1
|
Profiling of transcriptional biomarkers in FFPE liver samples: PLS-DA applications for detection of illicit administration of sex steroids and clenbuterol in veal calves. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108149] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
2
|
Omics applications in the fight against abuse of anabolic substances in cattle: challenges, perspectives and opportunities. Curr Opin Food Sci 2021. [DOI: 10.1016/j.cofs.2021.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
3
|
Stella R, Bonadio RS, Cagnin S, Massimino ML, Bertoli A, Peggion C. Perturbations of the Proteome and of Secreted Metabolites in Primary Astrocytes from the hSOD1(G93A) ALS Mouse Model. Int J Mol Sci 2021; 22:ijms22137028. [PMID: 34209958 PMCID: PMC8268687 DOI: 10.3390/ijms22137028] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/18/2021] [Accepted: 06/21/2021] [Indexed: 01/16/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a progressive neurodegenerative disease whose pathophysiology is largely unknown. Despite the fact that motor neuron (MN) death is recognized as the key event in ALS, astrocytes dysfunctionalities and neuroinflammation were demonstrated to accompany and probably even drive MN loss. Nevertheless, the mechanisms priming astrocyte failure and hyperactivation are still obscure. In this work, altered pathways and molecules in ALS astrocytes were unveiled by investigating the proteomic profile and the secreted metabolome of primary spinal cord astrocytes derived from transgenic ALS mouse model overexpressing the human (h)SOD1(G93A) protein in comparison with the transgenic counterpart expressing hSOD1(WT) protein. Here we show that ALS primary astrocytes are depleted of proteins-and of secreted metabolites-involved in glutathione metabolism and signaling. The observed increased activation of Nf-kB, Ebf1, and Plag1 transcription factors may account for the augmented expression of proteins involved in the proteolytic routes mediated by proteasome or endosome-lysosome systems. Moreover, hSOD1(G93A) primary astrocytes also display altered lipid metabolism. Our results provide novel insights into the altered molecular pathways that may underlie astrocyte dysfunctionalities and altered astrocyte-MN crosstalk in ALS, representing potential therapeutic targets to abrogate or slow down MN demise in disease pathogenesis.
Collapse
Affiliation(s)
- Roberto Stella
- Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, 35020 Legnaro, Italy;
| | - Raphael Severino Bonadio
- Department of Biology and CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
| | - Stefano Cagnin
- Department of Biology and CRIBI Biotechnology Center, University of Padova, 35131 Padova, Italy; (R.S.B.); (S.C.)
- CIR-Myo Myology Center, University of Padova, 35131 Padova, Italy
| | | | - Alessandro Bertoli
- CNR—Neuroscience Institute, 35131 Padova, Italy;
- Padova Neuroscience Center, University of Padova, 35131 Padova, Italy
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Correspondence: (A.B.); (C.P.)
| | - Caterina Peggion
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy
- Correspondence: (A.B.); (C.P.)
| |
Collapse
|
4
|
Stella R, Bovo D, Mastrorilli E, Pezzolato M, Bozzetta E, Biancotto G. Anabolic treatments in bovines: quantification of plasma protein markers of dexamethasone administration. Proteomics 2021; 21:e2000238. [PMID: 34133848 DOI: 10.1002/pmic.202000238] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 05/28/2021] [Accepted: 06/10/2021] [Indexed: 11/09/2022]
Abstract
The aim of this study was to profile plasma proteome responses in bulls experimentally treated with dexamethasone at anabolic dosage. Illicit use of active substances in animal husbandry remains a matter of concern in Europe. Corticosteroids are probably one of the most widespread growth promoter family illegally used in beef cattle and veal calves. Testing for corticosteroids relies on detection of drug residues or their metabolites in biological fluids or tissues. Their indirect detection by mapping altered physiological parameters may overcome limits linked to route of administration, dosage, biotransformation and elimination kinetics that can lower residual drug concentration, hampering official controls. A set of 11 proteins proposed in literature as potential markers of anabolic treatments with dexamethasone, was quantified in bovine plasma by targeted proteomics based on liquid chromatography-high resolution tandem mass spectrometry. Among investigated proteins, sex hormone-binding globulin (SHBG), histidine-rich glycoprotein (HRG) and paraoxonase-1 (PON1) were found to be biomarkers of treatment. To investigate further such biomarkers, an additional group of veal calves was experimentally treated with dexamethasone at anabolic. These animals also demonstrated a significant alteration in SHBG, HRG and PON1 concentration, suggesting that quantification of plasma markers have the potential to detect animals illegally exposed to dexamethasone.
Collapse
Affiliation(s)
- Roberto Stella
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Chemistry, Legnaro (PD), Italy
| | - Davide Bovo
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Chemistry, Legnaro (PD), Italy
| | - Eleonora Mastrorilli
- Istituto Zooprofilattico Sperimentale delle Venezie, Microbial Ecology Unit, Legnaro (PD), Italy.,Present address: European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, CIBA, Torino, Italy
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, CIBA, Torino, Italy
| | - Giancarlo Biancotto
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Chemistry, Legnaro (PD), Italy
| |
Collapse
|
5
|
Peggion C, Massimino ML, Stella R, Bortolotto R, Agostini J, Maldi A, Sartori G, Tonello F, Bertoli A, Lopreiato R. Nucleolin Rescues TDP-43 Toxicity in Yeast and Human Cell Models. Front Cell Neurosci 2021; 15:625665. [PMID: 33912014 PMCID: PMC8072491 DOI: 10.3389/fncel.2021.625665] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 03/18/2021] [Indexed: 12/12/2022] Open
Abstract
TDP-43 is a nuclear protein involved in pivotal processes, extensively studied for its implication in neurodegenerative disorders. TDP-43 cytosolic inclusions are a common neuropathologic hallmark in amyotrophic lateral sclerosis (ALS) and related diseases, and it is now established that TDP-43 misfolding and aggregation play a key role in their etiopathology. TDP-43 neurotoxic mechanisms are not yet clarified, but the identification of proteins able to modulate TDP-43-mediated damage may be promising therapeutic targets for TDP-43 proteinopathies. Here we show by the use of refined yeast models that the nucleolar protein nucleolin (NCL) acts as a potent suppressor of TDP-43 toxicity, restoring cell viability. We provide evidence that NCL co-expression is able to alleviate TDP-43-induced damage also in human cells, further supporting its beneficial effects in a more consistent pathophysiological context. Presented data suggest that NCL could promote TDP-43 nuclear retention, reducing the formation of toxic cytosolic TDP-43 inclusions.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Roberto Stella
- Food Safety Division, Department of Chemistry, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Raissa Bortolotto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Jessica Agostini
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Arianna Maldi
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Geppo Sartori
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | | | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, Padova, Italy.,CNR - Neuroscience Institute, Padova, Italy.,Padova Neuroscience Center, University of Padova, Padova, Italy
| | | |
Collapse
|
6
|
Stella R, Bovo D, Mastrorilli E, Manuali E, Pezzolato M, Bozzetta E, Lega F, Angeletti R, Biancotto G. A novel tool to screen for treatments with clenbuterol in bovine: Identification of two hepatic markers by metabolomics investigation. Food Chem 2021; 353:129366. [PMID: 33838430 DOI: 10.1016/j.foodchem.2021.129366] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 11/29/2022]
Abstract
Surveillance of illegal use of growth promoters such as β2-agonists in food producing animals rely on the detection of drug residues by LC-MS/MS. Screening strategies focusing on indirect physiological responses following administration of active compounds are promising approaches to strengthen existing targeted methods and ensure food safety. A metabolomics analysis based on LC-HRMS was carried out on liver extracts from bulls experimentally treated with clenbuterol combined with dexamethasone (n = 8) to mimic a potential anabolic practice, and control animals (n = 8). Nicotinic acid and 5'-deoxy-5'-methylthioadenosine were identified as biomarkers of treatment. Ratio values of such markers to others of the same metabolic pathways (nicotinamide or methionine) were used to develop a classification model to assign animals as treated with clenbuterol or non-treated. The classification model was tested on an external validation set comprising 74 animals either treated with different anabolic compounds (β2-agonists, sexual steroids, corticosteroid), or non-treated, showing 100% sensitivity and specificity.
Collapse
Affiliation(s)
- Roberto Stella
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Chemistry, Legnaro (PD), Italy.
| | - Davide Bovo
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Chemistry, Legnaro (PD), Italy
| | - Eleonora Mastrorilli
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Food Safety, Legnaro (PD), Italy; European Molecular Biology Laboratory, Structural and Computational Biology Unit, Heidelberg, Germany
| | - Elisabetta Manuali
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche "Togo Rosati", Perugia, Italy
| | - Marzia Pezzolato
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Elena Bozzetta
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Torino, Italy
| | - Francesca Lega
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Chemistry, Legnaro (PD), Italy
| | - Roberto Angeletti
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Chemistry, Legnaro (PD), Italy
| | - Giancarlo Biancotto
- Istituto Zooprofilattico Sperimentale delle Venezie, Department of Chemistry, Legnaro (PD), Italy
| |
Collapse
|
7
|
Gao X, Zhang L, Zhou P, Zhang Y, Wei Y, Wang Y, Liu X. Tandem Mass Tag-Based Quantitative Proteome Analysis of Porcine Deltacoronavirus (PDCoV)-Infected LLC Porcine Kidney Cells. ACS OMEGA 2020; 5:21979-21987. [PMID: 32923756 PMCID: PMC7482077 DOI: 10.1021/acsomega.0c00886] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/12/2020] [Indexed: 05/12/2023]
Abstract
Porcine deltacoronavirus (PDCoV) is a newly emerging porcine pathogenic enteric coronavirus that can cause diarrhea, vomiting, dehydration, and a high mortality rate in piglets. At present, the understanding of PDCoV pathogenesis is very limited, which seriously hinders effective prevention and control. In this study, liquid chromatography tandem-mass spectrometry (LC-MS/MS) combined with tandem mass tag (TMT) labeling was performed to compare the differential expression of proteins in PDCoV-infected and mock-infected LLC-PK cells at 18 h post-infection (hpi). In addition, the parallel reaction monitoring (PRM) technique was used to verify the quantitative proteome data. A total of 4624 differentially expressed proteins (DEPs) were quantitated, of which 128 were significantly upregulated, and 147 were significantly downregulated. Bioinformatics analysis revealed that these DEPs were involved mainly in the defense response, apoptosis, and the immune system, and several DEPs may be related to interferon-stimulated genes and the immune system. Based on DEP bioinformatics analysis, we propose that PDCoV infection may utilize the apoptosis pathway of host cells to achieve maximum viral replication. Meanwhile, the host may be able to stimulate the transcription of interferon-stimulated genes (ISGs) through the JAK/STAT signaling pathway to resist the virus. Overall, in this study, we presented the first application of proteomics analysis to determine the protein profile of PDCoV-infected cells, which provides valuable information with respect to better understanding the host response to PDCoV infection and the specific pathogenesis of PDCoV infection.
Collapse
Affiliation(s)
- Xiang Gao
- State
Key Laboratory of Veterinary Etiological Biology, Key Laboratory of
Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural
Sciences, Lanzhou 730046, China
- College
of Veterinary Medicine, Gansu Agricultural
University, Lanzhou 730070, China
- Jiangsu
Co-innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Liping Zhang
- State
Key Laboratory of Veterinary Etiological Biology, Key Laboratory of
Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural
Sciences, Lanzhou 730046, China
- Jiangsu
Co-innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Peng Zhou
- State
Key Laboratory of Veterinary Etiological Biology, Key Laboratory of
Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural
Sciences, Lanzhou 730046, China
- Jiangsu
Co-innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yongguang Zhang
- State
Key Laboratory of Veterinary Etiological Biology, Key Laboratory of
Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural
Sciences, Lanzhou 730046, China
- Jiangsu
Co-innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Yanming Wei
- College
of Veterinary Medicine, Gansu Agricultural
University, Lanzhou 730070, China
| | - Yonglu Wang
- State
Key Laboratory of Veterinary Etiological Biology, Key Laboratory of
Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural
Sciences, Lanzhou 730046, China
- Jiangsu
Co-innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou 225009, China
| | - Xinsheng Liu
- State
Key Laboratory of Veterinary Etiological Biology, Key Laboratory of
Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research
Institute, Chinese Academy of Agricultural
Sciences, Lanzhou 730046, China
- Jiangsu
Co-innovation Center for Prevention and Control of Important Animal
Infectious Diseases and Zoonoses, Yangzhou 225009, China
| |
Collapse
|
8
|
Malkawi AK, Masood A, Shinwari Z, Jacob M, Benabdelkamel H, Matic G, Almuhanna F, Dasouki M, Alaiya AA, Rahman AMA. Proteomic Analysis of Morphologically Changed Tissues after Prolonged Dexamethasone Treatment. Int J Mol Sci 2019; 20:ijms20133122. [PMID: 31247941 PMCID: PMC6650964 DOI: 10.3390/ijms20133122] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 06/16/2019] [Accepted: 06/18/2019] [Indexed: 12/16/2022] Open
Abstract
Prolonged dexamethasone (Dex) administration leads to serious adverse and decrease brain and heart size, muscular atrophy, hemorrhagic liver, and presence of kidney cysts. Herein, we used an untargeted proteomic approach using liquid chromatography-tandem mass spectrometry (LC-MS/MS) for simultaneous identification of changes in proteomes of the major organs in Sprague–Dawley (SD rats post Dex treatment. The comparative and quantitative proteomic analysis of the brain, heart, muscle, liver, and kidney tissues revealed differential expression of proteins (n = 190, 193, 39, 230, and 53, respectively) between Dex-treated and control rats. Functional network analysis using ingenuity pathway analysis (IPA revealed significant differences in regulation of metabolic pathways within the morphologically changed organs that related to: (i) brain—cell morphology, nervous system development, and function and neurological disease; (ii) heart—cellular development, cellular function and maintenance, connective tissue development and function; (iii) skeletal muscle—nucleic acid metabolism, and small molecule biochemical pathways; (iv) liver—lipid metabolism, small molecular biochemistry, and nucleic acid metabolism; and (v) kidney—drug metabolism, organism injury and abnormalities, and renal damage. Our study provides a comprehensive description of the organ-specific proteomic profilesand differentially altered biochemical pathways, after prolonged Dex treatement to understand the molecular basis for development of side effects.
Collapse
Affiliation(s)
- Abeer K Malkawi
- Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrook Street West, Montréal, QC H4B 1R6, Canada
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia
| | - Afshan Masood
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Zakia Shinwari
- Stem Cell & Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia
| | - Minnie Jacob
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia
- College of Public Health, Medical, and Veterinary Sciences/Molecular & Cell Biology, James Cook University, Townsville, QLD 4811, Australia
| | - Hicham Benabdelkamel
- Proteomics Resource Unit, Obesity Research Center, College of Medicine, King Saud University, P.O. Box 2925 (98), Riyadh 11461, Saudi Arabia
| | - Goran Matic
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia
| | - Falah Almuhanna
- Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia
| | - Majed Dasouki
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia
| | - Ayodele A Alaiya
- Stem Cell & Tissue Re-Engineering Program, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia
| | - Anas M Abdel Rahman
- Department of Genetics, King Faisal Specialist Hospital and Research Center (KFSHRC), Riyadh 11461, Saudi Arabia.
- College of Medicine, Al Faisal University, Riyadh 11533, Saudi Arabia.
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada.
| |
Collapse
|