1
|
Park HJ, Seong HJ, Lee J, Heo L, Sul WJ, Han SW. Two DNA Methyltransferases for Site-Specific 6mA and 5mC DNA Modification in Xanthomonas euvesicatoria. FRONTIERS IN PLANT SCIENCE 2021; 12:621466. [PMID: 33841456 PMCID: PMC8025778 DOI: 10.3389/fpls.2021.621466] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/25/2021] [Indexed: 05/08/2023]
Abstract
Xanthomonas euvesicatoria (Xe) is a gram-negative phytopathogenic bacterium that causes bacterial spot disease in tomato/pepper leading to economic losses in plantations. DNA methyltransferases (MTases) are critical for the survival of prokaryotes; however, their functions in phytopathogenic bacteria remain unclear. In this study, we characterized the functions of two putative DNA MTases, XvDMT1 and XvDMT2, in Xe by generating XvDMT1- and XvDMT2-overexpressing strains, Xe(XvDMT1) and Xe(XvDMT2), respectively. Virulence of Xe(XvDMT2), but not Xe(XvDMT1), on tomato was dramatically reduced. To postulate the biological processes involving XvDMTs, we performed a label-free shotgun comparative proteomic analysis, and results suggest that XvDMT1 and XvDMT2 have distinct roles in Xe. We further characterized the functions of XvDMTs using diverse phenotypic assays. Notably, both Xe(XvDMT1) and Xe(XvDMT2) showed growth retardation in the presence of sucrose and fructose as the sole carbon source, with Xe(XvDMT2) being the most severely affected. In addition, biofilm formation and production of exopolysaccharides were declined in Xe(XvDMT2), but not Xe(XvDMT1). Xe(XvDMT2) was more tolerant to EtOH than Xe(XvDMT1), which had enhanced tolerance to sorbitol but decreased tolerance to polymyxin B. Using single-molecule real-time sequencing and methylation-sensitive restriction enzymes, we successfully predicted putative motifs methylated by XvDMT1 and XvDMT2, which are previously uncharacterized 6mA and 5mC DNA MTases, respectively. This study provided new insights into the biological functions of DNA MTases in prokaryotic organisms.
Collapse
Affiliation(s)
- Hye-Jee Park
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
- R and D Innovation Center, Seoul Clinical Laboratories, Yongin, South Korea
| | - Hoon Je Seong
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Jongchan Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Lynn Heo
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Woo Jun Sul
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
- *Correspondence: Sang-Wook Han
| |
Collapse
|
2
|
Park H, Do E, Kim M, Park HJ, Lee J, Han SW. A LysR-Type Transcriptional Regulator LcrX Is Involved in Virulence, Biofilm Formation, Swimming Motility, Siderophore Secretion, and Growth in Sugar Sources in Xanthomonas axonopodis Pv. glycines. FRONTIERS IN PLANT SCIENCE 2020; 10:1657. [PMID: 31998344 PMCID: PMC6965072 DOI: 10.3389/fpls.2019.01657] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/25/2019] [Indexed: 05/30/2023]
Abstract
Xanthomonas axonopodis pv. glycines (Xag) is a Gram-negative bacterium that causes bacterial pustule disease in soybean. To acclimate to new environments, the expression of genes in bacteria is controlled directly or indirectly by diverse transcriptional factors. Among them, LysR type transcriptional regulators are well-characterized and abundant in bacteria. In a previous study, comparative proteomic analysis revealed that LysR type carbohydrate-related transcriptional regulator in Xag (LcrX) was more abundant in XVM2, which is a minimal medium, compared with a rich medium. However, the functions of LcrX in Xag have not been characterized. In this study, we generated an LcrX-overexpressing strain, Xag(LcrX), and the knockout mutant strain, XagΔlcrX(EV), to elucidate the functions of LcrX. Bacterial multiplication of Xag(LcrX) in soybean was significantly impaired, indicating that LcrX is related to virulence. Comparative proteomic analysis revealed that LcrX is mainly involved in carbohydrate metabolism/transport and inorganic ion transport/metabolism. Based on the results of proteomics analysis, diverse phenotypic assays were carried out. A gel electrophoresis mobility shift assay demonstrated that LcrX specifically bound to the putative promoter regions of genes encoding putative fructose 1,6-bisphosphatase and protease. Through a 96-well plate assay under various conditions, we confirmed that the growth of Xag(LcrX) was dramatically affected in the presence of various carbon sources, while the growth of XagΔlcrX(EV) was only slightly changed. Biofilm formation activity was reduced in Xag(LcrX) but enhanced in XagΔlcrX(EV). The production of siderophores was also decreased in Xag(LcrX) but not altered in XagΔlcrX(EV). In contrast, LcrX was not associated with exopolysaccharide production, protease activity, or bacterial motility. These findings provide new insights into the functions of a carbohydrate-related transcriptional regulator in Xag.
Collapse
Affiliation(s)
- Hanbi Park
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Minyoung Kim
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Hye-Jee Park
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Jongchan Lee
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| | - Sang-Wook Han
- Department of Plant Science and Technology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
3
|
Park HJ, Lee J, Kim M, Han SW. Profiling Differentially Abundant Proteins by Overexpression of Three Putative Methyltransferases in Xanthomonas axonopodis pv. glycines. Proteomics 2020; 20:e1900125. [PMID: 31693783 DOI: 10.1002/pmic.201900125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 10/10/2019] [Indexed: 11/07/2022]
Abstract
Methyltransferases (MTases) are enzymes that modify specific substrates by adding a methyl group using S-adenosyl-l-methionine. Functions of MTases have been extensively studied in eukaryotic organisms and animal pathogenic bacteria. Despite their importance, mechanisms underlying MTase function in plant pathogenic bacteria have not been studied in depth, as is the case of Xanthomonas axonopodis pv. glycines (Xag) that causes bacterial pustule disease in soybean crops worldwide. Here, the association between Xag proteome alterations and three MTase-overexpressing strains, Xag(XgMT1), Xag(XgMT2), and Xag(XgMT3), compared to Xag carrying an empty vector, Xag(EV) is reported. Using label-free shotgun comparative proteomic analysis, proteins are identified in all three biological replicates of the four strains and ranged from 1004 to 1082. In comparative analyses, 124, 135, and 134 proteins are differentially changed (over twofold) by overexpression of XgMT1, XgMT2, and XgMT3, respectively. These proteins are also categorized using cluster of orthologous group (COG) analyses, allowing postulation of biological mechanisms associated with three MTases in Xag. COGs reveal that the three MTases may play distinct roles, although some functions may overlap. These results are expected to allow new insight into understanding and predicting the biological functions of MTases in plant pathogenic bacteria. Data are available via ProteomeXchange (Identifier PXD012590).
Collapse
Affiliation(s)
- Hye-Jee Park
- Department of Plant Science and Technology , Chung-Ang University, Anseong, 17456, Republic of Korea
| | - Jongchan Lee
- Department of Plant Science and Technology , Chung-Ang University, Anseong, 17456, Republic of Korea
| | - Minyoung Kim
- Department of Plant Science and Technology , Chung-Ang University, Anseong, 17456, Republic of Korea
| | - Sang-Wook Han
- Department of Plant Science and Technology , Chung-Ang University, Anseong, 17456, Republic of Korea
| |
Collapse
|
4
|
Park HJ, Jung B, Lee J, Han SW. Functional characterization of a putative DNA methyltransferase, EadM, in Xanthomonas axonopodis pv. glycines by proteomic and phenotypic analyses. Sci Rep 2019; 9:2446. [PMID: 30792399 PMCID: PMC6385262 DOI: 10.1038/s41598-019-38650-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 01/02/2019] [Indexed: 11/13/2022] Open
Abstract
Xanthomonas axonopodis pv. glycines (Xag) is a phytopathogenic bacterium causing bacterial pustule disease in soybean. Functions of DNA methyltransferases have been characterized in animal pathogenic bacteria, but are poorly understood in plant pathogens. Here, we report that functions of a putative DNA methyltransferase, EadM, in Xag. An EadM-overexpressing strain, Xag(EadM), was less virulent than the wild-type carrying an empty vector, Xag(EV). Interestingly, the viable cell numbers of Xag(EadM) were much lower (10-fold) than those of Xag(EV) at the same optical density. Comparative proteomic analysis revealed that proteins involved in cell wall/membrane/envelope and iron-transport were more abundant. Based on proteomic analysis we carried out diverse phenotypic assays. Scanning electron microscopy revealed abnormal bacterial envelopes in Xag(EadM). Additionally, Xag(EadM) showed decreased stress tolerance against ciprofloxacin and sorbitol, but enhanced resistance to desiccation. Exopolysaccharide production in Xag(EadM) was also decreased. Production of siderophores, which are iron-chelators, was much higher in Xag(EadM). As in Xag, Escherichia coli expressing EadM showed significantly reduced (1000-fold) viable cell numbers at the same optical density. Thus, EadM is associated with virulence, envelope biogenesis, stress tolerance, exopolysaccharide production, and siderophore production. Our results provide valuable and fundamental information regarding DNA methyltransferase functions and their related cellular mechanisms in plant pathogenic bacteria.
Collapse
Affiliation(s)
- Hye-Jee Park
- Department of Integrative Plant Science, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Boknam Jung
- Department of Applied Biology, Dong-A University, Busan, 49315, Republic of Korea
| | - Jungkwan Lee
- Department of Applied Biology, Dong-A University, Busan, 49315, Republic of Korea
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
5
|
Bae N, Park H, Park H, Kim M, Han S. Deciphering the functions of the outer membrane porin OprBXo involved in virulence, motility, exopolysaccharide production, biofilm formation and stress tolerance in Xanthomonas oryzae pv. oryzae. MOLECULAR PLANT PATHOLOGY 2018; 19:2527-2542. [PMID: 30073749 PMCID: PMC6638129 DOI: 10.1111/mpp.12727] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 06/25/2018] [Accepted: 07/09/2018] [Indexed: 05/24/2023]
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is a Gram-negative bacterium causing bacterial leaf blight disease in rice. Previously, proteomic analysis has shown that the outer membrane protein B in Xoo (OprBXo) is more abundant in the wildtype strain than is the outer membrane protein 1 in the Xoo (Omp1X) knockout mutant. OprBXo shows high homology with OprB, which has been well characterized as a carbohydrate-selective porin in X. citri ssp. citri and Pseudomonas species. However, the functions of OprBXo in Xoo have not yet been documented. To elucidate the functions of OprBXo, we generated the OprBXo-overexpressing mutant, Xoo(OprBXo), and the knockout mutant, XooΔoprBXo(EV). We found that the virulence and migration of Xoo(OprBXo), but not XooΔoprBXo(EV), were markedly reduced in rice. To postulate the mechanisms affected by OprBXo, comparative proteomic analysis was performed. Based on the results of proteomics, we employed diverse phenotypic assays to characterize the functions of OprBXo. Abnormal twitching motility and reduction in swarming motility were observed in Xoo(OprBXo). Moreover, Xoo(OprBXo) decreased, but XooΔoprBXo(EV) enhanced, exopolysaccharide production and biofilm formation. The chemotactic ability of XooΔoprBXo(EV) was dramatically lower than that of Xoo(EV) in the presence of glucose and xylose. Xoo(OprBXo) was resistant to sodium dodecylsulphate and hydrogen peroxide, but XooΔoprBXo(EV) was highly sensitive compared with Xoo(EV). Thus, OprBXo is not only essential for chemotaxis and stress tolerance, but also for motility, biofilm formation and exopolysaccharide production, which may contribute to the virulence of Xoo. These results will lead to new insights into the functions of a sugar-selective porin in Xoo.
Collapse
Affiliation(s)
- Nahee Bae
- Department of Integrative Plant ScienceChung‐Ang UniversityAnseong17546South Korea
| | - Hye‐Jee Park
- Department of Integrative Plant ScienceChung‐Ang UniversityAnseong17546South Korea
| | - Hanbi Park
- Department of Integrative Plant ScienceChung‐Ang UniversityAnseong17546South Korea
| | - Minyoung Kim
- Department of Integrative Plant ScienceChung‐Ang UniversityAnseong17546South Korea
| | - Sang‐Wook Han
- Department of Integrative Plant ScienceChung‐Ang UniversityAnseong17546South Korea
| |
Collapse
|
6
|
Bae N, Park HJ, Park H, Kim M, Do E, Han SW. Elucidating Functions of FleQ in Xanthomonas oryzae pv . oryzae by Comparative Proteomic and Phenotypic Analyses. Int J Mol Sci 2018; 19:ijms19103038. [PMID: 30301162 PMCID: PMC6213323 DOI: 10.3390/ijms19103038] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 01/03/2023] Open
Abstract
To acclimate to different environments, gene expression has to be controlled using diverse transcriptional activators. FleQ activates σ54-dependent transcription initiation and regulates flagellar biosynthesis and other mechanisms in several bacteria. Xanthomonas oryzae pv. oryzae (Xoo), which is a causal agent of bacterial leaf blight on rice, lacking FleQ loses swimming motility and virulence is not altered. However, other biological mechanisms related with FleQ in Xoo are unknown. In this study, we generated the FleQ-overexpressing strain, Xoo(FleQ), and knockout mutant, XooΔfleQ. To predict the mechanisms affected by FleQ, label-free shotgun comparative proteomics was carried out. Based on proteomic results, we performed diverse phenotypic assays. Xoo(FleQ) had reduced ability to elicit disease symptoms and exopolysaccharide production. Additionally, the ability of XooΔfleQ(EV) (empty vector) and Xoo(FleQ) to form biofilm was decreased. Swarming motility of XooΔfleQ(EV) was abolished, but was only reduced for Xoo(FleQ). Additionally, abnormal twitching motility was observed in both strains. Siderophore production of Xoo(FleQ) was enhanced in iron-rich conditions. The proteomic and phenotypic analyses revealed that FleQ is involved in flagellar-dependent motility and other mechanisms, including symptom development, twitching motility, exopolysaccharide production, biofilm formation, and siderophore production. Thus, this study provides fundamental information about a σ54-dependent transcription activator in Xoo.
Collapse
Affiliation(s)
- Nahee Bae
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17456, Korea.
| | - Hye-Jee Park
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17456, Korea.
| | - Hanbi Park
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17456, Korea.
| | - Minyoung Kim
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17456, Korea.
| | - Eunsoo Do
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17456, Korea.
| | - Sang-Wook Han
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17456, Korea.
| |
Collapse
|