1
|
Alessandroni L, Sagratini G, Bravo SB, Gagaoua M. Data-independent acquisition-based SWATH-MS proteomics profiling to decipher the impact of farming system and chicken strain and discovery of biomarkers of authenticity in organic versus antibiotic-free chicken meat. Curr Res Food Sci 2024; 8:100757. [PMID: 38736908 PMCID: PMC11087922 DOI: 10.1016/j.crfs.2024.100757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/15/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
In the literature, there is a paucity of methods and tools that allow the identification of biomarkers of authenticity to discriminate organic and non-organic chicken meat products. Shotgun proteomics is a powerful tool that allows the investigation of the entire proteome of a muscle and/or meat sample. In this study, a shotgun proteomics approach using Sequential Window Acquisition of All Theoretical Mass Spectra (SWATH-MS) has been applied for the first time to characterize and identify candidate protein biomarkers of authenticity in post-mortem chicken Pectoralis major muscles produced under organic and non-organic farming systems (antibiotic-free). The proteomics characterization was further performed within two chicken strains, these being Ross 308 and Ranger Classic, which differ in their growth rate. From the candidate protein biomarkers, the bioinformatics enrichment analyses revealed significant differences in the muscle proteome between the two chicken strains, which may be related to their genetic background and rearing conditions. The results further provided novel insights on the potential interconnected pathways at interplay that are associated with the differences as a consequence of farming system of chicken strain, such as muscle contraction and energy metabolism. This study could pave the way to more in-depth investigations in proteomics applications to assess chicken meat authenticity and better understand the impact of farming systems on the chicken muscle and meat quality.
Collapse
Affiliation(s)
- Laura Alessandroni
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032, Camerino, Italy
| | - Gianni Sagratini
- School of Pharmacy, Chemistry Interdisciplinary Project (CHIP), University of Camerino, Via Madonna delle Carceri, 62032, Camerino, Italy
| | - Susana B. Bravo
- Proteomic Unit, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, A Coruña, Spain
| | | |
Collapse
|
2
|
Peng N, Liu J, Hai S, Liu Y, Zhao H, Liu W. Role of Post-Translational Modifications in Colorectal Cancer Metastasis. Cancers (Basel) 2024; 16:652. [PMID: 38339403 PMCID: PMC10854713 DOI: 10.3390/cancers16030652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/27/2024] [Accepted: 02/01/2024] [Indexed: 02/12/2024] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignant tumors of the digestive tract. CRC metastasis is a multi-step process with various factors involved, including genetic and epigenetic regulations, which turn out to be a serious threat to CRC patients. Post-translational modifications (PTMs) of proteins involve the addition of chemical groups, sugars, or proteins to specific residues, which fine-tunes a protein's stability, localization, or interactions to orchestrate complicated biological processes. An increasing number of recent studies suggest that dysregulation of PTMs, such as phosphorylation, ubiquitination, and glycosylation, play pivotal roles in the CRC metastasis cascade. Here, we summarized recent advances in the role of post-translational modifications in diverse aspects of CRC metastasis and its detailed molecular mechanisms. Moreover, advances in drugs targeting PTMs and their cooperation with other anti-cancer drugs, which might provide novel targets for CRC treatment and improve therapeutic efficacy, were also discussed.
Collapse
Affiliation(s)
- Na Peng
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Jingwei Liu
- Department of Anus and Intestine Surgery, The First Affiliated Hospital of China Medical University, Shenyang 110001, China;
| | - Shuangshuang Hai
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Yihong Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Haibo Zhao
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| | - Weixin Liu
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang 110001, China; (N.P.); (S.H.); (Y.L.); (H.Z.)
| |
Collapse
|
3
|
Liu R, Liang X, Guo H, Li S, Yao W, Dong C, Wu J, Lu Y, Tang J, Zhang H. STNM1 in human cancers: role, function and potential therapy sensitizer. Cell Signal 2023:110775. [PMID: 37331415 DOI: 10.1016/j.cellsig.2023.110775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/23/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
STMN1 belongs to the stathmin gene family, it encodes a cytoplasmic phosphorylated protein, stathmin1, which is commonly observed in vertebrate cells. STMN1 is a structural microtubule-associated protein (MAP) that binds to microtubule protein dimers rather than microtubules, with each STMN1 binding two microtubule protein dimers and preventing their aggregation, leading to microtubule instability. STMN1 expression is elevated in a number of malignancies, and inhibition of its expression can interfere with tumor cell division. Its expression can change the division of tumor cells, thereby arresting cell growth in the G2/M phase. Moreover, STMN1 expression affects tumor cell sensitivity to anti-microtubule drug analogs, including vincristine and paclitaxel. The research on MAPs is limited, and new insights on the mechanism of STMN1 in different cancers are emerging. The effective application of STMN1 in cancer prognosis and treatment requires further understanding of this protein. Here, we summarize the general characteristics of STMN1 and outline how STMN1 plays a role in cancer development, targeting multiple signaling networks and acting as a downstream target for multiple microRNAs, circRNAs, and lincRNAs. We also summarize recent findings on the function role of STMN1 in tumor resistance and as a therapeutic target for cancer.
Collapse
Affiliation(s)
- Ruiqi Liu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Xiaodong Liang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Haiwei Guo
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Shuang Li
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Weiping Yao
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Graduate Department, Bengbu Medical College, Bengbu, Anhui, China
| | - Chenfang Dong
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China; Zhejiang Key Laboratory for Disease Proteomics, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiajun Wu
- Graduate Department, Bengbu Medical College, Bengbu, Anhui, China; Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital Hangzhou Medical College), Hangzhou, Zhejiang, China
| | - Yanwei Lu
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Jianming Tang
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital, (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou Medical College, Hangzhou, Zhejiang, China.
| |
Collapse
|
4
|
Zhu G, Jin L, Sun W, Wang S, Liu N. Proteomics of post-translational modifications in colorectal cancer: Discovery of new biomarkers. Biochim Biophys Acta Rev Cancer 2022; 1877:188735. [PMID: 35577141 DOI: 10.1016/j.bbcan.2022.188735] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/08/2022] [Accepted: 05/09/2022] [Indexed: 02/07/2023]
Abstract
Colorectal cancer (CRC) is one of the costliest health problems and ranks second in cancer-related mortality in developed countries. With the aid of proteomics, many protein biomarkers for the diagnosis, prognosis, and precise management of CRC have been identified. Furthermore, some protein biomarkers exhibit structural diversity after modifications. Post-translational modifications (PTMs), most of which are catalyzed by a variety of enzymes, extensively increase protein diversity and are involved in many complex and dynamic cellular processes through the regulation of protein function. Accumulating evidence suggests that abnormal PTM events are associated with a variety of human diseases, such as CRC, thus highlighting the need for studying PTMs to discover both the molecular mechanisms and therapeutic targets of CRC. In this review, we begin with a brief overview of the importance of protein PTMs, discuss the general strategies for proteomic profiling of several key PTMs (including phosphorylation, acetylation, glycosylation, ubiquitination, methylation, and citrullination), shift the emphasis to describing the specific methods used for delineating the global landscapes of each of these PTMs, and summarize the recent applications of these methods to explore the potential roles of the PTMs in CRC. Finally, we discuss the current status of PTM research on CRC and provide future perspectives on how PTM regulation can play an essential role in translational medicine for early diagnosis, prognosis stratification, and therapeutic intervention in CRC.
Collapse
Affiliation(s)
- Gengjun Zhu
- Department Oncology and Hematology, The Second Hospital of Jilin University, Changchun, China
| | - Lifang Jin
- Department Oncology and Hematology, The Second Hospital of Jilin University, Changchun, China
| | - Wanchun Sun
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China
| | - Shuang Wang
- Dermatological department, The Second Hospital of Jilin University, Changchun, China.
| | - Ning Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Jilin University, Changchun, China; Central Laboratory, The Second Hospital of Jilin University, Changchun, China.
| |
Collapse
|
5
|
Cordido A, Vizoso-Gonzalez M, Nuñez-Gonzalez L, Molares-Vila A, Chantada-Vazquez MDP, Bravo SB, Garcia-Gonzalez MA. Quantitative Proteomic Study Unmasks Fibrinogen Pathway in Polycystic Liver Disease. Biomedicines 2022; 10:290. [PMID: 35203500 PMCID: PMC8869147 DOI: 10.3390/biomedicines10020290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Polycystic liver disease (PLD) is a heterogeneous group of congenital disorders characterized by bile duct dilatation and cyst development derived from cholangiocytes. Nevertheless, the cystogenesis mechanism is currently unknown and the PLD treatment is limited to liver transplantation. Novel and efficient therapeutic approaches are th6us needed. In this context, the present work has a principal aim to find novel molecular pathways, as well as new therapeutic targets, involved in the hepatic cystogenesis process. (2) Methods: Quantitative proteomics based on SWATH-MS technology were performed comparing hepatic proteomes of Wild Type and mutant/polycystic livers in a polycystic kidney disease (PKD) murine model (Pkd1cond/cond;Tam-Cre-/+). (3) Results: We identified several proteins altered in abundance, with two-fold cut-off up-regulation or down-regulation and an adjusted p-value significantly related to hepatic cystogenesis. Then, we performed enrichment and a protein-protein analysis identifying a cluster focused on hepatic fibrinogens. Finally, we validated a selection of targets by RT-qPCR, Western blotting and immunohistochemistry, finding a high correlation with quantitative proteomics data and validating the fibrinogen complex. (4) Conclusions: This work identified a novel molecular pathway in cystic liver disease, highlighting the fibrinogen complex as a possible new therapeutic target for PLD.
Collapse
Affiliation(s)
- Adrian Cordido
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| | - Marta Vizoso-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| | - Laura Nuñez-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| | - Alberto Molares-Vila
- Biostatistics Platform, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain;
| | - Maria del Pilar Chantada-Vazquez
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain;
| | - Susana B. Bravo
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain;
| | - Miguel A. Garcia-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
- Galician Public Foundation of Genomic Medicine, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Li S, Luo Z, Meng S, Qiu X, Zheng F, Dai W, Zhang X, Sui W, Yan Q, Tang D, Dai Y. Label-free quantitative proteomic and phosphoproteomic analyses of renal biopsy tissues in membranous nephropathy. Proteomics Clin Appl 2021; 16:e2000069. [PMID: 34543527 DOI: 10.1002/prca.202000069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/01/2021] [Accepted: 09/17/2021] [Indexed: 11/11/2022]
Abstract
PURPOSE Membranous nephropathy (MN) is a common cause of nephrotic syndrome in adults. However, the underlying mechanisms of its occurrence and development are not completely clear. Thus, it is essential to explore the mechanisms. EXPERIMENTAL DESIGN Here, we employed label-free quantification and liquid chromatography-tandem mass spectrometry analysis techniques to investigate the proteomic and phosphoproteomic alterations in renal biopsy tissues of MN patients. Samples were collected from 16 MN patients and 10 controls. Immunohistochemistry (IHC) was performed to validate the hub phosphoprotein. RESULTS We focused on the changes in the phosphoproteome in MN group versus control group (CG). Totally, 1704 phosphoproteins containing 3241 phosphosites were identified and quantified. The phosphorylation levels of 216 phosphoproteins containing 297 phosphosites were differentially regulated in stage II MN group versus CG, and 333 phosphoproteins containing 461 phosphosites were differentially phosphorylated in stage III MN group versus CG. In each comparison, several differential phosphoproteins were factors, kinases and receptors involved in cellular processes, biological regulation and other biological processes. The subcellular location of most of the differential phosphoproteins was the nucleus. Protein-protein interaction analysis showed that the connections among the differential phosphoproteins were extremely complex, and several signalling pathways probably associated with MN were identified. The hub phosphoprotein was validated by IHC. CONCLUSIONS AND CLINICAL RELEVANCE This investigation can provide direct insight into the global phosphorylation events in MN group versus CG and may help to shed light on the potential pathogenic mechanisms of MN.
Collapse
Affiliation(s)
- Shanshan Li
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Zhifeng Luo
- Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Shuhui Meng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Xiaofen Qiu
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China.,Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Fengping Zheng
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Weier Dai
- College of Natural Science, University of Texas at Austin, Austin, Texas, USA
| | - Xinzhou Zhang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Weiguo Sui
- Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Qiang Yan
- Guangxi Key Laboratory of Metabolic Disease Research, Department of Nephrology, The No. 924 Hospital of the Joint Logistic Support Force of the Chinese People's Liberation Army, Guilin, China
| | - Donge Tang
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| | - Yong Dai
- Clinical Medical Research Center, The Second Clinical Medical College of Jinan University, Shenzhen People's Hospital, Shenzhen, China
| |
Collapse
|
7
|
Plasma Proteomic Analysis in Morquio A Disease. Int J Mol Sci 2021; 22:ijms22116165. [PMID: 34200496 PMCID: PMC8201332 DOI: 10.3390/ijms22116165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/18/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is a lysosomal disease caused by mutations in the gene encoding the enzymeN-acetylgalactosamine-6-sulfate sulfatase (GALNS), and is characterized by systemic skeletal dysplasia due to excessive storage of keratan sulfate (KS) and chondroitin-6-sulfate in chondrocytes. Although improvements in the activity of daily living and endurance tests have been achieved with enzyme replacement therapy (ERT) with recombinant human GALNS, recovery of bone lesions and bone growth in MPS IVA has not been demonstrated to date. Moreover, no correlation has been described between therapeutic efficacy and urine levels of KS, which accumulates in MPS IVA patients. The objective of this study was to assess the validity of potential biomarkers proposed by other authors and to identify new biomarkers. To identify candidate biomarkers of this disease, we analyzed plasma samples from healthy controls (n=6) and from untreated (n=8) and ERT-treated (n=5, sampled before and after treatment) MPS IVA patients using both qualitative and quantitative proteomics analyses. The qualitative proteomics approach analyzed the proteomic profile of the different study groups. In the quantitative analysis, we identified/quantified 215 proteins after comparing healthy control untreated, ERT-treated MPSIVA patients. We selected a group of proteins that were dysregulated in MPS IVA patients. We identified four potential protein biomarkers, all of which may influence bone and cartilage metabolism: fetuin-A, vitronectin, alpha-1antitrypsin, and clusterin. Further studies of cartilage and bone samples from MPS IVA patients will be required to verify the validity of these proteins as potential biomarkers of MPS IVA.
Collapse
|
8
|
Álvarez VJ, Bravo SB, Chantada-Vazquez MP, Colón C, De Castro MJ, Morales M, Vitoria I, Tomatsu S, Otero-Espinar FJ, Couce ML. Characterization of New Proteomic Biomarker Candidates in Mucopolysaccharidosis Type IVA. Int J Mol Sci 2020; 22:ijms22010226. [PMID: 33379360 PMCID: PMC7795692 DOI: 10.3390/ijms22010226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 12/21/2020] [Accepted: 12/24/2020] [Indexed: 12/17/2022] Open
Abstract
Mucopolysaccharidosis type IVA (MPS IVA) is a lysosomal storage disease caused by mutations in the N-acetylgalactosamine-6-sulfatase (GALNS) gene. Skeletal dysplasia and the related clinical features of MPS IVA are caused by disruption of the cartilage and its extracellular matrix, leading to a growth imbalance. Enzyme replacement therapy (ERT) with recombinant human GALNS has yielded positive results in activity of daily living and endurance tests. However, no data have demonstrated improvements in bone lesions and bone grow thin MPS IVA after ERT, and there is no correlation between therapeutic efficacy and urine levels of keratan sulfate, which accumulates in MPS IVA patients. Using qualitative and quantitative proteomics approaches, we analyzed leukocyte samples from healthy controls (n = 6) and from untreated (n = 5) and ERT-treated (n = 8, sampled before and after treatment) MPS IVA patients to identify potential biomarkers of disease. Out of 690 proteins identified in leukocytes, we selected a group of proteins that were dysregulated in MPS IVA patients with ERT. From these, we identified four potential protein biomarkers, all of which may influence bone and cartilage metabolism: lactotransferrin, coronin 1A, neutral alpha-glucosidase AB, and vitronectin. Further studies of cartilage and bone alterations in MPS IVA will be required to verify the validity of these proteins as potential biomarkers of MPS IVA.
Collapse
Affiliation(s)
- Víctor J. Álvarez
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. du Pont Hospital for Children, 1600 Rockland Road., Wilmington, DE 19803, USA;
| | - Susana B. Bravo
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (S.B.B.); (M.P.C.-V.)
| | - Maria Pilar Chantada-Vazquez
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain; (S.B.B.); (M.P.C.-V.)
| | - Cristóbal Colón
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
| | - María J. De Castro
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
| | - Montserrat Morales
- Minority Diseases Unit Hospital Universitario12 de Octubre, 28041 Madrid, Spain;
| | - Isidro Vitoria
- Nutrition and Metabolophaties Unit, Hospital Universitario La Fe, 46026 Valencia, Spain;
| | - Shunji Tomatsu
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. du Pont Hospital for Children, 1600 Rockland Road., Wilmington, DE 19803, USA;
| | - Francisco J. Otero-Espinar
- Paraquasil Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain;
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain
| | - María L. Couce
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain or (V.J.Á.); (C.C.); (M.J.D.C.)
- Correspondence: or ; Tel.: +34-981-951-100
| |
Collapse
|
9
|
Del Pilar Chantada-Vázquez M, López AC, Vence MG, Vázquez-Estévez S, Acea-Nebril B, Calatayud DG, Jardiel T, Bravo SB, Núñez C. Proteomic investigation on bio-corona of Au, Ag and Fe nanoparticles for the discovery of triple negative breast cancer serum protein biomarkers. J Proteomics 2019; 212:103581. [PMID: 31731051 DOI: 10.1016/j.jprot.2019.103581] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 10/14/2019] [Accepted: 11/07/2019] [Indexed: 12/21/2022]
Abstract
Nowadays, there are no targeted therapeutic modalities for triple negative breast cancer (TNBC). This disease is associated with poor prognosis and worst clinical outcome because of the aggressive nature of the tumor, delayed diagnosis, and non-specific symptoms in the early stages. Therefore, identification of novel specific TNBC serum biomarkers for screening and therapeutic purposes remains an urgent clinical requirement. New user-friendly and cheap methods for biomarker identification are needed, and nanotechnology offers new opportunities. When dispersed in blood, nanoparticles (NPs) are covered by a protein shell termed "protein corona" (PC). While alterations in protein patterns are challeging to detect by conventional blood analyses, PC acts as a "nano-concentrator" of serum proteins with affinity for NPs' surface. So, the characterization of PC could allow the detection of otherwise undetectable changes in protein concentration at an early stage of the disease or after chemotherapy or surgery. To explore this research idea, serum samples from 8 triple negative breast cancer (TNBC) patients and 8 patients without malignancy were allowed to interact with gold nanoparticles (AuNPs: 10.02 ± 0.91 nm), silver nanoparticles (AgNPs: 9.73 ± 1.70 nm) and magnetic nanoparticles (MNPs: (9.30 ± 0.67 nm). Here, in order to identify biomarker candidates in serum of TNBC patients, these nanomaterials were combined with electrophoretic separation (SDS-PAGE) to performed qualitative and quantitative comparisons of the serum proteomes of TNBC patients (n = 8) and healthy controls (n = 8) by liquid chromatography tandem-mass spectrometry (LC-MS/MS) analysis. The results were validated through a sequential window acquisition of all theoretical mass spectra (SWATH) analysis, performed in total serum samples (patients and controls) using this approach as a multiple reaction monitoring (MRM) analysis. SIGNIFICANCE: It is well known that several proteins presented in human serum are important biomarkers for the diagnosis or prognosis of different diseases, as triple negative breast cancer (TNBC). Determining how nanomaterials as gold nanoparticles (AuNPs: 10.02 ± 0.91 nm), silver nanoparticles (AgNPs: 9.73 ± 1.70 nm) and magnetic nanoparticles (MNPs: (9.30 ± 0.67 nm) interact with human serum will assist not only in understanding their effects on the biological system (biocompability and toxicity), but also to obtain information for developing novel nanomaterials with high specificity and selectivity towards proteins with an important biological function (prognostic and diagnostic protein biomarkers).
Collapse
Affiliation(s)
| | - Antonio Castro López
- Breast Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain
| | - María García Vence
- Proteomic Unit, Instituto de Investigaciones Sanitarias-IDIS, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain
| | - Sergio Vázquez-Estévez
- Oncology Division, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain
| | - Benigno Acea-Nebril
- Department of Surgery, Breast Unit, Complexo Hospitalario Universitario A Coruña (CHUAC), SERGAS, A Coruña, Spain
| | - David G Calatayud
- Department of Electroceramics, Instituto de Cerámica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Teresa Jardiel
- Department of Electroceramics, Instituto de Cerámica y Vidrio-CSIC, Kelsen 5, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Susana B Bravo
- Proteomic Unit, Instituto de Investigaciones Sanitarias-IDIS, Complejo Hospitalario Universitario de Santiago de Compostela (CHUS), 15706 Santiago de Compostela, Spain.
| | - Cristina Núñez
- Research Unit, Hospital Universitario Lucus Augusti (HULA), Servizo Galego de Saúde (SERGAS), 27002 Lugo, Spain.
| |
Collapse
|
10
|
Álvarez JV, Bravo SB, García-Vence M, De Castro MJ, Luzardo A, Colón C, Tomatsu S, Otero-Espinar FJ, Couce ML. Proteomic Analysis in Morquio A Cells Treated with Immobilized Enzymatic Replacement Therapy on Nanostructured Lipid Systems. Int J Mol Sci 2019; 20:ijms20184610. [PMID: 31540344 PMCID: PMC6769449 DOI: 10.3390/ijms20184610] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/07/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Morquio A syndrome, or mucopolysaccharidosis type IVA (MPS IVA), is a lysosomal storage disease due to mutations in the N-acetylgalactosamine-6-sulfatase (GALNS) gene. Systemic skeletal dysplasia and the related clinical features of MPS IVA are due to disruption of cartilage and its extracellular matrix, leading to an imbalance of growth. Enzyme replacement therapy (ERT) with recombinant human GALNS, alpha elosulfase, provides a systemic treatment. However, this therapy has a limited impact on skeletal dysplasia because the infused enzyme cannot penetrate cartilage and bone. Therefore, an alternative therapeutic approach to reach the cartilage is an unmet challenge. We have developed a new drug delivery system based on a nanostructure lipid carrier with the capacity to immobilize enzymes used for ERT and to target the lysosomes. This study aimed to assess the effect of the encapsulated enzyme in this new delivery system, using in vitro proteomic technology. We found a greater internalization of the enzyme carried by nanoparticles inside the cells and an improvement of cellular protein routes previously impaired by the disease, compared with conventional ERT. This is the first qualitative and quantitative proteomic assay that demonstrates the advantages of a new delivery system to improve the MPS IVA ERT.
Collapse
Affiliation(s)
- J Víctor Álvarez
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain.
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain.
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA.
| | - Susana B Bravo
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostea, Spain.
| | - María García-Vence
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostea, Spain.
| | - María J De Castro
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain.
| | - Asteria Luzardo
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Sciences, Campus de Lugo, University of Santiago de Compostela, 27002 Lugo, Spain.
- Paraquasil Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - Cristóbal Colón
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain.
| | - Shunji Tomatsu
- Skeletal Dysplasia Lab Nemours Biomedical Research Nemours/Alfred I. duPont Hospital for Children, 1600 Rockland Road, Wilmington, DE 19803, USA.
| | - Francisco J Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, School of Pharmacy, Campus Vida, University of Santiago de Compostela, 15872 Santiago de Compostela, Spain.
- Paraquasil Platform, Health Research Institute of Santiago de Compostela (IDIS), Hospital Clínico Universitario de Santiago de Compostela, 15706 Santiago de Compostela, Spain.
| | - María L Couce
- Department of Forensic Sciences, Pathology, Gynecology and Obstetrics, Pediatrics, Neonatology Service, Department of Paediatrics, Hospital Clínico Universitario de Santiago de Compostela, Health Research Institute of Santiago de Compostela (IDIS), CIBERER, MetabERN, 15706 Santiago de Compostela, Spain.
| |
Collapse
|
11
|
Su LL, Chang XJ, Zhou HD, Hou LB, Xue XY. Exosomes in esophageal cancer: A review on tumorigenesis, diagnosis and therapeutic potential. World J Clin Cases 2019; 7:908-916. [PMID: 31119136 PMCID: PMC6509264 DOI: 10.12998/wjcc.v7.i8.908] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/28/2019] [Accepted: 03/09/2019] [Indexed: 02/05/2023] Open
Abstract
Exosomes are nanovesicles secreted from various types of cells and can be isolated from various bodily fluids, such as blood and urine. The number and molecular contents, including proteins and RNA of exosomes, have been shown to reflect their parental cell origins, characteristics and biological behaviors. An increasing number of studies have demonstrated that exosomes play a role in the course of tumorigenesis, diagnosis, treatment and prognosis, although its precise functions in tumors are still unclear. Moreover, owing to a lack of a standard approach, exosomes and its contents have not yet been put into clinical practice successfully. This review aims to summarize the current knowledge on exosomes and its contents in esophageal cancer as well as the current limitations/challenges in its clinical application, which may provide a basis for an all-around understanding of the implementation of exosomes and exosomal contents in the surveillance and therapy of esophageal cancer.
Collapse
Affiliation(s)
- Lin-Lin Su
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Jing Chang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Huan-Di Zhou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Liu-Bing Hou
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Ying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|