1
|
Tartaglia M, Zuzolo D, Prigioniero A, Ranauda MA, Scarano P, Tienda-Parrilla M, Hernandez-Lao T, Jorrín-Novo J, Guarino C. Changes in the proteomics and metabolomics profiles of Cormus Domestica (L.) fruits during the ripening process. BMC PLANT BIOLOGY 2024; 24:945. [PMID: 39390371 PMCID: PMC11465947 DOI: 10.1186/s12870-024-05677-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/07/2024] [Indexed: 10/12/2024]
Abstract
BACKGROUND Cormus domestica (L.) is a monophyletic wild fruit tree belonging to the Rosaceae family, with well-documented use in the Mediterranean region. Traditionally, these fruits are harvested and stored for at least 2 weeks before consumption. During this period, the fruit reaches its well-known and peculiar organoleptic and texture characteristics. However, the spread of more profitable fruit tree species, resulted in its progressive erosion. In this work we performed proteomic and metabolomic fruit analyses at three times after harvesting, to characterise postharvest physiological and molecular changes, it related to nutritional and organoleptic properties at consumption. RESULTS Proteomics and metabolomics analysis were performed on fruits harvested at different time points: freshly harvested fruit (T0), fruit two weeks after harvest (T1) and fruit four weeks after harvest (T2). Proteomic analysis (Shotgun Proteomic in LC-MS/MS) resulted in 643 proteins identified. Most of the differentially abundant proteins between the three phases observed were involved in the softening process, carbohydrate metabolism and stress responses. Enzymes, such as xyloglucan endotransglucosylase/hydrolase, pectin acetylesterase, beta-galactosidase and pectinesterase, accumulated during fruit ripening and could explain the pulp breakdown observed in C. domestica. At the same time, enzymes abundant in the early stages (T0), such as sucrose synthase and malic enzyme, explain the accumulation of sugars and the lowering of acidity during the process. The metabolites extraction from C. domestica fruits enabled the identification of 606 statistically significant differentially abundant metabolites. Some compounds such as piptamine and resorcinol, well-known for their antimicrobial and antifungal properties, and several bioactive compounds such as endocannabinoids, usually described in the leaves, accumulate in C. domestica fruit during the post-harvest process. CONCLUSIONS The metabolomic and proteomic profiling of the C. domestica fruit during the postharvest process, evaluated in the study, provides a considerable contribution to filling the existing information gap, enabling the molecular and phytochemical characterisation of this erosion-endangered fruit. Data show biochemical changes that transform the harvested fruit into palatable consumable product.
Collapse
Affiliation(s)
- Maria Tartaglia
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| | - Daniela Zuzolo
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy.
| | - Antonello Prigioniero
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy.
| | - Maria Antonietta Ranauda
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| | - Pierpaolo Scarano
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| | - Marta Tienda-Parrilla
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Tamara Hernandez-Lao
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Jesús Jorrín-Novo
- Agroforestry and Plant Biochemistry, Proteomics and Systems Biology, Department of Biochemistry and Molecular Biology, University of Cordoba, UCO-CeiA3, Cordoba, 14014, Spain
| | - Carmine Guarino
- Department of Science and Technology, University of Sannio, via de Sanctis snc, Benevento, 82100, Italy
| |
Collapse
|
2
|
Pei MS, Liu HN, Wei TL, Guo DL. Proteome-Wide Identification of Non-histone Lysine Methylation during Grape Berry Ripening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12140-12152. [PMID: 37503871 DOI: 10.1021/acs.jafc.3c03144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
To gain a comprehensive understanding of non-histone methylation during berry ripening in grape (Vitis vinifera L.), the methylation of non-histone lysine residues was studied using a 4D label-free quantitative proteomics approach. In total, 822 methylation sites in 416 methylated proteins were identified, with xxExxx_K_xxxxxx as the conserved motif. Functional annotation of non-histone proteins with methylated lysine residues indicated that these proteins were mostly associated with "ripening and senescence", "energy metabolism", "oxidation-reduction process", and "stimulus response". Most of the genes encoding proteins subjected to methylation during grape berry ripening showed a significant increase in expression during maturation at least at one developmental stage. The correlation of methylated proteins with QTLs, SNPs, and selective regions associated with fruit quality and development was also investigated. This study reports the first proteomic analysis of non-histone lysine methylation in grape berry and indicates that non-histone methylation plays an important role in grape berry ripening.
Collapse
Affiliation(s)
- Mao-Song Pei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Hai-Nan Liu
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Tong-Lu Wei
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| | - Da-Long Guo
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang 471023 Henan Province, China
- Henan Engineering Technology Research Center of Quality Regulation and Controlling of Horticultural Plants, Luoyang 471023, China
| |
Collapse
|
3
|
Analysis of the Fruit Quality of Pear ( Pyrus spp.) Using Widely Targeted Metabolomics. Foods 2022; 11:foods11101440. [PMID: 35627008 PMCID: PMC9140454 DOI: 10.3390/foods11101440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/29/2022] [Accepted: 05/11/2022] [Indexed: 02/02/2023] Open
Abstract
Pear is a kind of common temperate fruit, whose metabolite composition that contributes to the difference in fruit quality is unclear. This study identified and quantified the metabolites using a widely targeted LC-MS/MS approach in three pear species, including Pyrus bretschneideri (PB), Pyrus usssuriensis (PU) and Pyrus pyrifolia (PP). A total of 493 metabolites were identified, consisting of 68 carbohydrates, 47 organic acids, 50 polyphenols, 21 amino acids, 20 vitamins, etc. The results of PCA and OPLS-DA demonstrated that the metabolite compositions differed distinctly with cultivar variability. Our results also involved some metabolic pathways that may link to the fruit quality based on KEGG pathway analysis, the pathway of phenylalanine metabolism revealed significant differences between PB and PP (p < 0.05). Furthermore, the study selected D-xylose, formononetin, procyanidin A1 and β-nicotinamide mononucleotide as the major differentially expressed metabolites in the three species. The present study can open new avenues for explaining the differences in fruit quality of the major commercial pear cultivars in China.
Collapse
|
4
|
Wang Y, Liu T, Ma C, Li G, Wang X, Wang J, Chang J, Guan C, Yao H, Dong X. Carbohydrate regulation response to cold during rhizome bud dormancy release in Polygonatum kingianum. BMC PLANT BIOLOGY 2022; 22:163. [PMID: 35365083 PMCID: PMC8973533 DOI: 10.1186/s12870-022-03558-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND The rhizome of Polygonatum kingianum Coll. et Hemsl (P. kingianum) is a crucial traditional Chinese medicine, but severe bud dormancy occurs during early rhizome development. Low temperature is a positive factor affecting dormancy release, whereas the variation in carbohydrates during dormancy release has not been investigated systematically. Therefore, the sugar content, related metabolic pathways and gene co-expression were analysed to elucidate the regulatory mechanism of carbohydrates during dormancy release in the P. kingianum rhizome bud. RESULTS During dormancy transition, starch and sucrose (Suc) exhibited opposing trends in the P. kingianum rhizome bud, representing a critical indicator of dormancy release. Galactose (Gal) and raffinose (Raf) were increased in content and synthesis. Glucose (Glc), cellulose (Cel), mannose (Man), arabinose (Ara), rhamnose (Rha) and stachyose (Sta) showed various changes, indicating their different roles in breaking rhizome bud dormancy in P. kingianum. At the beginning of dormancy release, Glc metabolism may be dominated by anaerobic oxidation (glycolysis followed by ethanol fermentation). After entering the S3 stage, the tricarboxylic acid cycle (TCA) and pentose phosphate pathway (PPP) were may be more active possibly. In the gene co-expression network comprising carbohydrates and hormones, HYD1 was identified as a hub gene, and numerous interactions centred on STS/SUS were also observed, suggesting the essential role of brassinosteroids (BRs), Raf and Suc in the regulatory network. CONCLUSION We revealed cold-responsive genes related to carbohydrate metabolism, suggesting regulatory mechanisms of sugar during dormancy release in the P. kingianum rhizome bud. Additionally, gene co-expression analysis revealed possible interactions between sugar and hormone signalling, providing new insight into the dormancy release mechanism in P. kingianum rhizome buds.
Collapse
Affiliation(s)
- Yue Wang
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture and Rural Affairs, Jinan, Shandong, China
| | - Tao Liu
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture and Rural Affairs, Jinan, Shandong, China
| | - Changjian Ma
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
| | - Guoqing Li
- Tai'an Academy of Agricultural Science, Taian, Shandong, China
| | - Xinhong Wang
- Shan Dong Agriculture and Engineering University, Jinan, Shandong, China
| | - Jianghui Wang
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture and Rural Affairs, Jinan, Shandong, China
| | - Jin Chang
- Tai'an Academy of Forestry Sciences, Taian, Shandong, China
| | - Cong Guan
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China
- Key Laboratory of East China Urban Agriculture, Ministry of Agriculture and Rural Affairs, Jinan, Shandong, China
| | - Huimin Yao
- Shandong Academy of Agricultural Sciences, Jinan, Shandong, China.
| | - Xuehui Dong
- China Agricultural University, Beijing, China.
| |
Collapse
|
5
|
Zhang HP, Su Y, Yu Q, Qin GH. Quantitative proteomic analysis of pear (Pyrus pyrifolia cv. "Hosui") flesh provides novel insights about development and quality characteristics of fruit. PLANTA 2021; 253:69. [PMID: 33599839 DOI: 10.1007/s00425-021-03585-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
A total of 6763 proteins were identified in the developing pear flesh, which were further screened for differentially expressed proteins related to fruit quality and ATP-binding cassette transporters. To obtain further details on changes in protein levels during fruit ripening and to identify and evaluate changes in various metabolic pathways that affect fruit quality, a proteomic method using tandem mass tags was implemented at three developmental stages in Pyrus pyrifolia cv. "Hosui" that identified 6763 proteins. Subcellular localization and Gene Ontology enrichment analysis revealed major functions of all identified proteins. Kyoto Encyclopedia of Genes and Genomes pathway analysis suggested that all metabolic processes are reflected in the up- and downregulation of differentially expressed proteins during fruit development, which play predominant roles in cell division, cell expansion, and fruit ripening. Among the examined differentially expressed proteins, 160 related to fruit quality, and 14 ATP-binding cassette transporters related to fruit development were identified and analyzed. The quantitative data were validated by parallel reaction monitoring, which confirmed the reliability of the experimental results.
Collapse
Affiliation(s)
- Hu Ping Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Ying Su
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qing Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Gai Hua Qin
- Key Laboratory of Horticultural Crop Genetic Improvement and Eco-Physiology of Anhui Province, Institute of Horticulture Research, Anhui Academy of Agricultural Sciences, Hefei, 230031, China.
| |
Collapse
|
6
|
Packham's Triumph Pears ( Pyrus communis L.) Post-Harvest Treatment during Cold Storage Based on Chitosan and Rue Essential Oil. Molecules 2021; 26:molecules26030725. [PMID: 33573272 PMCID: PMC7866551 DOI: 10.3390/molecules26030725] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 01/10/2021] [Accepted: 01/26/2021] [Indexed: 12/14/2022] Open
Abstract
Pears (Pyrus communis L.) cv. Packham’s Triumph are very traditional for human consumption, but pear is a highly perishable climacteric fruit with a short shelf-life affected by several diseases with a microbial origin. In this study, a protective effect on the quality properties of pears was evidenced after the surface application of chitosan-Ruta graveolens essential oil coatings (CS + RGEO) in four different concentrations (0, 0.5, 1.0 and 1.5 %, v/v) during 21 days of storage under 18 °C. After 21 days of treatment, a weight loss reduction of 10% (from 40.2 ± 5.3 to 20.3 ± 3.9) compared to the uncoated pears was evident with CS + RGEO 0.5%. All the fruits’ physical-chemical properties evidenced a protective effect of the coatings. The maturity index increased for all the treatments. However, the pears with CS + RGEO 1.5% were lower (70.21) than the uncoated fruits (98.96). The loss of firmness for the uncoated samples was higher compared to the coated samples. The pears’ most excellent mechanical resistance was obtained with CS + RGEO 0.5% after 21 days of storage, both for compression resistance (7.42 kPa) and force (22.7 N). Microbiological studies demonstrated the protective power of the coatings. Aerobic mesophilic bacteria and molds were significantly reduced (in 3 Log CFU/g compared to control) using 15 µL/mL of RGEO, without affecting consumer perception. The results presented in this study showed that CS + RGEO coatings are promising in the post-harvest treatment of pears.
Collapse
|
7
|
Zhou D, Zhang Q, Li P, Pan L, Tu K. Combined transcriptomics and proteomics analysis provides insight into metabolisms of sugars, organic acids and phenols in UV-C treated peaches during storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 157:148-159. [PMID: 33120107 DOI: 10.1016/j.plaphy.2020.10.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 10/20/2020] [Indexed: 06/11/2023]
Abstract
3Ultraviolet-C (UV-C) irradiation is known for prolonging the shelf life of many fruit by regulating different pathways. To better understand the roles of UV-C treatment in regulating the metabolic pathways in peach fruit during cold storage, transcriptomics and proteomics approaches were applied to investigate changes in peaches treated with UV-C (1.5 kJ m-2). The results showed that most differentially expressed genes (DEGs) and differentially expressed proteins (DEPs) were largely matched to carbohydrates and secondary metabolites. Further analysis found that peaches treated with UV-C exhibited higher sucrose, citric acid, malic acid, phenols, flavonoids and anthocyanins compared with untreated peaches. Proteomics and transcriptomics together indicated that changes of sugars and acids were associated with the expressions of invertase, sucrose synthase, fructokinase, malate dehydrogenase and citrate synthase. UV-C irradiation promoted the synthesis of phenols, flavonoids and anthocyanins by up-regulating expressions of phenylalanine ammonia-lyase, 4-coumarate-CoA ligase, chalcone synthase, dihydroflavonol 4-reductase and UDP-glucose:flavonoid glucosyltransferase. In summary, this research explained the general molecular mechanism of the changes of sugars, acids and phenols in peaches in response to UV-C.
Collapse
Affiliation(s)
- Dandan Zhou
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qin Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengxia Li
- Institute of Agricultural Facilities and Equipment, Jiangsu Academy of Agricultural Sciences, Nanjing, 210095, Jiangsu, PR China; Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, 210095, Jiangsu, PR China
| | - Leiqing Pan
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kang Tu
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
8
|
Batista-Silva W, Nascimento VL, Medeiros DB, Nunes-Nesi A, Ribeiro DM, Zsögön A, Araújo WL. Modifications in Organic Acid Profiles During Fruit Development and Ripening: Correlation or Causation? FRONTIERS IN PLANT SCIENCE 2018; 9:1689. [PMID: 30524461 PMCID: PMC6256983 DOI: 10.3389/fpls.2018.01689] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Accepted: 10/31/2018] [Indexed: 05/21/2023]
Abstract
The pivotal role of phytohormones during fruit development and ripening is considered established knowledge in plant biology. Perhaps less well-known is the growing body of evidence suggesting that organic acids play a key function in plant development and, in particular, in fruit development, maturation and ripening. Here, we critically review the connection between organic acids and the development of both climacteric and non-climacteric fruits. By analyzing the metabolic content of different fruits during their ontogenetic trajectory, we noticed that the content of organic acids in the early stages of fruit development is directly related to the supply of substrates for respiratory processes. Although different organic acid species can be found during fruit development in general, it appears that citrate and malate play major roles in this process, as they accumulate on a broad range of climacteric and non-climacteric fruits. We further highlight the functional significance of changes in organic acid profile in fruits due to either the manipulation of fruit-specific genes or the use of fruit-specific promoters. Despite the complexity behind the fluctuation in organic acid content during fruit development and ripening, we extend our understanding on the importance of organic acids on fruit metabolism and the need to further boost future research. We suggest that engineering organic acid metabolism could improve both qualitative and quantitative traits of crop fruits.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Vitor L. Nascimento
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - David B. Medeiros
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Dimas M. Ribeiro
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Brazil
| |
Collapse
|
9
|
Al‐Obaidi JR, Jamil NAM, Rahmad N, Rosli NHM. Proteomic and metabolomic study of wax apple (
Syzygium samarangense
) fruit during ripening process. Electrophoresis 2018; 39:2954-2964. [DOI: 10.1002/elps.201800185] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/10/2018] [Accepted: 07/31/2018] [Indexed: 02/06/2023]
Affiliation(s)
- Jameel R. Al‐Obaidi
- Agro‐Biotechnology Institute Malaysia (ABI)c/o MARDI Headquarters Serdang Selangor Malaysia
| | - Nor Azreen Mohd Jamil
- Agro‐Biotechnology Institute Malaysia (ABI)c/o MARDI Headquarters Serdang Selangor Malaysia
| | - Norasfaliza Rahmad
- Agro‐Biotechnology Institute Malaysia (ABI)c/o MARDI Headquarters Serdang Selangor Malaysia
| | | |
Collapse
|