1
|
Li Y, Huang X, Jin J, Zhang H, Yang K, Han J, Lv Y, Sun Y, Yao C, Lin T, Zhu C, Liu H. Interaction of TAGLN and USP1 promotes ZEB1 ubiquitination degradation in UV-induced skin photoaging. Cell Biosci 2023; 13:80. [PMID: 37149635 PMCID: PMC10163745 DOI: 10.1186/s13578-023-01029-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 04/11/2023] [Indexed: 05/08/2023] Open
Abstract
BACKGROUND Ultraviolet A (UVA) irradiation can lead to skin damage and premature skin aging known as photoaging. This work found that UVA irradiation caused an imbalance between dermal matrix synthesis and degradation through the aberrant upregulation of transgelin (TAGLN) and studied the underlying molecular mechanism. RESULTS Co-immunoprecipitation and proximal ligation assay results showed that TAGLN can interact with USP1. USP1 can be retained in the cytoplasm by TAGLN in UVA-induced cells, which inhibits the interaction between USP1/zinc finger E-box binding homeobox 1 (ZEB1), promote the ubiquitination degradation of ZEB1, and lead to photoaging. TAGLN knockdown can release USP1 retention and help human skin fibroblasts (HSFs) resist UVA-induced damage. The interactive interface inhibitors of TAGLN/USP1 were screened via virtual docking to search for small molecules that inhibit photoaging. Zerumbone (Zer), a natural product isolated from Zingiber zerumbet (L.) Smith, was screened out. Zer can competitively bind TAGLN to reduce the retention of USP1 in the cytoplasm and the degradation of ZEB1 ubiquitination in UV-induced HSFs. The poor solubility and permeability of Zer can be improved by preparing it as a nanoemulsion, which can effectively prevent skin photoaging caused by UVA in wild-type (WT) mice. Zer cannot effectively resist the photoaging caused by UVA in Tagln-/- mice because of target loss. CONCLUSIONS The present results showed that the interaction of TAGLN and USP1 can promote ZEB1 ubiquitination degradation in UV-induced skin photoaging, and Zer can be used as an interactive interface inhibitor of TAGLN/USP1 to prevent photoaging.
Collapse
Affiliation(s)
- Yinan Li
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Xiu Huang
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Jing Jin
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Haohao Zhang
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Kai Yang
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Jingxia Han
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Ying Lv
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Yu Sun
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China
| | - Cheng Yao
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China
| | - Tingting Lin
- Medical plastic and cosmetic center, Tianjin Branch of National Clinical Research Center for Ocular Disease, Tianjin Medical University Eye Hospital, Tianjin, China.
| | - Caibin Zhu
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China.
| | - Huijuan Liu
- Cheermore Cosmetic Dermatology Laboratory, Shanghai, China.
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, China.
| |
Collapse
|
2
|
Raymundo BR, Oh I, Xiu L, Kim C. Transgelin ( TAGLN) Regulates IQGAP1and Alters the Functions of Breast Cancer Cells. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bernardo R. Raymundo
- Department of Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul 136‐701 South Korea
| | - In‐Rok Oh
- Department of Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul 136‐701 South Korea
| | - Ling Xiu
- Department of Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul 136‐701 South Korea
| | - Chan‐Wha Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology Korea University Seoul 136‐701 South Korea
- Division of Life Sciences, College of Life Sciences and Biotechnology Korea University Seoul 136‐701 South Korea
| |
Collapse
|