1
|
Surguchov A, Surguchev AA. Association between Parkinson's Disease and Cancer: New Findings and Possible Mediators. Int J Mol Sci 2024; 25:3899. [PMID: 38612708 PMCID: PMC11011322 DOI: 10.3390/ijms25073899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/27/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
Epidemiological evidence points to an inverse association between Parkinson's disease (PD) and almost all cancers except melanoma, for which this association is positive. The results of multiple studies have demonstrated that patients with PD are at reduced risk for the majority of neoplasms. Several potential biological explanations exist for the inverse relationship between cancer and PD. Recent results identified several PD-associated proteins and factors mediating cancer development and cancer-associated factors affecting PD. Accumulating data point to the role of genetic traits, members of the synuclein family, neurotrophic factors, the ubiquitin-proteasome system, circulating melatonin, and transcription factors as mediators. Here, we present recent data about shared pathogenetic factors and mediators that might be involved in the association between these two diseases. We discuss how these factors, individually or in combination, may be involved in pathology, serve as links between PD and cancer, and affect the prevalence of these disorders. Identification of these factors and investigation of their mechanisms of action would lead to the discovery of new targets for the treatment of both diseases.
Collapse
Affiliation(s)
- Andrei Surguchov
- Department of Neurology, Kansas University Medical Center, Kansas City, 3901 Rainbow Boulevard, Kansas City, KS 66160, USA
| | - Alexei A Surguchev
- Department of Surgery, Section of Otolaryngology, Yale School of Medicine, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
2
|
Hu X, Xu Y, Wang C, Liu Y, Zhang L, Zhang J, Wang W, Chen Q, Liu H. Combined prediction and design reveals the target recognition mechanism of an intrinsically disordered protein interaction domain. Proc Natl Acad Sci U S A 2023; 120:e2305603120. [PMID: 37722056 PMCID: PMC10523638 DOI: 10.1073/pnas.2305603120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/14/2023] [Indexed: 09/20/2023] Open
Abstract
An increasing number of protein interaction domains and their targets are being found to be intrinsically disordered proteins (IDPs). The corresponding target recognition mechanisms are mostly elusive because of challenges in performing detailed structural analysis of highly dynamic IDP-IDP complexes. Here, we show that by combining recently developed computational approaches with experiments, the structure of the complex between the intrinsically disordered C-terminal domain (CTD) of protein 4.1G and its target IDP region in NuMA can be dissected at high resolution. First, we carry out systematic mutational scanning using dihydrofolate reductase-based protein complementarity analysis to identify essential interaction regions and key residues. The results are found to be highly consistent with an α/β-type complex structure predicted by AlphaFold2 (AF2). We then design mutants based on the predicted structure using a deep learning protein sequence design method. The solved crystal structure of one mutant presents the same core structure as predicted by AF2. Further computational prediction and experimental assessment indicate that the well-defined core structure is conserved across complexes of 4.1G CTD with other potential targets. Thus, we reveal that an intrinsically disordered protein interaction domain uses an α/β-type structure module formed through synergistic folding to recognize broad IDP targets. Moreover, we show that computational prediction and experiment can be jointly applied to segregate true IDP regions from the core structural domains of IDP-IDP complexes and to uncover the structure-dependent mechanisms of some otherwise elusive IDP-IDP interactions.
Collapse
Affiliation(s)
- Xiuhong Hu
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui230001, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Yang Xu
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui230001, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Chenchen Wang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Yufeng Liu
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui230001, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Lu Zhang
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui230001, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Jiahai Zhang
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Wenning Wang
- Department of Chemistry, Institutes of Biomedical Sciences and Multiscale Research Institute of Complex Systems, Fudan University, Shanghai200438, China
| | - Quan Chen
- Department of Rheumatology and Immunology, Division of Life Sciences and Medicine, The First Affiliated Hospital, University of Science and Technology of China, Hefei, Anhui230001, China
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui230027, China
| | - Haiyan Liu
- Ministry of Education Key Laboratory for Membraneless Organelles and Cellular Dynamics, Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui230027, China
- Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui230027, China
- School of Data Science, University of Science and Technology of China, Hefei, Anhui230027, China
| |
Collapse
|
3
|
Marín I. Emergence of the Synucleins. BIOLOGY 2023; 12:1053. [PMID: 37626939 PMCID: PMC10451939 DOI: 10.3390/biology12081053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/21/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023]
Abstract
This study establishes the origin and evolutionary history of the synuclein genes. A combination of phylogenetic analyses of the synucleins from twenty-two model species, characterization of local synteny similarities among humans, sharks and lampreys, and statistical comparisons among lamprey and human chromosomes, provides conclusive evidence for the current diversity of synuclein genes arising from the whole-genome duplications (WGDs) that occurred in vertebrates. An ancestral synuclein gene was duplicated in a first WGD, predating the diversification of all living vertebrates. The two resulting genes are still present in agnathan vertebrates. The second WGD, specific to the gnathostome lineage, led to the emergence of the three classical synuclein genes, SNCA, SNCB and SNCG, which are present in all jawed vertebrate lineages. Additional WGDs have added new genes in both agnathans and gnathostomes, while some gene losses have occurred in particular species. The emergence of synucleins through WGDs prevented these genes from experiencing dosage effects, thus avoiding the potential detrimental effects associated with individual duplications of genes that encode proteins prone to aggregation. Additional insights into the structural and functional features of synucleins are gained through the analysis of the highly divergent synuclein proteins present in chondrichthyans and agnathans.
Collapse
Affiliation(s)
- Ignacio Marín
- Instituto de Biomedicina de Valencia, Consejo Superior de Investigaciones Científicas (IBV-CSIC), 46010 Valencia, Spain
| |
Collapse
|
4
|
Khare SD, Chinchilla P, Baum J. Multifaceted interactions mediated by intrinsically disordered regions play key roles in alpha synuclein aggregation. Curr Opin Struct Biol 2023; 80:102579. [PMID: 37060757 PMCID: PMC10910670 DOI: 10.1016/j.sbi.2023.102579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 04/17/2023]
Abstract
The aggregation of Alpha Synuclein (α-Syn) into fibrils is associated with the pathology of several neurodegenerative diseases. Pathologic aggregates of α-Syn adopt multiple fibril topologies and are known to be transferred between cells via templated seeding. Monomeric α-Syn is an intrinsically disordered protein (IDP) with amphiphilic N-terminal, hydrophobic-central, and negatively charged C-terminal domains. Here, we review recent work elucidating the mechanism of α-Syn aggregation and identify the key and multifaceted roles played by the N- and C-terminal domains in the initiation and growth of aggregates as well as in the templated seeding involved in cell-to-cell propagation. The charge content of the C-terminal domain, which is sensitive to environmental conditions like organelle pH, is a key regulator of intermolecular interactions involved in fibril growth and templated propagation. An appreciation of the complex and multifaceted roles played by the intrinsically disordered terminal domains suggests novel opportunities for the development of potent inhibitors against synucleinopathies.
Collapse
Affiliation(s)
- Sagar D Khare
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA; Institute for Quantitative Biomedicine, Rutgers University, Piscataway, NJ 08854, USA
| | - Priscilla Chinchilla
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Jean Baum
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
5
|
Roterman I, Stapor K, Konieczny L. Structural Specificity of Polymorphic Forms of α-Synuclein Amyloid. Biomedicines 2023; 11:biomedicines11051324. [PMID: 37238996 DOI: 10.3390/biomedicines11051324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/16/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
The structural transformation producing amyloids is a phenomenon that sheds new light on the protein folding problem. The analysis of the polymorphic structures of the α-synuclein amyloid available in the PDB database allows analysis of the amyloid-oriented structural transformation itself, but also the protein folding process as such. The polymorphic amyloid structures of α-synuclein analyzed employing the hydrophobicity distribution (fuzzy oil drop model) reveal a differentiation with a dominant distribution consistent with the micelle-like system (hydrophobic core with polar shell). This type of ordering of the hydrophobicity distribution covers the entire spectrum from the example with all three structural units (single chain, proto-fibril, super-fibril) exhibiting micelle-like form, through gradually emerging examples of local disorder, to structures with an extremely different structuring pattern. The water environment directing protein structures towards the generation of ribbon micelle-like structures (concentration of hydrophobic residues in the center of the molecule forming a hydrophobic core with the exposure of polar residues on the surface) also plays a role in the amyloid forms of α-synuclein. The polymorphic forms of α-synuclein reveal local structural differentiation with a common tendency to accept the micelle-like structuralization in certain common fragments of the polypeptide chain of this protein.
Collapse
Affiliation(s)
- Irena Roterman
- Department of Bioinformatics and Telemedicine, Jagiellonian University-Medical College, Medyczna 7, 30-688 Krakow, Poland
| | - Katarzyna Stapor
- Department of Applied Informatics, Silesian University of Technology, Akademicka 2A, 44-100 Gliwice, Poland
| | - Leszek Konieczny
- Medical Biochemistry, Jagiellonian University-Medical College, Kopernika 7, 31-034 Krakow, Poland
| |
Collapse
|
6
|
Myers AJ, Brahimi A, Jenkins IJ, Koob AO. The Synucleins and the Astrocyte. BIOLOGY 2023; 12:biology12020155. [PMID: 36829434 PMCID: PMC9952504 DOI: 10.3390/biology12020155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023]
Abstract
Synucleins consist of three proteins exclusively expressed in vertebrates. α-Synuclein (αS) has been identified as the main proteinaceous aggregate in Lewy bodies, a pathological hallmark of many neurodegenerative diseases. Less is understood about β-synuclein (βS) and γ-synuclein (γS), although it is known βS can interact with αS in vivo to inhibit aggregation. Likewise, both γS and βS can inhibit αS's propensity to aggregate in vitro. In the central nervous system, βS and αS, and to a lesser extent γS, are highly expressed in the neural presynaptic terminal, although they are not strictly located there, and emerging data have shown a more complex expression profile. Synapse loss and astrocyte atrophy are early aspects of degenerative diseases of the brain and correlate with disease progression. Synucleins appear to be involved in synaptic transmission, and astrocytes coordinate and organize synaptic function, with excess αS degraded by astrocytes and microglia adjacent to the synapse. βS and γS have also been observed in the astrocyte and may provide beneficial roles. The astrocytic responsibility for degradation of αS as well as emerging evidence on possible astrocytic functions of βS and γS, warrant closer inspection on astrocyte-synuclein interactions at the synapse.
Collapse
Affiliation(s)
- Abigail J. Myers
- Neuroscience Program, Health Science Research Facility, University of Vermont, 149 Beaumont Ave., Burlington, VT 05405, USA
| | - Ayat Brahimi
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Imani J. Jenkins
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
| | - Andrew O. Koob
- Biology Department, University of Hartford, 200 Bloomfield Ave., West Hartford, CT 06117, USA
- Correspondence: ; Tel.: +1-860-768-5780
| |
Collapse
|
7
|
Neuronal membrane proteasomes regulate neuronal circuit activity in vivo and are required for learning-induced behavioral plasticity. Proc Natl Acad Sci U S A 2023; 120:e2216537120. [PMID: 36630455 PMCID: PMC9934054 DOI: 10.1073/pnas.2216537120] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Protein degradation is critical for brain function through processes that remain incompletely understood. Here, we investigated the in vivo function of the 20S neuronal membrane proteasome (NMP) in the brain of Xenopus laevis tadpoles. With biochemistry, immunohistochemistry, and electron microscopy, we demonstrated that NMPs are conserved in the tadpole brain and preferentially degrade neuronal activity-induced newly synthesized proteins in vivo. Using in vivo calcium imaging in the optic tectum, we showed that acute NMP inhibition rapidly increased spontaneous neuronal activity, resulting in hypersynchronization across tectal neurons. At the circuit level, inhibiting NMPs abolished learning-dependent improvement in visuomotor behavior in live animals and caused a significant deterioration in basal behavioral performance following visual training with enhanced visual experience. Our data provide in vivo characterization of NMP functions in the vertebrate nervous system and suggest that NMP-mediated degradation of activity-induced nascent proteins may serve as a homeostatic modulatory mechanism in neurons that is critical for regulating neuronal activity and experience-dependent circuit plasticity.
Collapse
|
8
|
Saunders TS, Gadd DA, Spires‐Jones TL, King D, Ritchie C, Muniz‐Terrera G. Associations between cerebrospinal fluid markers and cognition in ageing and dementia: A systematic review. Eur J Neurosci 2022; 56:5650-5713. [PMID: 35338546 PMCID: PMC9790745 DOI: 10.1111/ejn.15656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 12/30/2022]
Abstract
A biomarker associated with cognition in neurodegenerative dementias would aid in the early detection of disease progression, complement clinical staging and act as a surrogate endpoint in clinical trials. The current systematic review evaluates the association between cerebrospinal fluid protein markers of synapse loss and neuronal injury and cognition. We performed a systematic search which revealed 67 studies reporting an association between cerebrospinal fluid markers of interest and neuropsychological performance. Despite the substantial heterogeneity between studies, we found some evidence for an association between neurofilament-light and worse cognition in Alzheimer's diseases, frontotemporal dementia and typical cognitive ageing. Moreover, there was an association between cerebrospinal fluid neurogranin and cognition in those with an Alzheimer's-like cerebrospinal fluid biomarker profile. Some evidence was found for cerebrospinal fluid neuronal pentraxin-2 as a correlate of cognition across dementia syndromes. Due to the substantial heterogeneity of the field, no firm conclusions can be drawn from this review. Future research should focus on improving standardization and reporting as well as establishing the importance of novel markers such as neuronal pentraxin-2 and whether such markers can predict longitudinal cognitive decline.
Collapse
Affiliation(s)
- Tyler S. Saunders
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| | - Danni A. Gadd
- Center for Genomic and Experimental Medicine, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tara L. Spires‐Jones
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - Declan King
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - Craig Ritchie
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| | - Graciela Muniz‐Terrera
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| |
Collapse
|
9
|
Rodríguez EE, Ríos A, Trujano-Ortiz LG, Villegas A, Castañeda-Hernández G, Fernández CO, González FJ, Quintanar L. Comparing the copper binding features of alpha and beta synucleins. J Inorg Biochem 2022; 229:111715. [DOI: 10.1016/j.jinorgbio.2022.111715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/10/2021] [Accepted: 01/01/2022] [Indexed: 10/19/2022]
|
10
|
Barba L, Paolini Paoletti F, Bellomo G, Gaetani L, Halbgebauer S, Oeckl P, Otto M, Parnetti L. Alpha and Beta Synucleins: From Pathophysiology to Clinical Application as Biomarkers. Mov Disord 2022; 37:669-683. [PMID: 35122299 PMCID: PMC9303453 DOI: 10.1002/mds.28941] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 12/12/2022] Open
Abstract
The synuclein family includes three neuronal proteins, named α‐synuclein, β‐synuclein, and γ‐synuclein, that have peculiar structural features. α‐synuclein is largely known for being a key protein in the pathophysiology of Parkinson's disease (PD) and other synucleinopathies, namely, dementia with Lewy bodies and multisystem atrophy. The role of β‐synuclein and γ‐synuclein is less well understood in terms of physiological functions and potential contribution to human diseases. α‐synuclein has been investigated extensively in both cerebrospinal fluid (CSF) and blood as a potential biomarker for synucleinopathies. Recently, great attention has been also paid to β‐synuclein, whose CSF and blood levels seem to reflect synaptic damage and neurodegeneration independent of the presence of synucleinopathy. In this review, we aim to provide an overview on the pathophysiological roles of the synucleins. Because γ‐synuclein has been poorly investigated in the field of synucleinopathy and its pathophysiological roles are far from being clear, we focus on the interactions between α‐synuclein and β‐synuclein in PD. We also discuss the role of α‐synuclein and β‐synuclein as potential biomarkers to improve the diagnostic characterization of synucleinopathies, thus highlighting their potential application in clinical trials for disease‐modifying therapies. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Collapse
Affiliation(s)
- Lorenzo Barba
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
- Department of Neurology University of Ulm Ulm Germany
- Department of Neurology Martin‐Luther‐University Halle‐Wittenberg Halle/Saale Germany
| | - Federico Paolini Paoletti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Giovanni Bellomo
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | - Lorenzo Gaetani
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| | | | - Patrick Oeckl
- Department of Neurology University of Ulm Ulm Germany
- German Center for Neurodegenerative Disorders Ulm (DZNE e. V.) Ulm Germany
| | - Markus Otto
- Department of Neurology University of Ulm Ulm Germany
- Department of Neurology Martin‐Luther‐University Halle‐Wittenberg Halle/Saale Germany
| | - Lucilla Parnetti
- Section of Neurology, Laboratory of Clinical Neurochemistry, Department of Medicine and Surgery University of Perugia Perugia Italy
| |
Collapse
|
11
|
Lan-Mark S, Miller Y. Insights into the Interactions that Trigger the Primary Nucleation of Polymorphic α-Synuclein Dimers. ACS Chem Neurosci 2022; 13:370-378. [PMID: 35044156 DOI: 10.1021/acschemneuro.1c00754] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Parkinson's disease is associated with the accumulation of α-synuclein (AS) aggregates that include polymorphic AS oligomers and polymorphic fibrils. There have been advances in solving the polymorphic state of AS fibrils, both by experimental techniques and molecular modeling tools. Yet, the polymorphic AS oligomers are now considered as the neurotoxic species, thus current and future studies making efforts to solve their structures at the molecular level. Importantly, it is crucial to explore the specific interactions between AS monomers within the dimer that stabilize the dimer and yield nucleation. Herein, we present a first work that probes at the molecular level the specific interactions between monomers in polymorphic AS dimers are derived from AS fibrils by applying molecular modeling tools. Our work reveals that both N-terminal and the non-amyloidogenic component domains play a role in the dimerization of all polymorphic AS dimers. In addition, helices along the N-terminal of AS monomers impede the contacts between AS monomers, thus preventing the nucleation or the dimerization of AS. This work provides insights into several mechanisms of the production of polymorphic AS dimers. Thus, the findings obtained in this work may assist in developing new therapeutic strategies for inhibiting the formation of the early-stage neurotoxic AS dimers.
Collapse
Affiliation(s)
- Sapir Lan-Mark
- Department of Chemistry Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Institute for Nanoscale Science & Technology Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| | - Yifat Miller
- Department of Chemistry Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
- The Ilse Katz Institute for Nanoscale Science & Technology Ben-Gurion University of the Negev, Be’er Sheva 84105, Israel
| |
Collapse
|
12
|
Scheibe C, Karreman C, Schildknecht S, Leist M, Hauser K. Synuclein Family Members Prevent Membrane Damage by Counteracting α-Synuclein Aggregation. Biomolecules 2021; 11:biom11081067. [PMID: 34439733 DOI: 10.3390/biom11081067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/09/2021] [Accepted: 07/15/2021] [Indexed: 01/09/2023] Open
Abstract
The 140 amino acid protein α-synuclein (αS) is an intrinsically disordered protein (IDP) with various roles and locations in healthy neurons that plays a key role in Parkinson's disease (PD). Contact with biomembranes can lead to α-helical conformations, but can also act as s seeding event for aggregation and a predominant β-sheet conformation. In PD patients, αS is found to aggregate in various fibrillary structures, and the shift in aggregation and localization is associated with disease progression. Besides full-length αS, several related polypeptides are present in neurons. The role of many αS-related proteins in the aggregation of αS itself is not fully understood Two of these potential aggregation modifiers are the αS splicing variant αS Δexon3 (Δ3) and the paralog β-synuclein (βS). Here, polarized ATR-FTIR spectroscopy was used to study the membrane interaction of these proteins individually and in various combinations. The method allowed a continuous monitoring of both the lipid structure of biomimetic membranes and the aggregation state of αS and related proteins. The use of polarized light also revealed the orientation of secondary structure elements. While αS led to a destruction of the lipid membrane upon membrane-catalyzed aggregation, βS and Δ3 aggregated significantly less, and they did not harm the membrane. Moreover, the latter proteins reduced the membrane damage triggered by αS. There were no major differences in the membrane interaction for the different synuclein variants. In combination, these observations suggest that the formation of particular protein aggregates is the major driving force for αS-driven membrane damage. The misbalance of αS, βS, and Δ3 might therefore play a crucial role in neurodegenerative disease.
Collapse
Affiliation(s)
- Christian Scheibe
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| | | | - Stefan Schildknecht
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
- Department of Life Sciences, Albstadt-Sigmaringen University of Applied Sciences, 72488 Sigmaringen, Germany
| | - Marcel Leist
- Department of Biology, University of Konstanz, 78457 Konstanz, Germany
| | - Karin Hauser
- Department of Chemistry, University of Konstanz, 78457 Konstanz, Germany
| |
Collapse
|
13
|
Uversky VN. Bringing Darkness to Light: Intrinsic Disorder as a Means to Dig into the Dark Proteome. Proteomics 2019; 18:e1800352. [PMID: 30334344 DOI: 10.1002/pmic.201800352] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL, 33612, USA.,Laboratory of New Methods in Biology, Institute for Biological Instrumentation, Russian Academy of Sciences, Pushchino, 142290, Moscow Region, Russia
| |
Collapse
|
14
|
Richman SA, Hunter CA. β‐synuclein at the “synapse” of encephalitis and neurodegeneration in multiple sclerosis? Immunol Cell Biol 2019; 97:523-525. [DOI: 10.1111/imcb.12270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sarah A Richman
- Division of Oncology Department of Pediatrics, Children's Hospital of Philadelphia and Perelman School of Medicine University of Pennsylvania Philadelphia PA USA
| | - Christopher A Hunter
- Department of Pathobiology School of Veterinary Medicine University of Pennsylvania Philadelphia PA USA
| |
Collapse
|
15
|
Extreme Fuzziness: Direct Interactions between Two IDPs. Biomolecules 2019; 9:biom9030081. [PMID: 30813629 PMCID: PMC6468500 DOI: 10.3390/biom9030081] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/10/2019] [Accepted: 02/18/2019] [Indexed: 01/06/2023] Open
Abstract
Protein interactions involving intrinsically disordered proteins (IDPs) greatly extend the range of binding mechanisms available to proteins. In interactions employing coupled folding and binding, IDPs undergo disorder-to-order transitions to form a complex with a well-defined structure. In many other cases, IDPs retain structural plasticity in the final complexes, which have been defined as the fuzzy complexes. While a large number of fuzzy complexes have been characterized with variety of fuzzy patterns, many of the interactions are between an IDP and a structured protein. Thus, whether two IDPs can interact directly to form a fuzzy complex without disorder-to-order transition remains an open question. Recently, two studies of interactions between IDPs (4.1G-CTD/NuMA and H1/ProTα) have found a definite answer to this question. Detailed characterizations combined with nuclear magnetic resonance (NMR), single-molecule Förster resonance energy transfer (smFRET) and molecular dynamics (MD) simulation demonstrate that direct interactions between these two pairs of IDPs do form fuzzy complexes while retaining the conformational dynamics of the isolated proteins, which we name as the extremely fuzzy complexes. Extreme fuzziness completes the full spectrum of protein-protein interaction modes, suggesting that a more generalized model beyond existing binding mechanisms is required. Previous models of protein interaction could be applicable to some aspects of the extremely fuzzy interactions, but in more general sense, the distinction between native and nonnative contacts, which was used to understand protein folding and binding, becomes obscure. Exploring the phenomenon of extreme fuzziness may shed new light on molecular recognition and drug design.
Collapse
|