1
|
Functional stratification of cancer drugs through integrated network similarity. NPJ Syst Biol Appl 2022; 8:11. [PMID: 35440787 PMCID: PMC9018743 DOI: 10.1038/s41540-022-00219-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 01/21/2022] [Indexed: 11/30/2022] Open
Abstract
Drugs not only perturb their immediate protein targets but also modulate multiple signaling pathways. In this study, we explored networks modulated by several drugs across multiple cancer cell lines by integrating their targets with transcriptomic and phosphoproteomic data. As a result, we obtained 236 reconstructed networks covering five cell lines and 70 drugs. A rigorous topological and pathway analysis showed that chemically and functionally different drugs may modulate overlapping networks. Additionally, we revealed a set of tumor-specific hidden pathways with the help of drug network models that are not detectable from the initial data. The difference in the target selectivity of the drugs leads to disjoint networks despite sharing a similar mechanism of action, e.g., HDAC inhibitors. We also used the reconstructed network models to study potential drug combinations based on the topological separation and found literature evidence for a set of drug pairs. Overall, network-level exploration of drug-modulated pathways and their deep comparison may potentially help optimize treatment strategies and suggest new drug combinations.
Collapse
|
2
|
Urban J. A review on recent trends in the phosphoproteomics workflow. From sample preparation to data analysis. Anal Chim Acta 2022; 1199:338857. [PMID: 35227377 DOI: 10.1016/j.aca.2021.338857] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 12/12/2022]
|
3
|
Buffard M, Naldi A, Freiss G, Deckert M, Radulescu O, Coopman PJ, Larive RM. Comparison of SYK Signaling Networks Reveals the Potential Molecular Determinants of Its Tumor-Promoting and Suppressing Functions. Biomolecules 2021; 11:biom11020308. [PMID: 33670716 PMCID: PMC7923165 DOI: 10.3390/biom11020308] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/10/2021] [Accepted: 02/14/2021] [Indexed: 01/18/2023] Open
Abstract
Spleen tyrosine kinase (SYK) can behave as an oncogene or a tumor suppressor, depending on the cell and tissue type. As pharmacological SYK inhibitors are currently evaluated in clinical trials, it is important to gain more information on the molecular mechanisms underpinning these opposite roles. To this aim, we reconstructed and compared its signaling networks using phosphoproteomic data from breast cancer and Burkitt lymphoma cell lines where SYK behaves as a tumor suppressor and promoter. Bioinformatic analyses allowed for unveiling the main differences in signaling pathways, network topology and signal propagation from SYK to its potential effectors. In breast cancer cells, the SYK target-enriched signaling pathways included intercellular adhesion and Hippo signaling components that are often linked to tumor suppression. In Burkitt lymphoma cells, the SYK target-enriched signaling pathways included molecules that could play a role in SYK pro-oncogenic function in B-cell lymphomas. Several protein interactions were profoundly rewired in the breast cancer network compared with the Burkitt lymphoma network. These data demonstrate that proteomic profiling combined with mathematical network modeling allows untangling complex pathway interplays and revealing difficult to discern interactions among the SYK pathways that positively and negatively affect tumor formation and progression.
Collapse
Affiliation(s)
- Marion Buffard
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
- LPHI, Université de Montpellier, CNRS, F-34095 Montpellier, France;
| | - Aurélien Naldi
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, École Normale Supérieure, CNRS, INSERM, Université PSL, F-75005 Paris, France;
- Lifeware Group, Inria Saclay-île de France, F-91120 Palaiseau, France
| | - Gilles Freiss
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
| | - Marcel Deckert
- C3M, Université Côte d'Azur, INSERM, équipe «Microenvironnement, Signalisation et Cancer», F-06204 Nice, France;
| | - Ovidiu Radulescu
- LPHI, Université de Montpellier, CNRS, F-34095 Montpellier, France;
| | - Peter J. Coopman
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
- CNRS—Centre National de la Recherche Scientifique, 1919 Route de Mende, F-34293 Montpellier, France
| | - Romain M. Larive
- IRCM, Université de Montpellier, ICM, INSERM, F-34298 Montpellier, France; (M.B.); (G.F.); (P.J.C.)
- IBMM, Université Montpellier, CNRS, ENSCM, F-34093 Montpellier, France
- Correspondence: ; Tel.: +33-467-61-24-30; Fax: +33-467-61-37-87
| |
Collapse
|
4
|
McClendon CJ, Miller WT. Structure, Function, and Regulation of the SRMS Tyrosine Kinase. Int J Mol Sci 2020; 21:E4233. [PMID: 32545875 PMCID: PMC7352994 DOI: 10.3390/ijms21124233] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 01/05/2023] Open
Abstract
Src-related kinase lacking C-terminal regulatory tyrosine and N-terminal myristoylation sites (SRMS) is a tyrosine kinase that was discovered in 1994. It is a member of a family of nonreceptor tyrosine kinases that also includes Brk (PTK6) and Frk. Compared with other tyrosine kinases, there is relatively little information about the structure, function, and regulation of SRMS. In this review, we summarize the current state of knowledge regarding SRMS, including recent results aimed at identifying downstream signaling partners. We also present a structural model for the enzyme and discuss the potential involvement of SRMS in cancer cell signaling.
Collapse
Affiliation(s)
- Chakia J. McClendon
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA;
| | - W. Todd Miller
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794-8661, USA;
- Department of Veterans Affairs Medical Center, Northport, NY 11768, USA
| |
Collapse
|