1
|
Pollet R, Chin W. In silico Investigation of the Thermochemistry and Photoactivity of Pyruvic Acid in an Aqueous Solution of NaCl. Chemistry 2023; 29:e202302225. [PMID: 37539648 DOI: 10.1002/chem.202302225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/05/2023]
Abstract
The photochemistry of oxocarboxylic acids contributes significantly to the complex chemistry occurring in the atmosphere. In this regard, pyruvic acid undergoes photoreactions that lead to many diverse products. The presence of sodium cation near pyruvic acid in an aqueous solution, or its conjugate base in non-acidic conditions, influences the hydration equilibrium and the photosensitivity to UV-visible light of the oxocarboxylic acid. We performed an ab initio metadynamics simulation which serves two purposes: first, it unveils the mechanisms of the reversible hydration reaction between the keto and the diol forms, with a free-energy difference of only 2 kJ/mol at 300 K, which shows the influence of sodium on the keto/diol ratio; second, it provides solvent-shared ion pairing (SSIP) and contact ion pairing (CIP) structures, including Na+ coordinated to carbonyl, for the calculations of the electronic transition energies to an antibonding π* orbital, which sheds light on the photoactivity of these two forms in the actinic region.
Collapse
Affiliation(s)
- Rodolphe Pollet
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91191, Gif-sur-Yvette, France
| | - Wutharath Chin
- Université Paris-Saclay, CNRS, Institut des Sciences Moléculaires d'Orsay, 91405, Orsay, France
| |
Collapse
|
2
|
Hammami F, Issaoui N. A DFT Study of the Hydrogen Bonded Structures of Pyruvic Acid–Water Complexes. FRONTIERS IN PHYSICS 2022. [DOI: 10.3389/fphy.2022.901736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The molecular geometries of the possible conformations of pyruvic acid–water complexes (PA-(H2O)n = 1–4) have been fully optimized at DFT/B3LYP/6-311G++ (d, p) levels of calculation. Among several optimized molecular clusters, we present here the most stable molecular arrangements obtained when one, two, three, and four water molecules are hydrogen-bonded to a central pyruvic acid molecule. Appropriate topological and geometrical parameters are considered primary indicators of H-bond strength. Atoms in molecules analysis shows that pyruvic acid can form a ring structure with water, and the molecular structures are stabilized by both strong O–H⋅⋅⋅O and C–H⋅⋅⋅O hydrogen bonds. In large clusters, classical O–H⋅⋅⋅O hydrogen bonds still exist between water molecules, and a cage-like structure is built around some parts of the central molecule of pyruvic acid.
Collapse
|
3
|
Pollet R, Chin W. Reversible Hydration of α-Dicarbonyl Compounds from Ab Initio Metadynamics Simulations: Comparison between Pyruvic and Glyoxylic Acids in Aqueous Solutions. J Phys Chem B 2021; 125:2942-2951. [PMID: 33725456 DOI: 10.1021/acs.jpcb.0c09748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glyoxylic and pyruvic oxoacids are widely available in the atmosphere as gas-phase clusters and particles or in wet aerosols. In aqueous conditions, they undergo interconversion between the unhydrated oxo and gem-diol forms, where two hydroxyl groups replace the carbonyl group. We here examine the hydration equilibrium of glyoxylic and pyruvic acids with first-principles simulations in water at ambient conditions using ab initio metadynamics to reconstruct the corresponding free-energy landscapes. The main results are as follows: (i) our simulations reveal the high conformational diversity of these species in aqueous solutions. (ii) We show that gem-diol is strongly favored in water compared to its oxo counterpart by 29 and 16 kJ/mol for glyoxylic and pyruvic acids, respectively. (iii) From our atomic-scale simulations, we present new insights into the reaction mechanisms with a special focus on hydrogen-bond arrangements and the electronic structure of the transition state.
Collapse
Affiliation(s)
- Rodolphe Pollet
- NIMBE, Université Paris-Saclay, CEA, CNRS, 91191 Gif-sur-Yvette, France
| | - Wutharath Chin
- Institut des Sciences Moléculaires d'Orsay, Université Paris-Saclay, CNRS, 91405 Orsay, France
| |
Collapse
|
4
|
Pysanenko A, Grygoryeva K, Kočišek J, Kumar T P R, Fedor J, Ončák M, Fárník M. Stability of pyruvic acid clusters upon slow electron attachment. Phys Chem Chem Phys 2021; 23:4317-4325. [PMID: 33587076 DOI: 10.1039/d0cp06464e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyruvic acid represents a key molecule in prebiotic chemistry and it has recently been proposed to be synthesized on interstellar ices. In order to probe the stability of pyruvic acid in the interstellar medium with respect to decomposition by slow electrons, we investigate the electron attachment to its homomolecular and heteromolecular clusters. Using mass spectrometry, we follow the changes in the fragmentation pattern and its dependence on the electron energy for various cluster sizes of pure and microhydrated pyruvic acid. The assignment of fragmentation reaction pathways is supported by ab initio calculations. The fragmentation degree dramatically decreases upon clustering. This decrease is even stronger in the heteromolecular clusters of pyruvic acid with water, where the non-dissociative attachment is by far the strongest channel. In the homomolecular clusters, the dissociative channel leading to dehydrogenation is active over a larger electron energy range than in the isolated molecules. To probe the role of the self-scavenging effects, we explore the excited states of pyruvic acid. This has been done both experimentally, by using electron energy loss spectroscopy, and theoretically, by photochemical calculations. Data on both optically-allowed and forbidden states allow for the explanation of processes emerging upon clustering.
Collapse
Affiliation(s)
- Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | - Kateryna Grygoryeva
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | - Ragesh Kumar T P
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | - Juraj Fedor
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| |
Collapse
|
5
|
Luo M, Shemesh D, Sullivan MN, Alves MR, Song M, Gerber RB, Grassian VH. Impact of pH and NaCl and CaCl2 Salts on the Speciation and Photochemistry of Pyruvic Acid in the Aqueous Phase. J Phys Chem A 2020; 124:5071-5080. [DOI: 10.1021/acs.jpca.0c01016] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Man Luo
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Dorit Shemesh
- Institute of Chemistry and Fritz Haber Research Center, Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Michael N. Sullivan
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Michael R. Alves
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - Meishi Song
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
| | - R. Benny Gerber
- Institute of Chemistry and Fritz Haber Research Center, Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Department of Chemistry, University of California, Irvine, California 92617, United States
| | - Vicki H. Grassian
- Department of Chemistry and Biochemistry, University of California, San Diego, California 92093, United States
- Scripps Institution of Oceanography, University of California, San Diego, California 92037, United States
| |
Collapse
|
6
|
Blair SL, Reed Harris AE, Frandsen BN, Kjaergaard HG, Pangui E, Cazaunau M, Doussin JF, Vaida V. Conformer-Specific Photolysis of Pyruvic Acid and the Effect of Water. J Phys Chem A 2020; 124:1240-1252. [DOI: 10.1021/acs.jpca.9b10613] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sandra L. Blair
- Department of Chemistry, University of Colorado Boulder, UCB 215, Boulder, Colorado 80309, United States
| | - Allison E. Reed Harris
- Department of Chemistry, University of Colorado Boulder, UCB 215, Boulder, Colorado 80309, United States
| | - Benjamin N. Frandsen
- Department of Chemistry, University of Colorado Boulder, UCB 215, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Henrik G. Kjaergaard
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen Ø, Denmark
| | - Edouard Pangui
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université de Paris (UP), 94010 Créteil, France
| | - Mathieu Cazaunau
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université de Paris (UP), 94010 Créteil, France
| | - Jean-Francois Doussin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR CNRS 7583, Institut Pierre Simon Laplace (IPSL), Université Paris-Est Créteil (UPEC) et Université de Paris (UP), 94010 Créteil, France
| | - Veronica Vaida
- Department of Chemistry, University of Colorado Boulder, UCB 215, Boulder, Colorado 80309, United States
- Cooperative Institute for Research in Environmental Sciences, University of Colorado Boulder, UCB 216, Boulder, Colorado 80309, United States
| |
Collapse
|
7
|
Shemesh D, Luo M, Grassian VH, Gerber RB. Absorption spectra of pyruvic acid in water: insights from calculations for small hydrates and comparison to experiment. Phys Chem Chem Phys 2020; 22:12658-12670. [DOI: 10.1039/d0cp01810d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study shows that small hydrate models including the roles of both neutral and deprotonated speciated forms provide a good quantitative description and a microscopic interpretation of the experimental spectrum of pyruvic acid in aqueous solution.
Collapse
Affiliation(s)
- Dorit Shemesh
- Institute of Chemistry
- Fritz Haber Research Center
- Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| | - Man Luo
- Department of Chemistry
- University of California
- San Diego
- USA
| | | | - R. Benny Gerber
- Institute of Chemistry
- Fritz Haber Research Center
- Hebrew University of Jerusalem
- Jerusalem 91904
- Israel
| |
Collapse
|
8
|
Grygoryeva K, Ončák M, Pysanenko A, Fárník M. Pyruvic acid proton and hydrogen transfer reactions in clusters. Phys Chem Chem Phys 2019; 21:8221-8227. [DOI: 10.1039/c8cp07008c] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We investigate ion chemistry in pyruvic acid (PA) clusters in a molecular beam experiment.
Collapse
Affiliation(s)
- Kateryna Grygoryeva
- J. Heyrovský Institute of Physical Chemistry, v.v.i
- Czech Academy of Sciences
- 182 23 Prague
- Czech Republic
- University of Chemistry and Technology
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik
- Universität Innsbruck
- A-6020 Innsbruck
- Austria
| | - Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry, v.v.i
- Czech Academy of Sciences
- 182 23 Prague
- Czech Republic
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, v.v.i
- Czech Academy of Sciences
- 182 23 Prague
- Czech Republic
| |
Collapse
|
9
|
Chang XP, Fang Q, Cui G. Mechanistic photodecarboxylation of pyruvic acid: Excited-state proton transfer and three-state intersection. J Chem Phys 2014; 141:154311. [DOI: 10.1063/1.4898085] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Xue-Ping Chang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qiu Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
10
|
Yin H, Shi Y, Wang Y. Time-dependent density functional theory study on the excited-state intramolecular proton transfer in salicylaldehyde. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2014; 129:280-284. [PMID: 24747849 DOI: 10.1016/j.saa.2014.03.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 03/08/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
Time-dependent density functional theory method was performed to investigate the excited state intramolecular hydrogen bond dynamics of salicylaldehyde (SA). The geometric structures and IR spectra in the ground state S0 state and the excited state S1 state of SA are calculated using the density functional theory (DFT) and the time-dependent density functional theory (TDDFT) methods, respectively. In addition, the absorption and fluorescence peaks are also calculated using TDDFT methods. It is noted that the calculated large Stokes shift is in good agreement with the experimental results. Furthermore, our results have demonstrated that the excited state intramolecular proton transfer (ESIPT) process happens upon photoexcitation, which are distinct monitored by the formation and disappearance of the characteristic peaks of IR spectra involved in the formation of hydrogen bonds in different states and in the potential energy curves. We find that the hydrogen bonded quasi-aromatic chelating ring in the excited state becomes smaller which can facilitate the ESIPT process. The results presented here suggest that the ESIPT process of the SA molecule in the excited state can be attributed to the electronegativity change of O1 induced by excitation.
Collapse
Affiliation(s)
- Hang Yin
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| | - Ying Shi
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China.
| | - Ye Wang
- Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012, China
| |
Collapse
|