1
|
Radziejewska I. Tumor-associated carbohydrate antigens of MUC1 - Implication in cancer development. Biomed Pharmacother 2024; 174:116619. [PMID: 38643541 DOI: 10.1016/j.biopha.2024.116619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/17/2024] [Indexed: 04/23/2024] Open
Abstract
Glycosylation of cancerous epithelial MUC1 protein is specifically altered in comparison to that which is presented by healthy cells. One of such changes is appearing tumor-associated carbohydrate antigens (TACAs) which are rare in normal tissues and are highly correlated with poor clinical outcomes and cancer progression. This review summarizes and describes the role of Tn, T antigens, their sialylated forms as well as fucosylated Lewis epitopes in different aspects of tumor development, progression, and metastasis. Finally, applications of MUC1 glycan epitopes as potential targets for therapeutic strategy of cancers are notified. One of the novelties of this review is presentation of TACAs as inherently connected with MUC1 mucin.
Collapse
Affiliation(s)
- Iwona Radziejewska
- Department of Medical Chemistry, Medical University of Białystok, ul. Mickiewicza 2, Białystok 15-222, Poland.
| |
Collapse
|
2
|
Chen J, Xiao Z, Wu H. Research progress of immunotherapy against anaplastic thyroid cancer. Front Oncol 2024; 14:1365055. [PMID: 38595813 PMCID: PMC11002090 DOI: 10.3389/fonc.2024.1365055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
Anaplastic thyroid cancer (ATC) is the most aggressive type of thyroid cancer. While ATC is rare, its mortality is high. Standard treatments, such as surgery, radiotherapy, and chemotherapy, have demonstrated limited efficacy in managing ATC. However, the advent of immunotherapy has significantly improved the prognosis for patients with ATC. Immunotherapy effectively targets and eliminates tumor cells by using the power of the body's immune cells. The neoantigen is an atypical protein generated by somatic mutation, is exclusively observed in neoplastic cells, and is devoid of central tolerance. Neoantigens exhibit enhanced specificity towards tumor cells and display robust immunogenic properties. Currently, neoantigen therapy is primarily applied in immune checkpoint inhibitors and cellular immunotherapy, encompassing adoptive immunotherapy and tumor vaccines. This study discusses the mechanism, tumor microenvironment, clinical trials, adverse events, limitations and future directions associated with ATC immunotherapy.
Collapse
Affiliation(s)
| | | | - Hongyan Wu
- Department of Endocrinology, The First Affiliated Hospital of Yangtze University, Jingzhou, China
| |
Collapse
|
3
|
Zafar A, Khan MJ, Abu J, Naeem A. Revolutionizing cancer care strategies: immunotherapy, gene therapy, and molecular targeted therapy. Mol Biol Rep 2024; 51:219. [PMID: 38281269 PMCID: PMC10822809 DOI: 10.1007/s11033-023-09096-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 12/04/2023] [Indexed: 01/30/2024]
Abstract
Despite the availability of technological advances in traditional anti-cancer therapies, there is a need for more precise and targeted cancer treatment strategies. The wide-ranging shortfalls of conventional anticancer therapies such as systematic toxicity, compromised life quality, and limited to severe side effects are major areas of concern of conventional cancer treatment approaches. Owing to the expansion of knowledge and technological advancements in the field of cancer biology, more innovative and safe anti-cancerous approaches such as immune therapy, gene therapy and targeted therapy are rapidly evolving with the aim to address the limitations of conventional therapies. The concept of immunotherapy began with the capability of coley toxins to stimulate toll-like receptors of immune cells to provoke an immune response against cancers. With an in-depth understating of the molecular mechanisms of carcinogenesis and their relationship to disease prognosis, molecular targeted therapy approaches, that inhibit or stimulate specific cancer-promoting or cancer-inhibitory molecules respectively, have offered promising outcomes. In this review, we evaluate the achievement and challenges of these technically advanced therapies with the aim of presenting the overall progress and perspective of each approach.
Collapse
Affiliation(s)
- Aasma Zafar
- Department of Biosciences, COMSATS University, Islamabad, 45550, Pakistan
| | | | - Junaid Abu
- Hazm Mebaireek General Hospital, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aisha Naeem
- Qatar University Health, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
4
|
Takeda H. Autoantibody Profiling Using Human Autoantigen Protein Array and AlphaScreen. Methods Mol Biol 2024; 2766:107-128. [PMID: 38270871 DOI: 10.1007/978-1-0716-3682-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Autoantibodies that recognize self-antigens are believed to have a close relationship with diseases such as autoimmune diseases, cancer, and lifestyle diseases. Analysis of autoantibodies is essential for investigating pathology mechanisms, diagnosis, and therapeutics of these diseases. We developed an autoantibody profiling assay using a cell-free synthesized protein array and high-throughput screening technology. Our assay system can sensitively detect interaction between recombinant antigen protein and autoantibody and efficiently analyze autoantibody profiling in patients' sera.
Collapse
Affiliation(s)
- Hiroyuki Takeda
- Proteo-Science Center, Ehime University, Matsuyama, Ehime, Japan.
| |
Collapse
|
5
|
Yao M, Liu X, Qian Z, Fan D, Sun X, Zhong L, Wu P. Research progress of nanovaccine in anti-tumor immunotherapy. Front Oncol 2023; 13:1211262. [PMID: 37692854 PMCID: PMC10484753 DOI: 10.3389/fonc.2023.1211262] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/07/2023] [Indexed: 09/12/2023] Open
Abstract
Tumor vaccines aim to activate dormant or unresponsive tumor-specific T lymphocytes by using tumor-specific or tumor-associated antigens, thus enhancing the body's natural defense against cancer. However, the effectiveness of tumor vaccines is limited by the presence of tumor heterogeneity, low immunogenicity, and immune evasion mechanisms. Fortunately, multifunctional nanoparticles offer a unique chance to address these issues. With the advantages of their small size, high stability, efficient drug delivery, and controlled surface chemistry, nanomaterials can precisely target tumor sites, improve the delivery of tumor antigens and immune adjuvants, reshape the immunosuppressive tumor microenvironment, and enhance the body's anti-tumor immune response, resulting in improved efficacy and reduced side effects. Nanovaccine, a type of vaccine that uses nanotechnology to deliver antigens and adjuvants to immune cells, has emerged as a promising strategy for cancer immunotherapy due to its ability to stimulate immune responses and induce tumor-specific immunity. In this review, we discussed the compositions and types of nanovaccine, and the mechanisms behind their anti-tumor effects based on the latest research. We hope that this will provide a more scientific basis for designing tumor vaccines and enhancing the effectiveness of tumor immunotherapy.
Collapse
Affiliation(s)
- Min Yao
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xiyu Liu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Zhangbo Qian
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Dianfa Fan
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Xinjun Sun
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Liping Zhong
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
| | - Pan Wu
- State Key Laboratory of Targeting Oncology, National Center for International Research of Bio-targeting Theranostics, Guangxi Key Laboratory of Bio-targeting Theranostics, Collaborative Innovation Center for Targeting Tumor Diagnosis and Therapy, Guangxi Medical University, Nanning, Guangxi, China
- Pharmaceutical College, Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
6
|
Yang C, Li D, Ko CN, Wang K, Wang H. Active ingredients of traditional Chinese medicine for enhancing the effect of tumor immunotherapy. Front Immunol 2023; 14:1133050. [PMID: 36969211 PMCID: PMC10036358 DOI: 10.3389/fimmu.2023.1133050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/28/2023] [Indexed: 03/12/2023] Open
Abstract
Immunotherapy is a type of treatment that uses our own immune system to fight cancer. Studies have shown that traditional Chinese medicine (TCM) has antitumor activity and can enhance host immunity. This article briefly describes the immunomodulatory and escape mechanisms in tumors, as well as highlights and summarizes the antitumor immunomodulatory activities of some representative active ingredients of TCM. Finally, this article puts forward some opinions on the future research and clinical application of TCM, aiming to promote the clinical applications of TCM in tumor immunotherapy and to provide new ideas for the research of tumor immunotherapy using TCM.
Collapse
Affiliation(s)
- Chao Yang
- National Engineering Research Center for Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, Zhejiang, China
| | - Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Chung-Nga Ko
- C-MER Dennis Lam and Partners Eye Center, Hong Kong International Eye Care Group, Hong Kong, China
- *Correspondence: Chung-Nga Ko, ; Kai Wang, ; Haiyong Wang,
| | - Kai Wang
- Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, China
- *Correspondence: Chung-Nga Ko, ; Kai Wang, ; Haiyong Wang,
| | - Haiyong Wang
- Department of Internal Medicine Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
- *Correspondence: Chung-Nga Ko, ; Kai Wang, ; Haiyong Wang,
| |
Collapse
|
7
|
Early detection of tumour-associated antigens: Assessment of point-of-care electrochemical immunoassays. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
8
|
de Souza VG, de Lourdes Carvalho A, Miranda CSS, Cardoso LPV. Potential Histopathological and Immune Biomarkers in Malignant and Non-Malignant Oral Lesions. J Oral Maxillofac Res 2022; 13:e3. [PMID: 36788796 PMCID: PMC9902024 DOI: 10.5037/jomr.2022.13403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Objectives The presented case-control study was developed to characterize the clinical, histopathological and immunological profile of patients with traumatic injuries, benign neoplasms, potentially malignant oral disorders and malignant neoplasms of the oral cavity, in order to identify biomarkers of malignancy. Material and Methods Clinical information was collected from dental records and several techniques were performed, including histopathological evaluation in sections stained with haematoxylin and eosin, immunohistochemistry for programmed death ligand-1 and measurement of serum levels of interferon-gamma, interleukin-6, -10 and -12. Statistical analysis was performed using IBM SPSS® Statistics software. Results This study included 8 patients with traumatic injuries, 8 with benign neoplasms, 6 with potentially malignant oral disorders and 11 with malignant neoplasms. An association was observed between the classification of the lesion and smoking (P < 0.05), the size of the lesion (P < 0.05), the density of the inflammatory infiltrate (P < 0.001), the degree of dysplasia (P < 0.01) and programmed death ligand-1 expression (P < 0.01). Conclusions Therefore, it is suggested that smoking, the size of the lesion, the inflammatory infiltrate and the programmed death ligand-1 expression can be considered potential biomarkers of oral malignancy.
Collapse
|
9
|
Fallarini S, Papi F, Licciardi F, Natali F, Lombardi G, Maestrelli F, Nativi C. Niosomes as Biocompatible Scaffolds for the Multivalent Presentation of Tumor-Associated Antigens (TACAs) to the Immune System. Bioconjug Chem 2022; 34:181-192. [PMID: 36519843 PMCID: PMC9853506 DOI: 10.1021/acs.bioconjchem.2c00383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Fully synthetic tumor-associated carbohydrate antigen (TACA)-based vaccines are a promising strategy to treat cancer. To overcome the intrinsic low immunogenicity of TACAs, the choice of the antigens' analogues and multivalent presentation have been proved to be successful. Here, we present the preparation, characterization, and in vitro screening of niosomes displaying multiple copies of the mucin antigen TnThr (niosomes-7) or of TnThr mimetic 1 (niosomes-2). Unprecedentedly, structural differences, likely related to the carbohydrate portions, were observed for the two colloidal systems. Both niosomal systems are stable, nontoxic and endowed with promising immunogenic properties.
Collapse
Affiliation(s)
- Silvia Fallarini
- Department
of Pharmaceutical Sciences, University of
“Piemonte Orientale”, Novara 28100, Italy
| | - Francesco Papi
- Department
of Chemistry, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Federico Licciardi
- Department
of Chemistry, University of Florence, Sesto Fiorentino, Florence 50019, Italy
| | - Francesca Natali
- CNR-IOM
and INSIDE@ILL, c/o OGG,
71 avenue des Martyrs, 38042 Grenoble Cedex 9, France
| | - Grazia Lombardi
- Department
of Pharmaceutical Sciences, University of
“Piemonte Orientale”, Novara 28100, Italy
| | | | | |
Collapse
|
10
|
Sorieul C, Papi F, Carboni F, Pecetta S, Phogat S, Adamo R. Recent advances and future perspectives on carbohydrate-based cancer vaccines and therapeutics. Pharmacol Ther 2022; 235:108158. [PMID: 35183590 DOI: 10.1016/j.pharmthera.2022.108158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/13/2022]
Abstract
Carbohydrates are abundantly expressed on the surface of both eukaryotic and prokaryotic cells, often as post translational modifications of proteins. Glycoproteins are recognized by the immune system and can trigger both innate and humoral responses. This feature has been harnessed to generate vaccines against polysaccharide-encapsulated bacteria such as Streptococcus pneumoniae, Hemophilus influenzae type b and Neisseria meningitidis. In cancer, glycosylation plays a pivotal role in malignancy development and progression. Since glycans are specifically expressed on the surface of tumor cells, they have been targeted for the discovery of anticancer preventive and therapeutic treatments, such as vaccines and monoclonal antibodies. Despite the various efforts made over the last years, resulting in a series of clinical studies, attempts of vaccination with carbohydrate-based candidates have proven unsuccessful, primarily due to the immune tolerance often associated with these glycans. New strategies are thus deployed to enhance carbohydrate-based cancer vaccines. Moreover, lessons learned from glycan immunobiology paved the way to the development of new monoclonal antibodies specifically designed to recognize cancer-bound carbohydrates and induce tumor cell killing. Herein we provide an overview of the immunological principles behind the immune response towards glycans and glycoconjugates and the approaches exploited at both preclinical and clinical level to target cancer-associated glycans for the development of vaccines and therapeutic monoclonal antibodies. We also discuss gaps and opportunities to successfully advance glycan-directed cancer therapies, which could provide patients with innovative and effective treatments.
Collapse
|
11
|
Kurago Z, Loveless J. Microbial Colonization and Inflammation as Potential Contributors to the Lack of Therapeutic Success in Oral Squamous Cell Carcinoma. FRONTIERS IN ORAL HEALTH 2022; 2:739499. [PMID: 35048056 PMCID: PMC8757816 DOI: 10.3389/froh.2021.739499] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022] Open
Abstract
This review discusses the microenvironment of evolving and established conventional oral squamous cell carcinoma, by far the most common oral cancer. The focus of this paper is mainly on the more recent data that describe the role of microorganisms, host-microbial interactions, and in particular, the contributions of cell-surface toll-like receptors on immune system cells and on normal and malignant epithelial cells to their functions that support carcinogenesis. Because carcinomas arising at various host surfaces share much in common, additional information available from studies of other carcinomas is included in the discussion. Accumulating evidence reveals the complex toll-like receptor-mediated tumor-supporting input into many aspects of carcinogenesis via malignant cells, stromal immune cells and non-immune cells, complicating the search for effective treatments.
Collapse
Affiliation(s)
- Zoya Kurago
- Augusta University Dental College of Georgia, Augusta, GA, United States.,Medical College of Georgia, Augusta, GA, United States.,Georgia Cancer Center, Augusta, GA, United States
| | - Jenni Loveless
- Augusta University Dental College of Georgia, Augusta, GA, United States
| |
Collapse
|
12
|
Kozik A, Pavlova M, Petrov I, Bychkov V, Kim L, Dorozhko E, Cheng C, Rodriguez RD, Sheremet E. A review of surface-enhanced Raman spectroscopy in pathological processes. Anal Chim Acta 2021; 1187:338978. [PMID: 34753586 DOI: 10.1016/j.aca.2021.338978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
With the continuous growth of the human population and new challenges in the quality of life, it is more important than ever to diagnose diseases and pathologies with high accuracy, sensitivity and in different scenarios from medical implants to the operation room. Although conventional methods of diagnosis revolutionized healthcare, alternative analytical methods are making their way out of academic labs into clinics. In this regard, surface-enhanced Raman spectroscopy (SERS) developed immensely with its capability to achieve single-molecule sensitivity and high-specificity in the last two decades, and now it is well on its way to join the arsenal of physicians. This review discusses how SERS is becoming an essential tool for the clinical investigation of pathologies including inflammation, infections, necrosis/apoptosis, hypoxia, and tumors. We critically discuss the strategies reported so far in nanoparticle assembly, functionalization, non-metallic substrates, colloidal solutions and how these techniques improve SERS characteristics during pathology diagnoses like sensitivity, selectivity, and detection limit. Moreover, it is crucial to introduce the most recent developments and future perspectives of SERS as a biomedical analytical method. We finally discuss the challenges that remain as bottlenecks for a routine SERS implementation in the medical room from in vitro to in vivo applications. The review showcases the adaptability and versatility of SERS to resolve pathological processes by covering various experimental and analytical methods and the specific spectral features and analysis results achieved by these methods.
Collapse
Affiliation(s)
- Alexey Kozik
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Marina Pavlova
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Ilia Petrov
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Vyacheslav Bychkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634009, Russia
| | - Larissa Kim
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Elena Dorozhko
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia.
| | | |
Collapse
|
13
|
Identification of Tumor Antigens in Ovarian Cancers Using Local and Circulating Tumor-Specific Antibodies. Int J Mol Sci 2021; 22:ijms222011220. [PMID: 34681879 PMCID: PMC8538754 DOI: 10.3390/ijms222011220] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/12/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancers include several disease subtypes and patients often present with advanced metastatic disease and a poor prognosis. New biomarkers for early diagnosis and targeted therapy are, therefore, urgently required. This study uses antibodies produced locally in tumor-draining lymph nodes (ASC probes) of individual ovarian cancer patients to screen two separate protein microarray platforms and identify cognate tumor antigens. The resulting antigen profiles were unique for each individual cancer patient and were used to generate a 50-antigen custom microarray. Serum from a separate cohort of ovarian cancer patients encompassing four disease subtypes was screened on the custom array and we identified 28.8% of all ovarian cancers, with a higher sensitivity for mucinous (50.0%) and serous (40.0%) subtypes. Combining local and circulating antibodies with high-density protein microarrays can identify novel, patient-specific tumor-associated antigens that may have diagnostic, prognostic or therapeutic uses in ovarian cancer.
Collapse
|
14
|
Jiao Q, Ren Y, Ariston Gabrie AN, Wang Q, Wang Y, Du L, Liu X, Wang C, Wang YS. Advances of immune checkpoints in colorectal cancer treatment. Biomed Pharmacother 2020; 123:109745. [DOI: 10.1016/j.biopha.2019.109745] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
|
15
|
Prognostic Value of Circulating IGFBP2 and Related Autoantibodies in Children with Metastatic Rhabdomyosarcomas. Diagnostics (Basel) 2020; 10:diagnostics10020115. [PMID: 32093404 PMCID: PMC7168276 DOI: 10.3390/diagnostics10020115] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 02/17/2020] [Accepted: 02/18/2020] [Indexed: 01/26/2023] Open
Abstract
Insulin-like growth factor-binding protein 2 (IGFBP2) is a tumor-associated protein measurable in patients’ biopsies and blood samples. Increased IGFBP2 expression correlates with tumor severity in rhabdomyosarcoma (RMS). Thus, we examined the plasmatic IGFBP2 levels in 114 RMS patients and 15 healthy controls by ELISA assay in order to evaluate its value as a plasma biomarker for RMS. Additionally, we looked for the presence of a humoral response against IGBFP2 protein measurable by the production of anti-IGFBP2 autoantibodies. We demonstrated that both circulating IGFBP2 protein and autoantibodies were significantly higher in RMS patients with respect to controls and their combination showed a better discriminative capacity. IGFBP2 protein identified metastatic patients with worse event-free survival, whereas both IGFBP2 and anti-IGFBP2 antibodies negatively correlated with overall survival. Our study suggests that IGFBP2 and anti-IGFBP2 antibodies are useful for diagnostic and prognostic purposes, mainly as independent negative prognostic markers in metastatic patients. This is the first study that reports a specific humoral response in RMS plasma samples and proves the value of blood-based biomarkers in improving risk assessment and outcome of metastatic RMS patients.
Collapse
|
16
|
Xia L, Liu W, Song Y, Zhu H, Duan Y. The Present and Future of Novel Protein Degradation Technology. Curr Top Med Chem 2019; 19:1784-1788. [PMID: 31644408 DOI: 10.2174/1568026619666191011162955] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/26/2019] [Accepted: 09/29/2019] [Indexed: 12/24/2022]
Abstract
Proteolysis targeting chimeras (PROTACs), as a novel therapeutic modality, play a vital role in drug discovery. Each PROTAC contains three key parts; a protein-of-interest (POI) ligand, a E3 ligase ligand, and a linker. These bifunctional molecules could mediate the degradation of POIs by hijacking the activity of E3 ubiquitin ligases for POI ubiquitination and subsequent degradation via the ubiquitin proteasome system (UPS). With several advantages over other therapeutic strategies, PROTACs have set off a new upsurge of drug discovery in recent years. ENDTAC, as the development of PROTACs technology, is now receiving more attention. In this review, we aim to summarize the rapid progress from 2018 to 2019 in protein degradation and analyze the challenges and future direction that need to be addressed in order to efficiently develop potent protein degradation technology.
Collapse
Affiliation(s)
- Liwen Xia
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China.,State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Wei Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Yinsen Song
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Hailiang Zhu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| |
Collapse
|
17
|
Affiliation(s)
- Wei Liu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Xiaoji Wang
- Engineering Research Center of Health Food Design & Nutrition Regulation, School of Chemical Engineering and Energy Technology, Dongguan University of Technology, Dongguan, China
| | - Hailiang Zhu
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| | - Yongtao Duan
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou, 450018, China
| |
Collapse
|
18
|
Heo CK, Hwang HM, Lee HJ, Kwak SS, Yoo JS, Yu DY, Lim KJ, Lee S, Cho EW. Serum anti-EIF3A autoantibody as a potential diagnostic marker for hepatocellular carcinoma. Sci Rep 2019; 9:11059. [PMID: 31363116 PMCID: PMC6667438 DOI: 10.1038/s41598-019-47365-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
Tumor-associated autoantibodies are promising diagnostic biomarkers for early detection of tumors. We have screened a novel tumor-associated autoantibody in hepatocellular carcinoma (HCC) model mice. Its target antigen was identified as eukaryotic translation initiation factor 3 subunit A (EIF3A) by proteomic analysis, and the elevated expression of EIF3A in HCC tissues of tumor model mice as well as human patients was shown. Also, its existence in tumor-derived exosomes was revealed, which seem to be the cause of tumor-associated autoantibody production. To use serum anti-EIF3A autoantibody as biomarker, ELISA detecting anti-EIF3A autoantibody in human serum was performed using autoantibody-specific epitope. For the sensitive detection of serum autoantibodies its specific conformational epitopes were screened from the random cyclic peptide library, and a streptavidin antigen displaying anti-EIF3A autoantibody-specific epitope, XC90p2(-CPVRSGFPC-), was used as capture antigen. It distinguished patients with HCC (n = 102) from healthy controls (n = 0285) with a sensitivity of 79.4% and specificity of 83.5% (AUC = 0.87). Also, by simultaneously detecting with other HCC biomarkers, including alpha-fetoprotein, HCC diagnostic sensitivity improved from 79.4% to 85%. Collectively, we suggest that serum anti-EIF3A autoantibody is a useful biomarker for the diagnosis of HCC and the combinational detection of related biomarkers can enhance the accuracy of the cancer diagnosis.
Collapse
Affiliation(s)
- Chang-Kyu Heo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.,College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Hai-Min Hwang
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.,College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Hye-Jung Lee
- Proteometech Inc., 1101 Wooree Venture Town, 466 Gangseo-ro, Gangseo-gu, Seoul, 03722, South Korea.,Graduate Program for Nanomedical Science, Yonsei University, 50 Yonsei-ro Seodaemun-gu, Seoul, 03722, South Korea
| | - Sang-Seob Kwak
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.,Department of Functional Genomics, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Jong-Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute, 162 YeonGuDanji-Ro, Ochang-eup, Cheongju, Chungbuk, 28119, South Korea
| | - Dae-Yeul Yu
- Disease Model Research Laboratory, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Kook-Jin Lim
- Proteometech Inc., 1101 Wooree Venture Town, 466 Gangseo-ro, Gangseo-gu, Seoul, 03722, South Korea
| | - Soojin Lee
- College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea.
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea. .,Department of Functional Genomics, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| |
Collapse
|
19
|
Ciocan-Cartita CA, Jurj A, Buse M, Gulei D, Braicu C, Raduly L, Cojocneanu R, Pruteanu LL, Iuga CA, Coza O, Berindan-Neagoe I. The Relevance of Mass Spectrometry Analysis for Personalized Medicine through Its Successful Application in Cancer "Omics". Int J Mol Sci 2019; 20:ijms20102576. [PMID: 31130665 PMCID: PMC6567119 DOI: 10.3390/ijms20102576] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 05/21/2019] [Accepted: 05/24/2019] [Indexed: 01/06/2023] Open
Abstract
Mass spectrometry (MS) is an essential analytical technology on which the emerging omics domains; such as genomics; transcriptomics; proteomics and metabolomics; are based. This quantifiable technique allows for the identification of thousands of proteins from cell culture; bodily fluids or tissue using either global or targeted strategies; or detection of biologically active metabolites in ultra amounts. The routine performance of MS technology in the oncological field provides a better understanding of human diseases in terms of pathophysiology; prevention; diagnosis and treatment; as well as development of new biomarkers; drugs targets and therapies. In this review; we argue that the recent; successful advances in MS technologies towards cancer omics studies provides a strong rationale for its implementation in biomedicine as a whole.
Collapse
Affiliation(s)
- Cristina Alexandra Ciocan-Cartita
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Ancuța Jurj
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Mihail Buse
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Diana Gulei
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Cornelia Braicu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Lajos Raduly
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Roxana Cojocneanu
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
| | - Lavinia Lorena Pruteanu
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
| | - Cristina Adela Iuga
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, "Iuliu Hațieganu" University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400349 Cluj-Napoca.
| | - Ovidiu Coza
- Department of Oncology, "Iuliu Hațieganu" University of Medicine and Pharmacy, 34-36 Republicii Street, 400015 Cluj-Napoca, Romania.
- Department of Radiotherapy with High Energies and Brachytherapy, Oncology Institute "Prof. Dr. Ion Chiricuta", 34-36 Republicii Street, 400015 Cluj-Napoca.
| | - Ioana Berindan-Neagoe
- MEDFUTURE -Research Center for Advanced Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy, 4-6 Louis Pasteur Street, 400349 Cluj-Napoca, Romania.
- Research Center for Functional Genomics, Biomedicine and Translational Medicine," Iuliu Hațieganu" University of Medicine and Pharmacy.
- Department of Functional Genomics and Experimental Pathology, Ion Chiricuțǎ Oncology Institute, 34-36 Republicii Street, 400015 Cluj-Napoca.
| |
Collapse
|
20
|
Young AR, Duarte JDG, Coulson R, O'Brien M, Deb S, Lopata A, Behren A, Mathivanan S, Lim E, Meeusen E. Immunoprofiling of Breast Cancer Antigens Using Antibodies Derived from Local Lymph Nodes. Cancers (Basel) 2019; 11:cancers11050682. [PMID: 31100936 PMCID: PMC6562983 DOI: 10.3390/cancers11050682] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 05/08/2019] [Accepted: 05/13/2019] [Indexed: 01/09/2023] Open
Abstract
Tumor antigens are responsible for initiating an immune response in cancer patients, and their identification may provide new biomarkers for cancer diagnosis and targets for immunotherapy. The general use of serum antibodies to identify tumor antigens has several drawbacks, including dilution, complex formation, and background reactivity. In this study, antibodies were generated from antibody-secreting cells (ASC) present in tumor-draining lymph nodes of 20 breast cancer patients (ASC-probes) and were used to screen breast cancer cell lines and protein microarrays. Half of the ASC-probes reacted strongly against extracts of the MCF-7 breast cancer cell line, but each with a distinct antigen recognition profile. Three of the positive ASC-probes reacted differentially with recombinant antigens on a microarray containing cancer-related proteins. The results of this study show that lymph node-derived ASC-probes provide a highly specific source of tumor-specific antibodies. Each breast cancer patient reacts with a different antibody profile which indicates that targeted immunotherapies may need to be personalized for individual patients. Focused microarrays in combination with ASC-probes may be useful in providing immune profiles and identifying tumor antigens of individual cancer patients.
Collapse
Affiliation(s)
- Anna Rachel Young
- La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne 3086, Australia.
| | - Jessica Da Gama Duarte
- Olivia Newton-John Cancer Research Institute, Level 5, ONJ Centre, Heidelberg Vic 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne 3086, Australia.
| | - Rhiannon Coulson
- Garvan Institute of Medical Research, St Vincent's Clinical School, Darlinghurst, NSW 2010, Australia.
| | - Megan O'Brien
- Olivia Newton-John Cancer Research Institute, Level 5, ONJ Centre, Heidelberg Vic 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne 3086, Australia.
| | - Siddhartha Deb
- Consultant Pathologist, Anatpath. 120 Gardenvale Rd, Gardenvale Melbourne 3185, Australia.
| | - Alex Lopata
- CancerProbe Pty Ltd, PO Box 2237, Prahran 3181, Australia.
| | - Andreas Behren
- Olivia Newton-John Cancer Research Institute, Level 5, ONJ Centre, Heidelberg Vic 3084, Australia.
- School of Cancer Medicine, La Trobe University, Melbourne 3086, Australia.
| | - Suresh Mathivanan
- La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne 3086, Australia.
| | - Elgene Lim
- Garvan Institute of Medical Research, St Vincent's Clinical School, Darlinghurst, NSW 2010, Australia.
| | - Els Meeusen
- La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne 3086, Australia.
- CancerProbe Pty Ltd, PO Box 2237, Prahran 3181, Australia.
| |
Collapse
|
21
|
Kotani N, Ida Y, Nakano T, Sato I, Kuwahara R, Yamaguchi A, Tomita M, Honke K, Murakoshi T. Tumor-dependent secretion of close homolog of L1 results in elevation of its circulating level in mouse model for human lung tumor. Biochem Biophys Res Commun 2018; 501:982-987. [DOI: 10.1016/j.bbrc.2018.05.096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 05/14/2018] [Indexed: 01/01/2023]
|
22
|
Hwang HM, Heo CK, Lee HJ, Kwak SS, Lim WH, Yoo JS, Yu DY, Lim KJ, Kim JY, Cho EW. Identification of anti-SF3B1 autoantibody as a diagnostic marker in patients with hepatocellular carcinoma. J Transl Med 2018; 16:177. [PMID: 29954402 PMCID: PMC6025833 DOI: 10.1186/s12967-018-1546-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/12/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Tumor-associated (TA) autoantibodies, which are generated by the immune system upon the recognition of abnormal TA antigens, are promising biomarkers for the early detection of tumors. In order to detect autoantibody biomarkers effectively, antibody-specific epitopes in the diagnostic test should maintain the specific conformations that are as close as possible to those presenting in the body. However, when using patients' serum as a source of TA autoantibodies the characterization of the autoantibody-specific epitope is not easy due to the limited amount of patient-derived serum. METHODS To overcome these limits, we constructed a B cell hybridoma pool derived from a hepatocellular carcinoma (HCC) model HBx-transgenic mouse and characterized autoantibodies derived from them as tumor biomarkers. Their target antigens were identified by mass spectrometry and the correlations with HCC were examined. With the assumption that TA autoantibodies generated in the tumor mouse model are induced in human cancer patients, the enzyme-linked immunosorbent assays (ELISA) based on the characteristics of mouse TA autoantibodies were developed for the detection of autoantibody biomarkers in human serum. To mimic natural antigenic structures, the specific epitopes against autoantibodies were screened from the phage display cyclic random heptapeptide library, and the streptavidin antigens fused with the specific epitopes were used as coating antigens. RESULTS In this study, one of HCC-associated autoantibodies derived from HBx-transgenic mouse, XC24, was characterized. Its target antigen was identified as splicing factor 3b subunit 1 (SF3B1) and the high expression of SF3B1 was confirmed in HCC tissues. The specific peptide epitopes against XC24 were selected and, among them, XC24p11 cyclic peptide (-CDATPPRLC-) was used as an epitope of anti-SF3B1 autoantibody ELISA. With this epitope, we could effectively distinguish between serum samples from HCC patients (n = 102) and healthy subjects (n = 85) with 73.53% sensitivity and 91.76% specificity (AUC = 0.8731). Moreover, the simultaneous detection of anti-XC24p11 epitope autoantibody and AFP enhanced the efficiency of HCC diagnosis with 87.25% sensitivity and 90.59% specificity (AUC = 0.9081). CONCLUSIONS ELISA using XC24p11 peptide epitope that reacts against anti-SF3B1 autoantibody can be used as a novel test to enhance the diagnostic efficiency of HCC.
Collapse
Affiliation(s)
- Hai-Min Hwang
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 South Korea
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 South Korea
| | - Chang-Kyu Heo
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 South Korea
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 South Korea
| | - Hye Jung Lee
- Proteometech Inc., 1101 Wooree Venture Town, 466 Gangseo-ro, Gangseo-gu, Seoul, 07573 South Korea
- Graduate Program for Nanomedical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 South Korea
| | - Sang-Seob Kwak
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 South Korea
- Department of Functional Genomics, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Won-Hee Lim
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 South Korea
- Department of Functional Genomics, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Jong-Shin Yoo
- Biomedical Omics Group, Korea Basic Science Institute, 162 YeonGuDanji-ro, Ochang-eup, Cheongju, Chungbuk 28119 South Korea
| | - Dae-Yuel Yu
- Disease Model Research Laboratory, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| | - Kook Jin Lim
- Proteometech Inc., 1101 Wooree Venture Town, 466 Gangseo-ro, Gangseo-gu, Seoul, 07573 South Korea
- Graduate Program for Nanomedical Science, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul, 03722 South Korea
| | - Jeong-Yoon Kim
- Department of Microbiology and Molecular Biology, College of Bioscience and Biotechnology, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134 South Korea
| | - Eun-Wie Cho
- Rare Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 South Korea
- Department of Functional Genomics, University of Science and Technology, 125 Gwahak-ro, Yuseong-gu, Daejeon, 34141 South Korea
| |
Collapse
|
23
|
Abstract
Interleukin 32 (IL-32) is a proinflammatory cytokine involved in the development of several diseases, including cancer. IL-32 is a rather peculiar cytokine because its protein structure does not show resemblance with any of the known cytokines, and an IL-32 receptor to facilitate extracellular signaling has not yet been identified. Thus far, 9 isoforms of IL-32 have been described, all of which show differences in terms of effects and in potency to elicit a specific effect. Since the first report of IL-32 in 2005, there is increasing evidence that IL-32 plays an important role in the pathophysiology of both hematologic malignancies and solid tumors. Some IL-32 isoforms have been linked to disease outcome and were shown to positively influence tumor development and progression in various different malignancies, including gastric, breast and lung cancers. However, there are other reports suggesting a tumor suppressive role for some of IL-32 as well. For example, IL-32γ and IL-32β expression is associated with increased cancer cell death in colon cancer and melanoma, whereas expression of these isoforms is associated with increased invasion and migration in breast cancer cells. Furthermore, IL-32 isoforms α, β and γ also play an important role in regulating the anti-tumor immune response, thus also influencing tumor progression. In this review, we provide an overview of the role of IL-32 and its different isoforms in carcinogenesis, invasion and metastasis, angiogenesis and regulation of the anti-tumor immune response.
Collapse
|
24
|
Li D, Zhang T, Yang X, Geng J, Li S, Ding H, Li H, Huang A, Wang C, Sun L, Bai C, Zhang H, Li J, Dong J, Shao N. Identification of Functional mimotopes of human Vasorin Ectodomain by Biopanning. Int J Biol Sci 2018; 14:461-470. [PMID: 29725267 PMCID: PMC5930478 DOI: 10.7150/ijbs.22692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 02/25/2018] [Indexed: 01/11/2023] Open
Abstract
Human vasorin (VASN) as a type I transmembrane protein, is a potential biomarker of hepatocellular carcinoma, which could expedite HepG2 cell proliferation and migration significantly in vitro. The ectodomain of VASN was proteolytically released to generate soluble VASN (sVASN), which was validated to be the active form. Among several monoclonal antibodies produced against sVASN, the clone V21 was found to bind with the recombinant human sVASN (rhsVASN) with the highest affinity and specificity, and also have inhibitory effects on proliferation and migration of HepG2 cells. Hence the phage-displayed peptide library was screened against the antibody V21. The positive phage clones were isolated and sequenced, and one unique consensus motifs was obtained. The result of sequence alignment showed that the conserved motif had similarity to VASN(Cys432-Cys441), embedded in the epidermal growth factor (EGF)-like domain. The synthetic mimotope peptide V21P1 and V21P2 were confirmed to bind with V21 and could compete with rhsVASN in ELISA assay. And they could also almost completely reverse the inhibitory effect of V21 on HepG2 migration and proliferation. Furthermore, the antibodies produced against V21P1 were able to bind not only with the peptide V21P1, but also with rhsVASN and the natural VASN from HepG2 cell. Our results showed that V21 seemed to be a functional antibody. The mimotopes toward V21 might mimic the functional domain of VASN, which would be helpful to exploit VASN functions and act as a candidate target for developing therapeutic antibodies against VASN.
Collapse
Affiliation(s)
- Da Li
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Tan Zhang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Xiqin Yang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jie Geng
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Shaohua Li
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Hongmei Ding
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Hui Li
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Aixue Huang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Chaonan Wang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Leqiao Sun
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Chenjun Bai
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Heqiu Zhang
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jie Li
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Jie Dong
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| | - Ningsheng Shao
- Institute of Military Cognitive and Brain Sciences, Academy of Military Medical Sciences, Beijing 100850, China
| |
Collapse
|
25
|
Gul A, Erman B. Binding stability of peptides on major histocompatibility complex class I proteins: role of entropy and dynamics. Phys Biol 2018; 15:026005. [PMID: 29035272 DOI: 10.1088/1478-3975/aa93b8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Prediction of peptide binding on specific human leukocyte antigens (HLA) has long been studied with successful results. We herein describe the effects of entropy and dynamics by investigating the binding stabilities of 10 nanopeptides on various HLA Class I alleles using a theoretical model based on molecular dynamics simulations. The fluctuational entropies of the peptides are estimated over a temperature range of 310-460 K. The estimated entropies correlate well with experimental binding affinities of the peptides: peptides that have higher binding affinities have lower entropies compared to non-binders, which have significantly larger entropies. The computation of the entropies is based on a simple model that requires short molecular dynamics trajectories and allows for approximate but rapid determination. The paper draws attention to the long neglected dynamic aspects of peptide binding, and provides a fast computation scheme that allows for rapid scanning of large numbers of peptides on selected HLA antigens, which may be useful in defining the right peptides for personal immunotherapy.
Collapse
Affiliation(s)
- Ahmet Gul
- Istanbul Faculty of Medicine, Division of Rheumatology, Department of Internal Medicine, Istanbul University, Istanbul, Turkey
| | | |
Collapse
|
26
|
Takeda H. Autoantibody Profiling Using Human Autoantigen Protein Array and AlphaScreen. Methods Mol Biol 2018; 1868:93-112. [PMID: 30244457 DOI: 10.1007/978-1-4939-8802-0_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Autoantibodies that recognize self-antigens are believed to have close relationship diseases such as autoimmune diseases, cancer, and lifestyle diseases. Analysis of autoantibodies is essential for investigating pathology mechanisms, diagnosis, and therapeutics of these diseases. We developed autoantibody profiling assay using cell-free synthesized protein array and high-throughput screening technology. Our assay system can sensitively detect interaction between recombinant antigen protein and autoantibody and efficiently analyze autoantibody profiling in patients' sera.
Collapse
|