 12/12/2017] [Accepted: 01/03/2018] [Indexed: 12/11/2022]
Abstract
Interest in research into bioactive peptides (BPs) is growing because of their health-promoting ability. Several bioactivities have been ascribed to peptides, including antioxidant, antihypertensive and antimicrobial properties. As they can be produced from precursor proteins, the investigation of BPs in foods is becoming increasingly popular. For the same reason, production of BPs from by-products has also emerged as a possible means of reducing waste and recovering value-added compounds suitable for functional food production and supplements. Milk, meat and fish are the most investigated sources of BPs, but vegetable-derived peptides are also of interest. Vegetables are commonly consumed, and agro-industrial wastes constitute a cheap, large and lower environmental impact source of proteins. The use of advanced analytical techniques for separation and identification of peptides would greatly benefit the discovery of new BPs. In this context, this review provides an overview of the most recent applications in BP investigations for vegetable food and by-products. The most important issues regarding peptide isolation and separation, by single or multiple chromatographic techniques, are discussed. Additionally, problems connected with peptide identification in plants and non-model plants are discussed regarding the particular case of BP identification. Finally, the issue of peptide validation to confirm sequence and bioactivity is presented. Graphical representation of the analytical workflow needed for investigation of bioactive peptides and applied to vegetables and vegetable wastes Graphical Abstract.
Collapse
|
21
|
Qu Y, Sun L, Zhang Z, Dovichi NJ. Site-Specific Glycan Heterogeneity Characterization by Hydrophilic Interaction Liquid Chromatography Solid-Phase Extraction, Reversed-Phase Liquid Chromatography Fractionation, and Capillary Zone Electrophoresis-Electrospray Ionization-Tandem Mass Spectrometry. Anal Chem 2018; 90:1223-1233. [PMID: 29231704 PMCID: PMC5771954 DOI: 10.1021/acs.analchem.7b03912] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Reversed-phase chromatographic separation of glycopeptides tends to be dominated by the peptide composition. In contrast, capillary zone electrophoresis separation of glycopeptides is particularly sensitive to the sialic acid composition of the glycan. In this paper, we combine the two techniques to achieve superior N-glycopeptide analysis. Glycopeptides were first isolated from a tryptic digest using hydrophilic interaction liquid chromatography (HILIC) solid-phase extraction. The glycopeptides were separated using reversed-phase ultra high-performance liquid chromatography (UHPLC) to generate four fractions corresponding to different peptide backbones. Capillary zone electrophoresis-electrospray ionization-tandem mass spectrometry (CZE-ESI-MS/MS) was used to analyze the fractions. We applied this method for the analysis of alpha-1-acid glycoprotein (AGP). A total of 268 site-specific N-glycopeptides were detected, representing eight different glycosylation sites from two isomers of AGP. Glycans included tetra-sialic acids with multi N-acetyllactosamine (LacNAc) repeats and unusual pentasialylated terminal sialic acids. Reversed-phase UHPLC coupled with CZE generated ∼35% more N-glycopeptides than direct reversed-phase UHPLC-ESI-MS/MS analysis and ∼70% more N-glycopeptides than direct CZE-ESI-MS/MS analysis. This approach is a promising tool for global, site-specific glycosylation analysis of highly heterogeneous glycoproteins with mass-limited samples.
Collapse
Affiliation(s)
- Yanyan Qu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Liangliang Sun
- Department of Chemistry, Michigan State University, East Lansing, MI 48824, USA
| | - Zhenbin Zhang
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Norman J. Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
22
|
Cheng J, Chen DDY. Nonaqueous capillary electrophoresis mass spectrometry method for determining highly hydrophobic peptides. Electrophoresis 2017; 39:1216-1221. [PMID: 28990192 DOI: 10.1002/elps.201700364] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Revised: 10/03/2017] [Accepted: 10/04/2017] [Indexed: 01/07/2023]
Abstract
A nonaqueous capillary electrophoresis mass spectrometry (NACE-MS) method was developed to separate and determine highly hydrophobic temporin peptides. The nonaqueous background electrolyte solution was a mixture of 20% acetonitrile, 78% methanol and 2% formic acid, with 20 mM ammonium formate. The separation of six peptides was completed within 12 min. The CE system was connected to a triple quadrupole mass spectrometer operating in MRM mode using a chemical modifier solution of 2 mM ammonium formate in ethanol with the flow through microvial interface. The mass spectrometer offered a second dimension of separation for peptides having identical migration times but different structures. The new method represents the first system capable of reliably determining hydrophobic peptides without using reversed phase liquid chromatography mass spectrometry.
Collapse
Affiliation(s)
- Jianhui Cheng
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| | - David D Y Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
23
|
Kašička V. Recent developments in capillary and microchip electroseparations of peptides (2015-mid 2017). Electrophoresis 2017; 39:209-234. [PMID: 28836681 DOI: 10.1002/elps.201700295] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 08/15/2017] [Accepted: 08/16/2017] [Indexed: 12/17/2022]
Abstract
The review brings a comprehensive overview of recent developments and applications of high performance capillary and microchip electroseparation methods (zone electrophoresis, isotachophoresis, isoelectric focusing, affinity electrophoresis, electrokinetic chromatography, and electrochromatography) to analysis, microscale isolation, purification, and physicochemical and biochemical characterization of peptides in the years 2015, 2016, and ca. up to the middle of 2017. Advances in the investigation of electromigration properties of peptides and in the methodology of their analysis (sample preseparation, preconcentration and derivatization, adsorption suppression and EOF control, and detection) are described. New developments in particular CE and CEC methods are presented and several types of their applications to peptide analysis are reported: qualitative and quantitative analysis, determination in complex (bio)matrices, monitoring of chemical and enzymatical reactions and physical changes, amino acid, sequence and chiral analysis, and peptide mapping of proteins. Some micropreparative peptide separations are shown and capabilities of CE and CEC methods to provide important physicochemical characteristics of peptides are demonstrated.
Collapse
Affiliation(s)
- Václav Kašička
- Institute of Organic Chemistry and Biochemistry, The Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
24
|
Dawod M, Arvin NE, Kennedy RT. Recent advances in protein analysis by capillary and microchip electrophoresis. Analyst 2017; 142:1847-1866. [PMID: 28470231 PMCID: PMC5516626 DOI: 10.1039/c7an00198c] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
This review article describes the significant recent advances in the analysis of proteins by capillary and microchip electrophoresis during the period from mid-2014 to early 2017. This review highlights the progressions, new methodologies, innovative instrumental modifications, and challenges for efficient protein analysis in human specimens, animal tissues, and plant samples. The protein analysis fields covered in this review include analysis of native, reduced, and denatured proteins in addition to Western blotting, protein therapeutics and proteomics.
Collapse
Affiliation(s)
- Mohamed Dawod
- Department of Chemistry, University of Michigan, 930 N. University Ave, Ann Arbor, Michigan 48109, USA.
| | | | | |
Collapse
|
25
|
Ludwig KR, Hummon AB. Mass spectrometry for the discovery of biomarkers of sepsis. MOLECULAR BIOSYSTEMS 2017; 13:648-664. [PMID: 28207922 PMCID: PMC5373965 DOI: 10.1039/c6mb00656f] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sepsis is a serious medical condition that occurs in 30% of patients in intensive care units (ICUs). Early detection of sepsis is key to prevent its progression to severe sepsis and septic shock, which can cause organ failure and death. Diagnostic criteria for sepsis are nonspecific and hinder a timely diagnosis in patients. Therefore, there is currently a large effort to detect biomarkers that can aid physicians in the diagnosis and prognosis of sepsis. Mass spectrometry is often the method of choice to detect metabolomic and proteomic changes that occur during sepsis progression. These "omics" strategies allow for untargeted profiling of thousands of metabolites and proteins from human biological samples obtained from septic patients. Differential expression of or modifications to these metabolites and proteins can provide a more reliable source of diagnostic biomarkers for sepsis. Here, we focus on the current knowledge of biomarkers of sepsis and discuss the various mass spectrometric technologies used in their detection. We consider studies of the metabolome and proteome and summarize information regarding potential biomarkers in both general and neonatal sepsis.
Collapse
Affiliation(s)
- Katelyn R Ludwig
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.
| | - Amanda B Hummon
- Department of Chemistry and Biochemistry and the Harper Cancer Research Institute, University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
26
|
Krokhin OV, Anderson G, Spicer V, Sun L, Dovichi NJ. Predicting Electrophoretic Mobility of Tryptic Peptides for High-Throughput CZE-MS Analysis. Anal Chem 2017; 89:2000-2008. [PMID: 28208305 DOI: 10.1021/acs.analchem.6b04544] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A multiparametric sequence-specific model for predicting peptide electrophoretic mobility has been developed using large-scale bottom-up proteomic CE-MS data (5% (∼0.8M) acetic acid as background electrolyte). Peptide charge (Z) and size (molecular mass, M) are the two major factors determining electrophoretic mobility, in complete agreement with previous studies. The extended size of the data set (>4000 peptides) permits access to many sequence-specific factors that impact peptide mobility. The presence of acidic residues Asp and Glu near the peptide N-terminus is by far the most prominent among them. The induction effect of the side chain of N-terminal Asp reduces the basicity of the N-terminal amino group and, as hence, its charge, by ∼0.27 units, lowering mobility. The correlation of the model (R2 ∼ 0.995) indicates that the peptide separation process in CZE is relatively simple and can be predicted to a much higher precision than current RP-HPLC models. Similar to RP-HPLC prediction studies, we anticipate future developments that introduce peptide migration standards, collect larger data sets for modeling through the alignment of multiple CZE-MS acquisitions, and study of the behavior of peptides carrying post-translational modifications. The increased size of data sets will also permit investigation of the fine-scale effects of peptide secondary structure on peptide mobility. We observed that peptides with higher helical propensity tend to have higher than predicted electrophoretic mobility; the incorporation of these features into CZE migration models will require significantly larger data sets.
Collapse
Affiliation(s)
| | | | | | - Liangliang Sun
- Department of Chemistry, Michigan State University , East Lansing, Michigan 48824, United States
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame , Notre Dame, Indiana 46556, United States
| |
Collapse
|
27
|
Evaluation of a commercial electro-kinetically pumped sheath-flow nanospray interface coupled to an automated capillary zone electrophoresis system. Anal Bioanal Chem 2016; 409:1789-1795. [PMID: 27981343 DOI: 10.1007/s00216-016-0122-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/10/2016] [Accepted: 11/28/2016] [Indexed: 10/20/2022]
Abstract
Capillary zone electrophoresis-electrospray ionization-mass spectrometry (CZE-ESI-MS) is attracting renewed attention for proteomic and metabolomic analysis. An important reason for this interest is the maturation and commercialization of interfaces for coupling CZE with ESI-MS. One of these interfaces is an electro-kinetically pumped sheath flow nanospray interface developed by the Dovichi group, in which a very low sheath flow is generated based on electroosmosis within a glass emitter. CMP Scientific has commercialized this interface as the EMASS-II ion source. In this work, we compared the performance of the EMASS-II ion source with our in-house system. The performance of the systems is equivalent. We also coupled the EMASS-II ion source with a PrinCE Next|480 capillary electrophoresis autosampler and an Orbitrap mass spectrometer, and analyzed this system's performance in terms of sensitivity, reproducibility, and separation performance for separation of tryptic digests, intact proteins, and amino acids. The system produced reproducible analysis of BSA digest; the RSDs of peptide intensity and migration time across 24 runs were less than 20 and 6%, respectively. The system produced a linear calibration curve of intensity across a 30-fold range of tryptic digest concentration. The combination of a commercial autosampler and electrospray interface efficiently separated amino acids, peptides, and intact proteins, and only required 5 μL of sample for analysis. Graphical Abstract The commercial and locally constructed versions of the interface provide similar numbers of protein identifications from a Xenopus laevis fertilized egg digest.
Collapse
|
28
|
MacLennan MS, Tie C, Kovalchik K, Peru KM, Zhang X, Headley JV, Chen DDY. Potential of capillary electrophoresis mass spectrometry for the characterization and monitoring of amine-derivatized naphthenic acids from oil sands process-affected water. J Environ Sci (China) 2016; 49:203-212. [PMID: 28007176 DOI: 10.1016/j.jes.2016.06.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 05/09/2016] [Accepted: 06/01/2016] [Indexed: 06/06/2023]
Abstract
Capillary electrophoresis coupled to mass spectrometry (CE-MS) was used for the analysis of naphthenic acid fraction compounds (NAFCs) of oil sands process-affected water (OSPW). A standard mixture of amine-derivatized naphthenic acids is injected directly onto the CE column and analyzed by CE-MS in less than 15min. Time of flight MS analysis (TOFMS), optimized for high molecular weight ions, showed NAFCs between 250 and 800m/z. With a quadrupole mass analyzer, only low-molecular weight NAFCs (between 100 and 450m/z) are visible under our experimental conditions. Derivatization of NAFCs consisted of two-step amidation reactions mediated by 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC), or mediated by a mixture of EDC and N-hydroxysuccinimide, in dimethyl sulfoxide, dichloromethane or ethyl acetate. The optimum background electrolyte composition was determined to be 30% (V/V) methanol in water and 2% (V/V) formic acid. NAFCs extracted from OSPW in the Athabasca oil sands region were used to demonstrate the feasibility of CE-MS for the analysis of NAFCs in environmental samples, showing that the labeled naphthenic acids are in the mass range of 350 to 1500m/z.
Collapse
Affiliation(s)
- Matthew S MacLennan
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| | - Cai Tie
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Kevin Kovalchik
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada
| | - Kerry M Peru
- Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Saskatoon, SK S7N 3H5, Canada
| | - Xinxiang Zhang
- College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - John V Headley
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada; Water Science and Technology Directorate, Science and Technology Branch, Environment and Climate Change Canada, Saskatoon, SK S7N 3H5, Canada
| | - David D Y Chen
- Department of Chemistry, University of British Columbia, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
29
|
Týčová A, Ledvina V, Klepárník K. Recent advances in CE-MS coupling: Instrumentation, methodology, and applications. Electrophoresis 2016; 38:115-134. [DOI: 10.1002/elps.201600366] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 08/30/2016] [Accepted: 08/30/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Anna Týčová
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| | - Vojtěch Ledvina
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| | - Karel Klepárník
- Institute of Analytical Chemistry; Czech Academy of Sciences; Brno Czech Republic
| |
Collapse
|
30
|
Lombard-Banek C, Reddy S, Moody SA, Nemes P. Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS). Mol Cell Proteomics 2016; 15:2756-68. [PMID: 27317400 PMCID: PMC4974349 DOI: 10.1074/mcp.m115.057760] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 06/16/2016] [Indexed: 12/12/2022] Open
Abstract
Quantification of protein expression in single cells promises to advance a systems-level understanding of normal development. Using a bottom-up proteomic workflow and multiplexing quantification by tandem mass tags, we recently demonstrated relative quantification between single embryonic cells (blastomeres) in the frog (Xenopus laevis) embryo. In this study, we minimize derivatization steps to enhance analytical sensitivity and use label-free quantification (LFQ) for single Xenopus cells. The technology builds on a custom-designed capillary electrophoresis microflow-electrospray ionization high-resolution mass spectrometry platform and LFQ by MaxLFQ (MaxQuant). By judiciously tailoring performance to peptide separation, ionization, and data-dependent acquisition, we demonstrate an ∼75-amol (∼11 nm) lower limit of detection and quantification for proteins in complex cell digests. The platform enabled the identification of 438 nonredundant protein groups by measuring 16 ng of protein digest, or <0.2% of the total protein contained in a blastomere in the 16-cell embryo. LFQ intensity was validated as a quantitative proxy for protein abundance. Correlation analysis was performed to compare protein quantities between the embryo and n = 3 different single D11 blastomeres, which are fated to develop into the nervous system. A total of 335 nonredundant protein groups were quantified in union between the single D11 cells spanning a 4 log-order concentration range. LFQ and correlation analysis detected expected proteomic differences between the whole embryo and blastomeres, and also found translational differences between individual D11 cells. LFQ on single cells raises exciting possibilities to study gene expression in other cells and models to help better understand cell processes on a systems biology level.
Collapse
Affiliation(s)
| | - Sushma Reddy
- From the ‡Department of Chemistry and ¶Thomas Jefferson High School for Science and Technology, Alexandria, Virginia
| | - Sally A Moody
- §Department of Anatomy and Regenerative Biology, The George Washington University, Washington, DC
| | | |
Collapse
|
31
|
Jarvas G, Kerekgyarto M, Guttman A. On the electromigration of charged fluorophore-labeled oligosaccharides in polyethylene oxide solutions. Electrophoresis 2016; 37:2347-51. [PMID: 27159236 DOI: 10.1002/elps.201600183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 04/28/2016] [Accepted: 04/28/2016] [Indexed: 11/10/2022]
Abstract
The separation mechanism of charged fluorophore (aminopyrenetrisulfonate)-labeled maltooligosaccharides with α1-4 linkages was studied in polyethylene oxide (PEO) solutions (MW 300 000 Da) with special interest to possible analyte and/or network deformations as well as potential solute-matrix interactions. The electrophoretic mobilities of the 8-aminopyrene-1,3,6-trisulfonate-labeled maltooligosaccharides were found proportional with their MW(-2/3) . The Arrhenius function was used to determine the activation energy needed by the labeled sugars to migrate through the separation media. With increasing solute size, the activation energy (Ea ) values decreased in polymer concentrations above the entanglement threshold of the PEO, while showed apparently independent function at the entanglement threshold. The observed phenomenon was considered as a result of solute-matrix interaction, which could be alleviated by the addition of an organic modifier to the BGE.
Collapse
Affiliation(s)
- Gabor Jarvas
- Horváth Csaba Laboratory of Bioseparation Sciences, Regional Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary.,MTA-PE Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary
| | - Marta Kerekgyarto
- Horváth Csaba Laboratory of Bioseparation Sciences, Regional Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | - András Guttman
- Horváth Csaba Laboratory of Bioseparation Sciences, Regional Centre for Molecular Medicine, University of Debrecen, Debrecen, Hungary. .,MTA-PE Translational Glycomics Research Group, University of Pannonia, Veszprem, Hungary.
| |
Collapse
|
32
|
Implementation of CE-MS-identified proteome-based biomarker panels in drug development and patient management. Bioanalysis 2016; 8:439-55. [DOI: 10.4155/bio.16.8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The recent advancements in clinical proteomics enabled identification of biomarker panels for a large range of diseases. A number of CE-MS-identified biomarker panels were verified and implemented in clinical studies. Despite multiple challenges, accumulating evidence supports the value and the need for proteome-based biomarker panels. In this perspective, we provide an overview of clinical studies indicating the added value of CE-MS biomarker panels over traditional diagnostics and monitoring methods. We outline apparent advantages of applying novel proteomic biomarker panels for disease diagnosis, prognosis, staging, drug development and patient management. Facing the plethora of benefits associated with the use of CE-MS biomarker panels, we envision their implementation into the medical practice in the near future.
Collapse
|