1
|
Sousa P, Silva L, Câmara JS, Guedes de Pinho P, Perestrelo R. Integrating OMICS-based platforms and analytical tools for diagnosis and management of pancreatic cancer: a review. Mol Omics 2024. [PMID: 39714229 DOI: 10.1039/d4mo00187g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
Cancer remains the second leading cause of death worldwide, surpassed only by cardiovascular disease. From the different types of cancer, pancreatic cancer (PaC) has one of the lowest survival rates, with a survival rate of about 20% after the first year of diagnosis and about 8% after 5 years. The lack of highly sensitive and specific biomarkers, together with the absence of symptoms in the early stages, determines a late diagnosis, which is associated with a decrease in the effectiveness of medical intervention, regardless of its nature - surgery and/or chemotherapy. This review provides an updated overview of recent studies combining multi-OMICs approaches (e.g., proteomics, metabolomics) with analytical tools, highlighting the synergy between high-throughput molecular data generation and precise analytical tools such as LC-MS, GC-MS and MALDI-TOF MS. This combination significantly improves the detection, quantification and identification of biomolecules in complex biological systems and represents the latest advances in understanding PaC management and the search for effective diagnostic tools. Large-scale data analysis coupled with bioinformatics tools enables the identification of specific genetic mutations, gene expression patterns, pathways, networks, protein modifications and metabolic signatures associated with PaC pathogenesis, progression and treatment response through the integration of multi-OMICs data.
Collapse
Affiliation(s)
- Patrícia Sousa
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| | - Laurentina Silva
- Hospital Dr Nélio Mendonça, SESARAM, EPERAM - Serviço de Saúde da Região Autónoma da Madeira, Avenida Luís de Camões, 9004-514 Funchal, Portugal
| | - José S Câmara
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
- Departamento de Química, Faculdade de Ciências Exatas e Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal
- UCIBIO - Applied Molecular Biosciences Unit, Lab. of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Rosa Perestrelo
- CQM - Centro de Química da Madeira, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal.
| |
Collapse
|
2
|
Hao L, Khajouei F, Rodriguez J, Kim S, Lee EJA. Unlocking the Promise of Decellularized Pancreatic Tissue: A Novel Approach to Support Angiogenesis in Engineered Tissue. Bioengineering (Basel) 2024; 11:183. [PMID: 38391669 PMCID: PMC10886056 DOI: 10.3390/bioengineering11020183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/08/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024] Open
Abstract
Advancements in regenerative medicine have highlighted the potential of decellularized extracellular matrix (ECM) as a scaffold for organ bioengineering. Although the potential of ECM in major organ systems is well-recognized, studies focusing on the angiogenic effects of pancreatic ECM are limited. This study investigates the capabilities of pancreatic ECM, particularly its role in promoting angiogenesis. Using a Triton-X-100 solution, porcine pancreas was successfully decellularized, resulting in a significant reduction in DNA content (97.1% removal) while preserving key pancreatic ECM components. A three-dimensional ECM hydrogel was then created from this decellularized tissue and used for cell culture. Biocompatibility tests demonstrated enhanced adhesion and proliferation of mouse embryonic stem cell-derived endothelial cells (mES-ECs) and human umbilical vein endothelial cells (HUVECs) in this hydrogel compared to conventional scaffolds. The angiogenic potential was evaluated through tube formation assays, wherein the cells showed superior tube formation capabilities in ECM hydrogel compared to rat tail collagen. The RT-PCR analysis further confirmed the upregulation of pro-angiogenic genes in HUVECs cultured within the ECM hydrogel. Specifically, HUVECs cultured in the ECM hydrogel exhibited a significant upregulation in the expression of MMP2, VEGF and PAR-1, compared to those cultured in collagen hydrogel or in a monolayer condition. The identification of ECM proteins, specifically PRSS2 and Decorin, further supports the efficacy of pancreatic ECM hydrogel as an angiogenic scaffold. These findings highlight the therapeutic promise of pancreatic ECM hydrogel as a candidate for vascularized tissue engineering application.
Collapse
Affiliation(s)
- Lei Hao
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Fariba Khajouei
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Jaselin Rodriguez
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Soojin Kim
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| | - Eun Jung A Lee
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07102, USA
| |
Collapse
|
3
|
Luz IS, Takaya R, Ribeiro DG, Castro MS, Fontes W. Proteomics: Unraveling the Cross Talk Between Innate Immunity and Disease Pathophysiology, Diagnostics, and Treatment Options. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1443:221-242. [PMID: 38409424 DOI: 10.1007/978-3-031-50624-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Inflammation is crucial in diseases, and proteins play a key role in the interplay between innate immunity and pathology. This review explores how proteomics helps understanding this relationship, focusing on diagnosis and treatment. We explore the dynamic innate response and the significance of proteomic techniques in deciphering the complex network of proteins involved in prevalent diseases, including infections, cancer, autoimmune and neurodegenerative disorders. Proteomics identifies key proteins in host-pathogen interactions, shedding light on infection mechanisms and inflammation. These discoveries hold promise for diagnostic tools, therapies, and vaccines. In cancer research, proteomics reveals innate signatures associated with tumor development, immune evasion, and therapeutic response. Additionally, proteomic analysis has unveiled autoantigens and dysregulation of the innate immune system in autoimmunity, offering opportunities for early diagnosis, disease monitoring, and new therapeutic targets. Moreover, proteomic analysis has identified altered protein expression patterns in neurodegenerative diseases like Alzheimer's and Parkinson's, providing insights into potential therapeutic strategies. Proteomics of the innate immune system provides a comprehensive understanding of disease mechanisms, identifies biomarkers, and enables effective interventions in various diseases. Despite still in its early stages, this approach holds great promise to revolutionize innate immunity research and significantly improve patient outcomes across a wide range of diseases.
Collapse
Affiliation(s)
- Isabelle Souza Luz
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Raquel Takaya
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Daiane Gonzaga Ribeiro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Mariana S Castro
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, University of Brasilia, Brasília, Federal District, Brazil.
| |
Collapse
|
4
|
Pajewska M, Partyka O, Czerw A, Deptała A, Cipora E, Gąska I, Wojtaszek M, Sygit K, Sygit M, Krzych-Fałta E, Schneider-Matyka D, Cybulska AM, Grochans E, Asendrych-Woźniak A, Romanowicz A, Drobnik J, Bandurska E, Ciećko W, Maciuszek-Bartkowska B, Curyło M, Wróbel K, Kozłowski R, Marczak M. Management of Metastatic Pancreatic Cancer-Comparison of Global Guidelines over the Last 5 Years. Cancers (Basel) 2023; 15:4400. [PMID: 37686675 PMCID: PMC10486352 DOI: 10.3390/cancers15174400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Pancreatic cancer (PC) is usually diagnosed at an advanced stage of its development, which results in lower overall survival (OS). Prognosis is also poor even with curative-intent surgery. Approximately 80% of patients with localized PDAC have micrometastases at the time of diagnosis, which leads to a worse prognosis than in other cancers. The objective of this study is to present the progress in the treatment of metastatic pancreatic cancer based on the recommendations of oncological scientific societies, such as ESMO, NCCN, ASCO, NICE and SEOM, over the last 5 years. Combined FOLFIRINOX therapy is mostly a recommended therapy among patients with good performance statuses, while gemcitabine is recommended for more fragile patients as a first-line treatment. The newest guidelines suggest that molecular profiling of the tumor should be the first step in determining the course of treatment. The use of modern molecular therapies in patients with specific gene mutations should extend the survival of patients with this disease.
Collapse
Affiliation(s)
- Monika Pajewska
- Department of Health Economics and Medical Law, Medical University of Warsaw, 01-445 Warsaw, Poland; (M.P.)
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Olga Partyka
- Department of Health Economics and Medical Law, Medical University of Warsaw, 01-445 Warsaw, Poland; (M.P.)
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Aleksandra Czerw
- Department of Health Economics and Medical Law, Medical University of Warsaw, 01-445 Warsaw, Poland; (M.P.)
- Department of Economic and System Analyses, National Institute of Public Health NIH-National Research Institute, 00-791 Warsaw, Poland
| | - Andrzej Deptała
- Department of Oncology Propaedeutics, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Elżbieta Cipora
- Medical Institute, Jan Grodek State University in Sanok, 38-500 Sanok, Poland
| | - Izabela Gąska
- Medical Institute, Jan Grodek State University in Sanok, 38-500 Sanok, Poland
| | - Marek Wojtaszek
- Medical Institute, Jan Grodek State University in Sanok, 38-500 Sanok, Poland
| | - Katarzyna Sygit
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland
| | - Marian Sygit
- Faculty of Health Sciences, Calisia University, 62-800 Kalisz, Poland
| | - Edyta Krzych-Fałta
- Department of Basic of Nursing, Faculty of Health Sciences, Medical University of Warsaw, 01-445 Warsaw, Poland
| | - Daria Schneider-Matyka
- Department of Nursing, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Anna M. Cybulska
- Department of Nursing, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Elżbieta Grochans
- Department of Nursing, Faculty of Health Sciences, Pomeranian Medical University in Szczecin, 71-210 Szczecin, Poland
| | - Alicja Asendrych-Woźniak
- Clinical Department of Oncology, The National Institute of Medicine of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Agnieszka Romanowicz
- Clinical Department of Oncology, The National Institute of Medicine of the Ministry of Interior and Administration, 02-507 Warsaw, Poland
| | - Jarosław Drobnik
- Department of Family Medicine, Faculty of Medicine, Wroclaw Medical University, 51-141 Wroclaw, Poland
| | - Ewa Bandurska
- Center for Competence Development, Integrated Care and e-Health, Medical University of Gdansk, 80-204 Gdansk, Poland
| | - Weronika Ciećko
- Center for Competence Development, Integrated Care and e-Health, Medical University of Gdansk, 80-204 Gdansk, Poland
| | | | - Mateusz Curyło
- Department of Internal Medicine, Rehabilitation and Physical Medicine, Medical University of Lodz, 90-647 Lodz, Poland
- Medical Rehabilitation Department, The Ministry of the Interior and Administration Hospital, 30-053 Cracow, Poland
| | - Kacper Wróbel
- Department of Management and Logistics in Healthcare, Medical University of Lodz, 90-131 Lodz, Poland
| | - Remigiusz Kozłowski
- Center for Security Technologies in Logistics, Faculty of Management, University of Lodz, 90-237 Lodz, Poland
| | - Michał Marczak
- Collegium of Management, WSB Merito University in Warsaw, 03-204 Warszawa, Poland
| |
Collapse
|
5
|
Wang F, Yi J, Chen Y, Bai X, Lu C, Feng S, Zhou X. PRSS2 regulates EMT and metastasis via MMP-9 in gastric cancer. Acta Histochem 2023; 125:152071. [PMID: 37331089 DOI: 10.1016/j.acthis.2023.152071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 06/12/2023] [Accepted: 06/14/2023] [Indexed: 06/20/2023]
Abstract
Serine protease 2 (PRSS2) is upregulated in gastric cancer tissues, correlates with poor prognosis and promotes migration and invasion of gastric cancer cells. However, the exact mechanism by which PRSS2 promotes metastasis in gastric cancer is unclear. We examined serum PRSS2 levels in healthy controls and gastric cancer patients by enzyme linked immunosorbent assay (ELISA) and analyzed the correlation between PRSS2 serum level with the clinicopathological characteristics of gastric cancer patients and matrix metalloproteinase-9 (MMP-9) expression. A lentiviral MMP-9 overexpression vector was constructed and used to transfect gastric cancer cells with stable silencing of PRSS2, and migration, invasion and epithelial-mesenchymal transition (EMT) of gastric cancer cells were examined. High serum PRSS2 levels were detected in gastric cancer patients and associated with lymphatic metastasis and TNM stage. Serum PRSS2 was positively correlated with serum MMP-9 level. PRSS2 silencing inhibited EMT, and knock-down of PRSS2 partially abrogated cell metastasis and EMT caused by overexpression of MMP-9. These results suggest that PRSS2 promotes the migration and invasion of gastric cancer cells through EMT induction by MMP-9. Our findings suggest that PRSS2 may be a potential early diagnostic marker and therapeutic target of gastric cancer.
Collapse
Affiliation(s)
- Fei Wang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China; Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Jianfeng Yi
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong, Jiangsu 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Yu Chen
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Medical school of Nantong University, Nantong, Jiangsu 226001, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiang Bai
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Chunfeng Lu
- Department of Endocrinology, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Shichun Feng
- Department of General Surgery, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, China
| | - Xiaojun Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
6
|
Zhang J, Li H. Identification of potential extracellular vesicle protein markers altered in osteosarcoma from public databases. Proteomics Clin Appl 2022:e2200084. [PMID: 36571514 DOI: 10.1002/prca.202200084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/13/2022] [Accepted: 12/23/2022] [Indexed: 12/27/2022]
Abstract
PURPOSE Extracellular vesicles (EVs) have become promising biomarkers for cancer management. Particularly, the molecular cargo such as proteins carried by EVs are similar to their cells of origin, providing important information that can be used for cancer diagnostics, prognosis, and treatment monitoring. However, to date, molecular analysis on EVs is still challenging, limited by the availability of efficient analytical technologies, largely due to the small size of EVs. In this work, we developed a computational workflow for in silico identification of potential EV protein markers from genomic and proteomic databases, and applied it for the discovery of osteosarcoma (OS) EV protein markers. EXPERIMENTAL DESIGN Both mRNA and protein data were computed and compared from publicly accessible databases, and top markers with high differential expression levels were selected. RESULTS Thirty nine markers were identified overexpressed and seven found to be downregulated. These identified markers have been found to be associated with OS on different aspects in literature, demonstrating the usability of this workflow. CONCLUSIONS AND CLINICAL RELEVANCE This work provides a list of potential EV protein markers that are either overexpressed or downregulated in OS for further experimental validation for improved clinical management of OS.
Collapse
Affiliation(s)
- Jinhe Zhang
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| | - Huiyan Li
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
7
|
Li X, Gu W, Liu Y, Wen X, Tian L, Yan S, Chen S. A novel quantitative prognostic model for initially diagnosed non-small cell lung cancer with brain metastases. Cancer Cell Int 2022; 22:251. [PMID: 35948974 PMCID: PMC9367158 DOI: 10.1186/s12935-022-02671-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 08/02/2022] [Indexed: 11/27/2022] Open
Abstract
Background The prognosis of non-small cell lung cancer (NSCLC) with brain metastases (BMs) had been researched in some researches, but the combination of clinical characteristics and serum inflammatory indexes as a noninvasive and more accurate model has not been described. Methods We retrospectively screened patients with BMs at the initial diagnosis of NSCLC at Sun Yat-Sen University Cancer Center. LASSO-Cox regression analysis was used to establish a novel prognostic model for predicting OS based on blood biomarkers. The predictive accuracy and discriminative ability of the prognostic model was compared to Adjusted prognostic Analysis (APA), Recursive Partition Analysis (RPA), and Graded Prognostic Assessment (GPA) using concordance index (C-index), time-dependent receiver operating characteristic (td-ROC) curve, Decision Curve Analysis(DCA), net reclassification improvement index (NRI), and integrated discrimination improvement index (IDI). Results 10-parameter signature's predictive model for the NSCLC patients with BMs was established according to the results of LASSO-Cox regression analysis. The C-index of the prognostic model to predict OS was 0.672 (95% CI = 0.609 ~ 0.736) which was significantly higher than APA,RPA and GPA. The td-ROC curve and DCA of the predictive model also demonstrated good predictive accuracy of OS compared to APA, RPA and GPA. Moreover, NRI and IDI analysis indicated that the prognostic model had improved prediction ability compared with APA, RPA and GPA. Conclusion The novel prognostic model demonstrated favorable performance than APA, RPA, and GPA for predicting OS in NSCLC patients with BMs. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02671-2.
Collapse
Affiliation(s)
- Xiaohui Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China.,Department of Clinical Laboratory Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Wenshen Gu
- Department of Laboratory Medicine, Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Guangzhou, 510120, People's Republic of China
| | - Yijun Liu
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China.,Department of Clinical Laboratory Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiaoyan Wen
- Department of Central Sterile Supply, Guanghua School of Stomatology, Affiliated Stomatological Hospital, Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, Guangdong, 510055, People's Republic of China
| | - Liru Tian
- Research Center for Translational Medicine, the First Affiliated Hospital, Sun Yat-Sen University, 58 Zhongshan Road 2, Guangzhou, Guangdong, 510080, People's Republic of China
| | - Shumei Yan
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China. .,Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| | - Shulin Chen
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, People's Republic of China. .,Department of Clinical Laboratory Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China. .,Guangdong Esophageal Cancer Institute, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|
8
|
Chatterjee G, Ferris B, Momenbeitollahi N, Li H. In-silico selection of cancer blood plasma proteins by integrating genomic and proteomic databases. Proteomics 2021; 22:e2100230. [PMID: 34933412 DOI: 10.1002/pmic.202100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/15/2021] [Accepted: 12/13/2021] [Indexed: 11/11/2022]
Abstract
Blood protein markers have been studied for the clinical management of cancer. Due to the large number of the proteins existing in blood, it is often necessary to pre-select potential protein markers before experimental studies. However, to date there is a lack of automated method for in-silico selection of cancer blood proteins that integrates the information from both genetic and proteomic studies in a cancer-specific manner. In this work, we synthesized both genomic and proteomic information from several open access databases and established a bioinformatic pipeline for in-silico selection of blood plasma proteins overexpressed in specific type of cancer. We demonstrated the workflow of this pipeline with an example of breast cancer, while the methodology was applicable for other cancer types. With this pipeline we obtained 10 candidate biomarkers for breast cancer. The proposed pipeline provides a useful and convenient tool for in-silico selection of candidate blood protein biomarkers for a variety of cancer research.
Collapse
Affiliation(s)
- Gaurab Chatterjee
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| | - Bryn Ferris
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| | | | - Huiyan Li
- School of Engineering, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
9
|
Imbert A, Rompais M, Selloum M, Castelli F, Mouton-Barbosa E, Brandolini-Bunlon M, Chu-Van E, Joly C, Hirschler A, Roger P, Burger T, Leblanc S, Sorg T, Ouzia S, Vandenbrouck Y, Médigue C, Junot C, Ferro M, Pujos-Guillot E, de Peredo AG, Fenaille F, Carapito C, Herault Y, Thévenot EA. ProMetIS, deep phenotyping of mouse models by combined proteomics and metabolomics analysis. Sci Data 2021; 8:311. [PMID: 34862403 PMCID: PMC8642540 DOI: 10.1038/s41597-021-01095-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 11/02/2021] [Indexed: 01/20/2023] Open
Abstract
Genes are pleiotropic and getting a better knowledge of their function requires a comprehensive characterization of their mutants. Here, we generated multi-level data combining phenomic, proteomic and metabolomic acquisitions from plasma and liver tissues of two C57BL/6 N mouse models lacking the Lat (linker for activation of T cells) and the Mx2 (MX dynamin-like GTPase 2) genes, respectively. Our dataset consists of 9 assays (1 preclinical, 2 proteomics and 6 metabolomics) generated with a fully non-targeted and standardized approach. The data and processing code are publicly available in the ProMetIS R package to ensure accessibility, interoperability, and reusability. The dataset thus provides unique molecular information about the physiological role of the Lat and Mx2 genes. Furthermore, the protocols described herein can be easily extended to a larger number of individuals and tissues. Finally, this resource will be of great interest to develop new bioinformatic and biostatistic methods for multi-omics data integration.
Collapse
Affiliation(s)
- Alyssa Imbert
- CEA, LIST, Laboratoire Sciences des Données et de la Décision, IFB, MetaboHUB, Gif-sur-Yvette, France.
- IFB-core, UMS3601, Genoscope, Evry, France.
| | - Magali Rompais
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, ProFI, Strasbourg, France
| | - Mohammed Selloum
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, Phenomin-ICS, Illkirch, France
| | - Florence Castelli
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France
| | - Emmanuelle Mouton-Barbosa
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, ProFI, Toulouse, France
| | - Marion Brandolini-Bunlon
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB, Clermont-Ferrand, France
| | - Emeline Chu-Van
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France
| | - Charlotte Joly
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB, Clermont-Ferrand, France
| | - Aurélie Hirschler
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, ProFI, Strasbourg, France
| | - Pierrick Roger
- CEA, LIST, Laboratoire Intelligence Artificielle et Apprentissage Automatique, MetaboHUB, Gif-sur-Yvette, France
| | - Thomas Burger
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, FR2048, ProFI, Grenoble, France
| | - Sophie Leblanc
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, Phenomin-ICS, Illkirch, France
| | - Tania Sorg
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, Phenomin-ICS, Illkirch, France
| | - Sadia Ouzia
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France
| | - Yves Vandenbrouck
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, FR2048, ProFI, Grenoble, France
| | - Claudine Médigue
- IFB-core, UMS3601, Genoscope, Evry, France
- Laboratoire d'Analyses Bioinformatique en Génomique et Métabolisme (LABGeM), CNRS & CEA/DRF/IFJ, UMR8030, Evry, France
| | - Christophe Junot
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France
| | - Myriam Ferro
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, FR2048, ProFI, Grenoble, France
| | - Estelle Pujos-Guillot
- Université Clermont Auvergne, INRAE, UNH, Plateforme d'Exploration du Métabolisme, MetaboHUB, Clermont-Ferrand, France
| | - Anne Gonzalez de Peredo
- Institut de Pharmacologie et Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, ProFI, Toulouse, France
| | - François Fenaille
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France
| | - Christine Carapito
- Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178, ProFI, Strasbourg, France
| | - Yann Herault
- Université de Strasbourg, CNRS, INSERM, Institut Clinique de la Souris, Phenomin-ICS, Illkirch, France
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, France
| | - Etienne A Thévenot
- Université Paris Saclay, CEA, INRAE, Département Médicaments et Technologies pour la Santé (MTS), MetaboHUB, Gif-sur-Yvette, France.
| |
Collapse
|
10
|
Deutsch EW, Omenn GS, Sun Z, Maes M, Pernemalm M, Palaniappan KK, Letunica N, Vandenbrouck Y, Brun V, Tao SC, Yu X, Geyer PE, Ignjatovic V, Moritz RL, Schwenk JM. Advances and Utility of the Human Plasma Proteome. J Proteome Res 2021; 20:5241-5263. [PMID: 34672606 PMCID: PMC9469506 DOI: 10.1021/acs.jproteome.1c00657] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The study of proteins circulating in blood offers tremendous opportunities to diagnose, stratify, or possibly prevent diseases. With recent technological advances and the urgent need to understand the effects of COVID-19, the proteomic analysis of blood-derived serum and plasma has become even more important for studying human biology and pathophysiology. Here we provide views and perspectives about technological developments and possible clinical applications that use mass-spectrometry(MS)- or affinity-based methods. We discuss examples where plasma proteomics contributed valuable insights into SARS-CoV-2 infections, aging, and hemostasis and the opportunities offered by combining proteomics with genetic data. As a contribution to the Human Proteome Organization (HUPO) Human Plasma Proteome Project (HPPP), we present the Human Plasma PeptideAtlas build 2021-07 that comprises 4395 canonical and 1482 additional nonredundant human proteins detected in 240 MS-based experiments. In addition, we report the new Human Extracellular Vesicle PeptideAtlas 2021-06, which comprises five studies and 2757 canonical proteins detected in extracellular vesicles circulating in blood, of which 74% (2047) are in common with the plasma PeptideAtlas. Our overview summarizes the recent advances, impactful applications, and ongoing challenges for translating plasma proteomics into utility for precision medicine.
Collapse
Affiliation(s)
- Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Gilbert S Omenn
- Institute for Systems Biology, Seattle, Washington 98109, United States.,Departments of Computational Medicine & Bioinformatics, Internal Medicine, and Human Genetics and School of Public Health, University of Michigan, Ann Arbor, Michigan 48109-2218, United States
| | - Zhi Sun
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Michal Maes
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Maria Pernemalm
- Department of Oncology and Pathology/Science for Life Laboratory, Karolinska Institutet, 171 65 Stockholm, Sweden
| | | | - Natasha Letunica
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Victoria, Australia
| | - Yves Vandenbrouck
- Université Grenoble Alpes, CEA, Inserm U1292, Grenoble 38000, France
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Inserm U1292, Grenoble 38000, France
| | - Sheng-Ce Tao
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, B207 SCSB Building, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaobo Yu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences-Beijing (PHOENIX Center), Beijing Institute of Lifeomics, Beijing 102206, China
| | - Philipp E Geyer
- OmicEra Diagnostics GmbH, Behringstr. 6, 82152 Planegg, Germany
| | - Vera Ignjatovic
- Murdoch Children's Research Institute, 50 Flemington Road, Parkville 3052, Victoria, Australia.,Department of Paediatrics, The University of Melbourne, 50 Flemington Road, Parkville 3052, Victoria, Australia
| | - Robert L Moritz
- Institute for Systems Biology, Seattle, Washington 98109, United States
| | - Jochen M Schwenk
- Affinity Proteomics, Science for Life Laboratory, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23, SE-171 65 Solna, Sweden
| |
Collapse
|
11
|
Pailleux F, Maes P, Jaquinod M, Barthelon J, Darnaud M, Lacoste C, Vandenbrouck Y, Gilquin B, Louwagie M, Hesse AM, Kraut A, Garin J, Leroy V, Zarski JP, Bruley C, Couté Y, Samuel D, Ichai P, Faivre J, Brun V. Mass Spectrometry-Based Proteomics Reveal Alcohol Dehydrogenase 1B as a Blood Biomarker Candidate to Monitor Acetaminophen-Induced Liver Injury. Int J Mol Sci 2021; 22:ijms222011071. [PMID: 34681731 PMCID: PMC8540689 DOI: 10.3390/ijms222011071] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/03/2021] [Accepted: 10/11/2021] [Indexed: 12/18/2022] Open
Abstract
Acute liver injury (ALI) is a severe disorder resulting from excessive hepatocyte cell death, and frequently caused by acetaminophen intoxication. Clinical management of ALI progression is hampered by the dearth of blood biomarkers available. In this study, a bioinformatics workflow was developed to screen omics databases and identify potential biomarkers for hepatocyte cell death. Then, discovery proteomics was harnessed to select from among these candidates those that were specifically detected in the blood of acetaminophen-induced ALI patients. Among these candidates, the isoenzyme alcohol dehydrogenase 1B (ADH1B) was massively leaked into the blood. To evaluate ADH1B, we developed a targeted proteomics assay and quantified ADH1B in serum samples collected at different times from 17 patients admitted for acetaminophen-induced ALI. Serum ADH1B concentrations increased markedly during the acute phase of the disease, and dropped to undetectable levels during recovery. In contrast to alanine aminotransferase activity, the rapid drop in circulating ADH1B concentrations was followed by an improvement in the international normalized ratio (INR) within 10–48 h, and was associated with favorable outcomes. In conclusion, the combination of omics data exploration and proteomics revealed ADH1B as a new blood biomarker candidate that could be useful for the monitoring of acetaminophen-induced ALI.
Collapse
Affiliation(s)
- Floriane Pailleux
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Pauline Maes
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Michel Jaquinod
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Justine Barthelon
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
- Clinique Universitaire d’Hépato-gastroentérologie, Centre Hospitalier Universitaire Grenoble, 38000 Grenoble, France; (V.L.); (J.-P.Z.)
| | - Marion Darnaud
- Hepatobiliary Centre, Paul-Brousse University Hospital, INSERM U1193, 94800 Villejuif, France; (M.D.); (C.L.); (D.S.); (P.I.)
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Claire Lacoste
- Hepatobiliary Centre, Paul-Brousse University Hospital, INSERM U1193, 94800 Villejuif, France; (M.D.); (C.L.); (D.S.); (P.I.)
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Yves Vandenbrouck
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Benoît Gilquin
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000 Grenoble, France
| | - Mathilde Louwagie
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Anne-Marie Hesse
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Alexandra Kraut
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Jérôme Garin
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Vincent Leroy
- Clinique Universitaire d’Hépato-gastroentérologie, Centre Hospitalier Universitaire Grenoble, 38000 Grenoble, France; (V.L.); (J.-P.Z.)
- Institute for Advanced Biosciences, Université Grenoble Alpes, CNRS, INSERM U1209, 38000 Grenoble, France
| | - Jean-Pierre Zarski
- Clinique Universitaire d’Hépato-gastroentérologie, Centre Hospitalier Universitaire Grenoble, 38000 Grenoble, France; (V.L.); (J.-P.Z.)
- Institute for Advanced Biosciences, Université Grenoble Alpes, CNRS, INSERM U1209, 38000 Grenoble, France
| | - Christophe Bruley
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Yohann Couté
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
| | - Didier Samuel
- Hepatobiliary Centre, Paul-Brousse University Hospital, INSERM U1193, 94800 Villejuif, France; (M.D.); (C.L.); (D.S.); (P.I.)
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Philippe Ichai
- Hepatobiliary Centre, Paul-Brousse University Hospital, INSERM U1193, 94800 Villejuif, France; (M.D.); (C.L.); (D.S.); (P.I.)
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Jamila Faivre
- Hepatobiliary Centre, Paul-Brousse University Hospital, INSERM U1193, 94800 Villejuif, France; (M.D.); (C.L.); (D.S.); (P.I.)
- Faculté de Médecine, Université Paris-Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Assistance Publique-Hôpitaux de Paris (AP-HP), Pôle de Biologie Médicale, Paul-Brousse University Hospital, 94800 Villejuif, France
- Correspondence: (J.F.); (V.B.)
| | - Virginie Brun
- Univ. Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, CNRS, CEA, FR2048, 38000 Grenoble, France; (F.P.); (P.M.); (M.J.); (J.B.); (Y.V.); (B.G.); (M.L.); (A.-M.H.); (A.K.); (J.G.); (C.B.); (Y.C.)
- Univ. Grenoble Alpes, CEA, LETI, Clinatec, 38000 Grenoble, France
- Correspondence: (J.F.); (V.B.)
| |
Collapse
|
12
|
Anuntakarun S, Larbcharoensub N, Payungporn S, Reamtong O. Identification of genes associated with Kikuchi-Fujimoto disease using RNA and exome sequencing. Mol Cell Probes 2021; 57:101728. [PMID: 33819568 DOI: 10.1016/j.mcp.2021.101728] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/16/2021] [Accepted: 03/29/2021] [Indexed: 12/15/2022]
Abstract
Kikuchi-Fujimoto disease (KFD) is an extremely rare disease, and although it is reported to have a worldwide distribution, young Asian women are most likely to be affected. Although this disease is generally benign and self-limiting, distinguishing it from other diseases that cause lymphadenopathy (e.g., leukemia, lymphoma, and infectious diseases) is challenging. A lymph node biopsy is a definitive diagnostic technique for KFD and only requires skillful pathologists. There are no specific symptoms or laboratory tests for KFD, and more than 50% of KFD patients have suffered from being misdiagnosed with lymphoma, which leads to improper treatment. In this study, lymph node tissue samples from KFD patients were used to reveal their exomes and transcriptomes using a high-throughput nucleotide sequencer. Fourteen single nucleotide polymorphisms (SNPs) were identified as candidate KFD markers and were compared with a healthy lymph node exome dataset. The mutation of these genes caused disruptive impact in the proteins. Several SNPs associated with KFD involve genes related to human cancers, olfaction, and osteoblast differentiation. According to the transcriptome data, there were 238 up-regulated and 1,519 down-regulated genes. RANBP2-like and ribosomal protein L13 were the most up-regulated and down-regulated genes in KFD patients, respectively. The altered gene expression involved in the human immune system, chromatin remodeling, and gene transcription. A comparison of KFD and healthy datasets of exomes and transcriptomes may allow further insights into the KFD phenotype. The results may also facilitate future KFD diagnosis and treatment.
Collapse
Affiliation(s)
- Songtham Anuntakarun
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Noppadol Larbcharoensub
- Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sunchai Payungporn
- Department of Biochemistry, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand; Research Unit of Systems Microbiology, Faculty of Medicine, Chulalongkorn University, Bangkok, 10330, Thailand.
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
| |
Collapse
|
13
|
Discovery and Validation of Circulating EVL mRNA as a Prognostic Biomarker in Pancreatic Cancer. JOURNAL OF ONCOLOGY 2021; 2021:6656337. [PMID: 33986805 PMCID: PMC8079208 DOI: 10.1155/2021/6656337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/25/2021] [Accepted: 04/04/2021] [Indexed: 02/05/2023]
Abstract
Background Circulating plasma mRNAs can be analyzed to identify putative cancer biomarkers. This study was conducted in an effort to detect plasma mRNA biomarkers capable of predicting pancreatic cancer (PACA) patient prognosis. Material and Methods. First, prognostic mRNAs that were differentially expressed in PACA in The Cancer Genome Atlas (TCGA) were established, after which microarray expression profiles from PACA patient plasma samples were utilized to specifically identify potential prognostic plasma mRNA biomarkers associated with this cancer type. In total, plasma samples were then collected from 79 PACA patients and 19 healthy controls to confirm differential mRNA expression via qPCR, while Kaplan–Meier analyses were used to examine the link between mRNA expression and patient overall survival. Results In total, three prognostic differentially expressed genes were identified in PACA patient plasma samples, including SMAP2, PTPN6, and EVL (Ena/VASP-like). Plasma EVL levels were confirmed via qPCR to be correlated with tumor pathology (p < 0.01), while the overall survival of patients with low plasma EVL levels was poor (p < 0.01). Multivariate Cox regression analyses further confirmed that plasma EVL levels were independent predictors of PACA patient prognosis. Conclusion We found that PACA is associated with the downregulation of plasma EVL mRNA levels, indicating that this mRNA may be a viable biomarker associated with patient prognosis.
Collapse
|
14
|
Sabna S, Kamboj DV, Rajoria S, Kumar RB, Babele P, Goel AK, Tuteja U, Gupta MK, Alam SI. Protein biomarker elucidation for the verification of biological agents in the taxonomic group of Gammaproteobacteria using tandem mass spectrometry. World J Microbiol Biotechnol 2021; 37:74. [PMID: 33779874 DOI: 10.1007/s11274-021-03039-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/16/2021] [Indexed: 12/01/2022]
Abstract
Some pathogenic microbes can be used for nefarious applications and instigate population-based fear. In a bio-threat scenario, rapid and accurate methods to detect biological agents in a wide range of complex environmental and clinical matrices, is of paramount importance for the implementation of mitigation protocols and medical countermeasures. This study describes targeted and shot-gun tandem MS based approaches for the verification of biological agents from the environmental samples. The marker proteins and peptides were elucidated by an exhaustive literature mining, in silico analysis of prioritized proteins, and MS/MS analysis of abundant proteins from selected bacterial species. For the shot-gun methodology, tandem MS analysis of abundant peptides was carried from spiked samples. The validation experiments employing a combination of shot-gun tandem MS analysis and a targeted search reported here is a proof of concept to show the applicability of the methodology for the unambiguous verification of biological agents at sub-species level, even with limited fractionation of crude protein extracts from environmental samples.
Collapse
Affiliation(s)
- Sasikumar Sabna
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Dev Vrat Kamboj
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Sakshi Rajoria
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Prabhakar Babele
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India
| | - Ajay Kumar Goel
- Bioprocess Technology Division, Defence Research & Development Establishment, Gwalior, India
| | - Urmil Tuteja
- Microbiology Division, Defence Research & Development Establishment, Gwalior, India
| | | | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research & Development Establishment, Gwalior, 474002, India.
| |
Collapse
|
15
|
Cikic S, Chandra PK, Harman JC, Rutkai I, Katakam PV, Guidry JJ, Gidday JM, Busija DW. Sexual differences in mitochondrial and related proteins in rat cerebral microvessels: A proteomic approach. J Cereb Blood Flow Metab 2021; 41:397-412. [PMID: 32241204 PMCID: PMC8370005 DOI: 10.1177/0271678x20915127] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Sex differences in mitochondrial numbers and function are present in large cerebral arteries, but it is unclear whether these differences extend to the microcirculation. We performed an assessment of mitochondria-related proteins in cerebral microvessels (MVs) isolated from young, male and female, Sprague-Dawley rats. MVs composed of arterioles, capillaries, and venules were isolated from the cerebrum and used to perform a 3 versus 3 quantitative, multiplexed proteomics experiment utilizing tandem mass tags (TMT), coupled with liquid chromatography/mass spectrometry (LC/MS). MS data and bioinformatic analyses were performed using Proteome Discoverer version 2.2 and Ingenuity Pathway Analysis. We identified a total of 1969 proteins, of which 1871 were quantified by TMT labels. Sixty-four proteins were expressed significantly (p < 0.05) higher in female samples compared with male samples. Females expressed more mitochondrial proteins involved in energy production, mitochondrial membrane structure, anti-oxidant enzyme proteins, and those involved in fatty acid oxidation. Conversely, males had higher expression levels of mitochondria-destructive proteins. Our findings reveal, for the first time, the full extent of sexual dimorphism in the mitochondrial metabolic protein profiles of MVs, which may contribute to sex-dependent cerebrovascular and neurological pathologies.
Collapse
Affiliation(s)
- Sinisa Cikic
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Partha K Chandra
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA
| | - Jarrod C Harman
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Ibolya Rutkai
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Prasad Vg Katakam
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| | - Jessie J Guidry
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Proteomics Core Facility, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - Jeffrey M Gidday
- Department of Ophthalmology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Physiology, Louisiana State University Health Science Center, New Orleans, LA, USA.,Neuroscience Center of Excellence, Louisiana State University Health Science Center, New Orleans, LA, USA.,Department of Biochemistry and Molecular Biology, Louisiana State University Health Science Center, New Orleans, LA, USA
| | - David W Busija
- Department of Pharmacology, Tulane University School of Medicine, New Orleans, LA, USA.,Tulane Brain Institute, Tulane University, New Orleans, LA, USA
| |
Collapse
|
16
|
Combes F, Loux V, Vandenbrouck Y. GO Enrichment Analysis for Differential Proteomics Using ProteoRE. Methods Mol Biol 2021; 2361:179-196. [PMID: 34236662 DOI: 10.1007/978-1-0716-1641-3_11] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
With the increased simplicity of producing proteomics data, the bottleneck has now shifted to the functional analysis of large lists of proteins to translate this primary level of information into meaningful biological knowledge. Tools implementing such approach are a powerful way to gain biological insights related to their samples, provided that biologists/clinicians have access to computational solutions even when they have little programming experience or bioinformatics support. To achieve this goal, we designed ProteoRE (Proteomics Research Environment), a unified online research service that provides end-users with a set of tools to interpret their proteomics data in a collaborative and reproducible manner. ProteoRE is built upon the Galaxy framework, a workflow system allowing for data and analysis persistence, and providing user interfaces to facilitate the interaction with tools dedicated to the functional and the visual analysis of proteomics datasets. A set of tools relying on computational methods selected for their complementarity in terms of functional analysis was developed and made accessible via the ProteoRE web portal. In this chapter, a step-by-step protocol linking these tools is designed to perform a functional annotation and GO-based enrichment analyses applied to a set of differentially expressed proteins as a use case. Analytical practices, guidelines as well as tips related to this strategy are also provided. Tools, datasets, and results are freely available at http://www.proteore.org , allowing researchers to reuse them.
Collapse
Affiliation(s)
- Florence Combes
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, Grenoble, France
| | - Valentin Loux
- Université Paris-Saclay, INRAE, MaIAGE, Jouy-en-Josas, France
- Université Paris-Saclay, INRAE, BioinfOmics, MIGALE bioinformatics facility, Jouy-en-Josas, France
| | - Yves Vandenbrouck
- Université Grenoble Alpes, INSERM, CEA, UMR BioSanté U1292, Grenoble, France.
| |
Collapse
|
17
|
Zhang WH, Wang WQ, Han X, Gao HL, Li TJ, Xu SS, Li S, Xu HX, Li H, Ye LY, Lin X, Wu CT, Long J, Yu XJ, Liu L. Advances on diagnostic biomarkers of pancreatic ductal adenocarcinoma: A systems biology perspective. Comput Struct Biotechnol J 2020; 18:3606-3614. [PMID: 33304458 PMCID: PMC7710502 DOI: 10.1016/j.csbj.2020.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 11/08/2020] [Accepted: 11/10/2020] [Indexed: 12/26/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignancy that is usually diagnosed at an advanced stage when curative surgery is no longer an option. Robust diagnostic biomarkers with high sensitivity and specificity for early detection are urgently needed. Systems biology provides a powerful tool for understanding diseases and solving challenging biological problems, allowing biomarkers to be identified and quantified with increasing accuracy, sensitivity, and comprehensiveness. Here, we present a comprehensive overview of efforts to identify biomarkers of PDAC using genomics, transcriptomics, proteomics, metabonomics, and bioinformatics. Systems biology perspective provides a crucial “network” to integrate multi-omics approaches to biomarker identification, shedding additional light on early PDAC detection.
Collapse
Affiliation(s)
- Wu-Hu Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Han
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - He-Li Gao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Tian-Jiao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shuai-Shuai Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Shuo Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Hua-Xiang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Hao Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Long-Yun Ye
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Chun-Tao Wu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Jiang Long
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Xian-Jun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| | - Liang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Pancreatic Cancer Institute, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, Shanghai, China
| |
Collapse
|
18
|
Vandenbrouck Y, Pineau C, Lane L. The Functionally Unannotated Proteome of Human Male Tissues: A Shared Resource to Uncover New Protein Functions Associated with Reproductive Biology. J Proteome Res 2020; 19:4782-4794. [PMID: 33064489 DOI: 10.1021/acs.jproteome.0c00516] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In the context of the Human Proteome Project, we built an inventory of 412 functionally unannotated human proteins for which experimental evidence at the protein level exists (uPE1) and which are highly expressed in tissues involved in human male reproduction. We implemented a strategy combining literature mining, bioinformatics tools to collate annotation and experimental information from specific molecular public resources, and efficient visualization tools to put these unknown proteins into their biological context (protein complexes, tissue and subcellular location, expression pattern). The gathered knowledge allowed pinpointing five uPE1 for which a function has recently been proposed and which should be updated in protein knowledge bases. Furthermore, this bioinformatics strategy allowed to build new functional hypotheses for five other uPE1s in link with phenotypic traits that are specific to male reproductive function such as ciliogenesis/flagellum formation in germ cells (CCDC112 and TEX9), chromatin remodeling (C3orf62) and spermatozoon maturation (CCDC183). We also discussed the enigmatic case of MAGEB proteins, a poorly documented cancer/testis antigen subtype. Tools used and computational outputs produced during this study are freely accessible via ProteoRE (http://www.proteore.org), a Galaxy-based instance, for reuse purposes. We propose these five uPE1s should be investigated in priority by expert laboratories and hope that this inventory and shared resources will stimulate the interest of the community of reproductive biology.
Collapse
Affiliation(s)
- Yves Vandenbrouck
- Univ. Grenoble Alpes, INSERM, CEA, IRIG-BGE, U1038, F-38000 Grenoble, France
| | - Charles Pineau
- Univ. Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail) - UMR_S 1085, F-35042 Rennes cedex, France
| | - Lydie Lane
- SIB Swiss Institute of Bioinformatics and Department of Microbiology and Molecular Medicine, Faculty of Medicine, University of Geneva, CMU, Michel Servet 1, 1211 Geneva 4, Switzerland
| |
Collapse
|
19
|
Canese R, Bazzocchi A, Blandino G, Carpinelli G, De Nuccio C, Gion M, Moretti F, Soricelli A, Spessotto P, Iorio E. The role of molecular and imaging biomarkers in the evaluation of inflammation in oncology. Int J Biol Markers 2020; 35:5-7. [PMID: 32079466 DOI: 10.1177/1724600819897926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | | | | | | | | | - Massimo Gion
- Regional Center for Biomarkers, Azienda ULSS 3 Serenissima, Venice, Italy
| | | | - Andrea Soricelli
- IRCCS SDN, Naples, Italy.,Università di Napoli Parthenope, Naples, Italy
| | - Paola Spessotto
- Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, Aviano, Italy
| | | |
Collapse
|
20
|
Elucidation of protein biomarkers for verification of selected biological warfare agents using tandem mass spectrometry. Sci Rep 2020; 10:2205. [PMID: 32042063 PMCID: PMC7010682 DOI: 10.1038/s41598-020-59156-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
Some pathogens and toxins have the potential to be used as weapons of mass destruction and instigate population-based fear. Efforts to mitigate biothreat require development of efficient countermeasures which in turn relies on fast and accurate methods to detect the biological agents in a range of complex matrices including environmental and clinical samples. We report here an mass spectrometry (MS) based methodology, employing both targeted and shot-gun approaches for the verification of biological agents from the environmental samples. Our shot-gun methodology relied on tandem MS analysis of abundant peptides from the spiked samples, whereas, the targeted method was based on an extensive elucidation of marker proteins and unique peptides resulting in the generation of an inclusion list of masses reflecting relevant peptides for the unambiguous identification of nine bacterial species [listed as priority agents of bioterrorism by Centre for Disease Control and Prevention (CDC)] belonging to phylogenetically diverse genera. The marker peptides were elucidated by extensive literature mining, in silico analysis, and tandem MS (MS/MS) analysis of abundant proteins of the cultivated bacterial species in our laboratory. A combination of shot-gun MS/MS analysis and the targeted search using a panel of unique peptides is likely to provide unambiguous verification of biological agents at sub-species level, even with limited fractionation of crude protein extracts from environmental samples. The comprehensive list of peptides reflected in the inclusion list, makes a valuable resource for the multiplex analysis of select biothreat agents and further development of targeted MS/MS assays.
Collapse
|
21
|
Matsubayashi H, Kiyozumi Y, Ishiwatari H, Uesaka K, Kikuyama M, Ono H. Surveillance of Individuals with a Family History of Pancreatic Cancer and Inherited Cancer Syndromes: A Strategy for Detecting Early Pancreatic Cancers. Diagnostics (Basel) 2019; 9:E169. [PMID: 31683730 PMCID: PMC6963266 DOI: 10.3390/diagnostics9040169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
A family history of pancreatic cancer (PC) is a risk factor of PC, and risk levels increase as affected families grow in number and/or develop PC at younger ages. Familial pancreatic cancer (FPC) is defined as a client having at least two PC cases in a first degree relatives. In the narrow sense, FPC does not include some inherited cancer syndromes that are known to increase the risks of PC, such as Peutz-Jeghers syndrome (PJS), hereditary pancreatitis (HP), hereditary breast ovarian cancer syndrome (HBOC), and so on. FPC accounts for 5%-10% of total PC diagnoses and is marked by several features in genetic, epidemiological, and clinicopathological findings that are similar to or distinct from conventional PC. Recent advances in genetic medicine have led to an increased ability to identify germline variants of cancer-associated genes. To date, high-risk individuals (HRIs) in many developed countries, including FPC kindreds and inherited cancer syndromes, are screened clinically to detect and treat early-stage PC. This article highlights the concept of FPC and the most recent data on its detection.
Collapse
Affiliation(s)
- Hiroyuki Matsubayashi
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
| | - Yoshimi Kiyozumi
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
| | | | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
| | - Masataka Kikuyama
- Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-0021, Japan.
| | - Hiroyuki Ono
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
| |
Collapse
|