1
|
Isert C, Atz K, Riniker S, Schneider G. Exploring protein-ligand binding affinity prediction with electron density-based geometric deep learning. RSC Adv 2024; 14:4492-4502. [PMID: 38312732 PMCID: PMC10835705 DOI: 10.1039/d3ra08650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/19/2024] [Indexed: 02/06/2024] Open
Abstract
Rational structure-based drug design relies on accurate predictions of protein-ligand binding affinity from structural molecular information. Although deep learning-based methods for predicting binding affinity have shown promise in computational drug design, certain approaches have faced criticism for their potential to inadequately capture the fundamental physical interactions between ligands and their macromolecular targets or for being susceptible to dataset biases. Herein, we propose to include bond-critical points based on the electron density of a protein-ligand complex as a fundamental physical representation of protein-ligand interactions. Employing a geometric deep learning model, we explore the usefulness of these bond-critical points to predict absolute binding affinities of protein-ligand complexes, benchmark model performance against existing methods, and provide a critical analysis of this new approach. The models achieved root-mean-squared errors of 1.4-1.8 log units on the PDBbind dataset, and 1.0-1.7 log units on the PDE10A dataset, not indicating significant advantages over benchmark methods, and thus rendering the utility of electron density for deep learning models context-dependent. The relationship between intermolecular electron density and corresponding binding affinity was analyzed, and Pearson correlation coefficients r > 0.7 were obtained for several macromolecular targets.
Collapse
Affiliation(s)
- Clemens Isert
- ETH Zurich, Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 4 8093 Zurich Switzerland +41 44 633 73 27
| | - Kenneth Atz
- ETH Zurich, Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 4 8093 Zurich Switzerland +41 44 633 73 27
| | - Sereina Riniker
- ETH Zurich, Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 4 8093 Zurich Switzerland +41 44 633 73 27
| | - Gisbert Schneider
- ETH Zurich, Department of Chemistry and Applied Biosciences Vladimir-Prelog-Weg 4 8093 Zurich Switzerland +41 44 633 73 27
| |
Collapse
|
2
|
Jeeva P, Sudha S, Rakić A, Dimić D, Ramarajan D, Barathi D. Structural, spectroscopic, quantum chemical, and molecular docking study towards cartilage protein of (3E,3′E)-3,3′-(1,4-phenylenebis(azanediyl))bis(cyclohex-2-en-1-one). J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Electronic properties and chemical reactivity of biogenic amine neurotransmitters in gas and solution phase: A DFT study. COMPUT THEOR CHEM 2022. [DOI: 10.1016/j.comptc.2022.113841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Petelski AN, Pamies SC, Sosa GL. How procyanidin C1 sticks to collagen: The role of proline rings. Biophys Chem 2021; 276:106627. [PMID: 34089979 DOI: 10.1016/j.bpc.2021.106627] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/07/2021] [Accepted: 05/25/2021] [Indexed: 11/15/2022]
Abstract
Molecular interactions between proteins and polyphenols are responsible for many natural phenomena like colloidal turbidity, astringency, denaturation of enzymes and leather tanning. Although these phenomena are well known, there are open questions about the specific interactions involved in the complexation process. In this work, Molecular Dynamic (MD) simulations and the topology of the electron density analysis were used to study the interactions between the flavonoid procyanidin C1 and a collagen fragment solvated in water. Root mean square deviation; root mean square fluctuation and hydrogen bonds occupancy were examined after 50 ns. The interactions were also analyzed by means of the quantum theory of atoms in molecules. Our results show that the main interactions are hydrogen bonds between -OH groups of the polyphenol and CO groups of the peptide bond. Stacking interactions between proline rings and phenol rings, that is CH⋯π hydrogen bonds, also stabilize the dynamic structure of the complex.
Collapse
Affiliation(s)
- André Nicolai Petelski
- Grupo de Investigación en Química Teórica y Experimental (QUITEX), Departamento de Ingeniería Química, Universidad Tecnológica Nacional, Facultad Regional Resistencia, French 414 (H3500CHJ), Resistencia, Chaco, Argentina; Instituto de Química Básica y Aplicada del Nordeste Argentino, IQUIBA-NEA, UNNE-CONICET, Avenida Libertad 5460, 3400 Corrientes, Argentina.
| | - Silvana Carina Pamies
- Grupo de Investigación en Química Teórica y Experimental (QUITEX), Departamento de Ingeniería Química, Universidad Tecnológica Nacional, Facultad Regional Resistencia, French 414 (H3500CHJ), Resistencia, Chaco, Argentina.
| | - Gladis Laura Sosa
- Grupo de Investigación en Química Teórica y Experimental (QUITEX), Departamento de Ingeniería Química, Universidad Tecnológica Nacional, Facultad Regional Resistencia, French 414 (H3500CHJ), Resistencia, Chaco, Argentina; Instituto de Química Básica y Aplicada del Nordeste Argentino, IQUIBA-NEA, UNNE-CONICET, Avenida Libertad 5460, 3400 Corrientes, Argentina.
| |
Collapse
|
5
|
Parravicini O, Angelina E, Spinelli R, Garibotto F, Siano ÁS, Vila L, Cabedo N, Cortes D, Enriz RD. Design, synthesis, biological evaluation and molecular modelling of substituted pyrrolo[2,1- a]isoquinolinone derivatives: discovery of potent inhibitors of AChE and BChE. NEW J CHEM 2021. [DOI: 10.1039/d1nj00345c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Study of the molecular interactions in L–R complexes of acetyl- and butyryl-cholinesterase using MD/QTAIM calculations for designing new potent cholinesterase inhibitors.
Collapse
Affiliation(s)
- Oscar Parravicini
- Facultad de Química
- Bioquímica y Farmacia
- Universidad Nacional de San Luis
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL)
- 5700 San Luis
| | - Emilio Angelina
- Laboratorio de Estructura Molecular y Propiedades
- IQUIBA-NEA
- Universidad Nacional del Nordeste
- CONICET
- FaCENA
| | - Roque Spinelli
- Laboratorio de Péptidos Bioactivos
- Departamento de Química Orgánica
- Facultad de Bioquímica y Ciencias Biológicas
- Universidad Nacional del Litoral
- Santa Fe
| | - Francisco Garibotto
- Facultad de Química
- Bioquímica y Farmacia
- Universidad Nacional de San Luis
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL)
- 5700 San Luis
| | - Álvaro S. Siano
- Laboratorio de Péptidos Bioactivos
- Departamento de Química Orgánica
- Facultad de Bioquímica y Ciencias Biológicas
- Universidad Nacional del Litoral
- Santa Fe
| | - Laura Vila
- Instituto de Investigación Sanitaria INCLIVA
- 46010 Valencia
- Spain
| | - Nuria Cabedo
- Instituto de Investigación Sanitaria INCLIVA
- 46010 Valencia
- Spain
- Departamento de Farmacología
- Facultad de Farmacia
| | - Diego Cortes
- Departamento de Farmacología
- Facultad de Farmacia
- Universidad de Valencia
- 46100 Burjassot
- Spain
| | - Ricardo D. Enriz
- Facultad de Química
- Bioquímica y Farmacia
- Universidad Nacional de San Luis
- Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL)
- 5700 San Luis
| |
Collapse
|
6
|
Rojas S, Parravicini O, Vettorazzi M, Tosso R, Garro A, Gutiérrez L, Andújar S, Enriz R. Combined MD/QTAIM techniques to evaluate ligand-receptor interactions. Scope and limitations. Eur J Med Chem 2020; 208:112792. [PMID: 32949964 DOI: 10.1016/j.ejmech.2020.112792] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022]
Abstract
In medicinal chemistry, it is extremely important to evaluate, as accurately as possible, the molecular interactions involved in the formation of different ligand-receptor (L-R) complexes. Evaluating the different molecular interactions by quantum mechanics calculations is not a simple task, since formation of an L-R complex is a dynamic process. In this case, the use of combined techniques of molecular dynamics (MD) and quantum calculations is one the best possible approaches. In this work we report a comparative study using combined MD and QTAIM (Quantum Theory of Atoms In Molecules) calculations for five biological systems with different levels of structural complexity. We have studied Acetylcholinesterase (AChE), D2 Dopamine Receptor (D2DR), beta Secretase (BACE1), Dihydrofolate Reductase (DHFR) and Sphingosine Kinase 1 (SphK1). In these molecular targets, we have analyzed different ligands with diverse structural characteristics. The inhibitory activities of most of them have been previously measured in our laboratory. Our results indicate that QTAIM calculations can be extremely useful for in silico studies. It is possible to obtain very accurate information about the strength of the molecular interactions that stabilize the formation of the different L-R complexes. Better correlations can be obtained between theoretical and experimental data by using QTAIM calculations, allowing us to discriminate among ligands with similar affinities. QTAIM analysis gives fairly accurate information for weak interactions which are not well described by MD simulations. QTAIM study also allowed us to evaluate and determine which parts of the ligand need to be modified in order to increase its interactions with the molecular target. In this study we have discussed the importance of combined MD/QTAIM calculations for this type of simulations, showing their scopes and limitations.
Collapse
Affiliation(s)
- Sebastián Rojas
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina
| | - Oscar Parravicini
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina
| | - Marcela Vettorazzi
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina
| | - Rodrigo Tosso
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina
| | - Adriana Garro
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina
| | - Lucas Gutiérrez
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina
| | - Sebastián Andújar
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina
| | - Ricardo Enriz
- IMIBIO-SL CONICET, Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de Los Andes 950, 5700, San Luis, Argentina.
| |
Collapse
|
7
|
Arylaminopropanone Derivatives as Potential Cholinesterase Inhibitors: Synthesis, Docking Study and Biological Evaluation. Molecules 2020; 25:molecules25071751. [PMID: 32290227 PMCID: PMC7180927 DOI: 10.3390/molecules25071751] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 11/18/2022] Open
Abstract
Neurodegenerative diseases in which the decrease of the acetylcholine is observed are growing worldwide. In the present study, a series of new arylaminopropanone derivatives with N-phenylcarbamate moiety (1–16) were prepared as potential acetylcholinesterase and butyrylcholinesterase inhibitors. In vitro enzyme assays were performed; the results are expressed as a percentage of inhibition and the IC50 values. The inhibitory activities were compared with reference drugs galantamine and rivastigmine showing piperidine derivatives (1–3) as the most potent. A possible mechanism of action for these compounds was determined from a molecular modelling study by using combined techniques of docking, molecular dynamics simulations and quantum mechanics calculations.
Collapse
|
8
|
Martínez A, Ibarra IA, Vargas R. A quantum chemical approach representing a new perspective concerning agonist and antagonist drugs in the context of schizophrenia and Parkinson's disease. PLoS One 2019; 14:e0224691. [PMID: 31830046 PMCID: PMC6907805 DOI: 10.1371/journal.pone.0224691] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/18/2019] [Indexed: 02/03/2023] Open
Abstract
Schizophrenia and Parkinson's disease can be controlled with dopamine antagonists and agonists. In order to improve the understanding of the reaction mechanism of these drugs, in this investigation we present a quantum chemical study of 20 antagonists and 10 agonists. Electron donor acceptor capacity and global hardness are analyzed using Density Functional Theory calculations. Following this theoretical approach, we provide new insights into the intrinsic response of these chemical species. In summary, antagonists generally prove to be better electron acceptors and worse electron donors than dopamine, whereas agonists present an electron donor-acceptor capacity similar to that of dopamine. The chemical hardness is a descriptor that captures the resistance of a chemical compound to change its number of electrons. Within this model, harder molecules are less polarizable and more stable systems. Our results show that the global hardness is similar for dopamine and agonists whilst antagonists present smaller values. Following the Hard and Soft Acid and Bases principle, it is possible to conclude that dopamine and agonists are hard bases while antagonists are soft acids, and this can be related to their activity. From the electronic point of view, we have evolved a new perspective for the classification of agonist and antagonist, which may help to analyze future results of chemical interactions triggered by these drugs.
Collapse
Affiliation(s)
- Ana Martínez
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S. N., Ciudad Universitaria, CDMX, México
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, México
| | - Ilich A Ibarra
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, CDMX, Mexico
| | - Rubicelia Vargas
- Departamento de Química, División de Ciencias Básicas e Ingeniería, Universidad Autónoma Metropolitana-Iztapalapa, CDMX, México
| |
Collapse
|
9
|
Luchi A, Villafañe RN, Gómez Chávez JL, Bogado ML, Angelina EL, Peruchena NM. Combining Charge Density Analysis with Machine Learning Tools To Investigate the Cruzain Inhibition Mechanism. ACS OMEGA 2019; 4:19582-19594. [PMID: 31788588 PMCID: PMC6881835 DOI: 10.1021/acsomega.9b01934] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 10/18/2019] [Indexed: 05/28/2023]
Abstract
Trypanosoma cruzi, a flagellate protozoan parasite, is responsible for Chagas disease. The parasite major cysteine protease, cruzain (Cz), plays a vital role at every stage of its life cycle and the active-site region of the enzyme, similar to those of other members of the papain superfamily, is well characterized. Taking advantage of structural information available in public databases about Cz bound to known covalent inhibitors, along with their corresponding activity annotations, in this work, we performed a deep analysis of the molecular interactions at the Cz binding cleft, in order to investigate the enzyme inhibition mechanism. Our toolbox for performing this study consisted of the charge density topological analysis of the complexes to extract the molecular interactions and machine learning classification models to relate the interactions with biological activity. More precisely, such a combination was useful for the classification of molecular interactions as "active-like" or "inactive-like" according to whether they are prevalent in the most active or less active complexes, respectively. Further analysis of interactions with the help of unsupervised learning tools also allowed the understanding of how these interactions come into play together to trigger the enzyme into a particular conformational state. Most active inhibitors induce some conformational changes within the enzyme that lead to an overall better fit of the inhibitor into the binding cleft. Curiously, some of these conformational changes can be considered as a hallmark of the substrate recognition event, which means that most active inhibitors are likely recognized by the enzyme as if they were its own substrate so that the catalytic machinery is arranged as if it is about to break the substrate scissile bond. Overall, these results contribute to a better understanding of the enzyme inhibition mechanism. Moreover, the information about main interactions extracted through this work is already being used in our lab to guide docking solutions in ongoing prospective virtual screening campaigns to search for novel noncovalent cruzain inhibitors.
Collapse
|
10
|
Campos LE, Garibotto FM, Angelina E, Kos J, Tomašič T, Zidar N, Kikelj D, Gonec T, Marvanova P, Mokry P, Jampilek J, Alvarez SE, Enriz RD. Searching new structural scaffolds for BRAF inhibitors. An integrative study using theoretical and experimental techniques. Bioorg Chem 2019; 91:103125. [PMID: 31401373 DOI: 10.1016/j.bioorg.2019.103125] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/04/2019] [Accepted: 07/11/2019] [Indexed: 01/12/2023]
Abstract
The identification of the V600E activating mutation in the protein kinase BRAF in around 50% of melanoma patients has driven the development of highly potent small inhibitors (BRAFi) of the mutated protein. To date, Dabrafenib and Vemurafenib, two specific BRAFi, have been clinically approved for the treatment of metastatic melanoma. Unfortunately, after the initial response, tumors become resistant and patients develop a progressive and lethal disease, making imperative the development of new therapeutic options. The main objective of this work was to find new BRAF inhibitors with different structural scaffolds than those of the known inhibitors. Our study was carried out in different stages; in the first step we performed a virtual screening that allowed us to identify potential new inhibitors. In the second step, we synthesized and tested the inhibitory activity of the novel compounds founded. Finally, we conducted a molecular modelling study that allowed us to understand interactions at the molecular level that stabilize the formation of the different molecular complexes. Our theoretical and experimental study allowed the identification of four new structural scaffolds, which could be used as starting structures for the design and development of new inhibitors of BRAF. Our experimental data indicate that the most active compounds reduced significantly ERK½ phosphorylation, a measure of BRAF inhibition, and cell viability. Thus, from our theoretical and experimental results, we propose new substituted hydroxynaphthalenecarboxamides, N-(hetero)aryl-piperazinylhydroxyalkylphenylcarbamates, substituted piperazinylethanols and substituted piperazinylpropandiols as initial structures for the development of new inhibitors for BRAF. Moreover, by performing QTAIM analysis, we are able to describe in detail the molecular interactions that stabilize the different Ligand-Receptor complexes. Such analysis indicates which portion of the different molecules must be changed in order to obtain an increase in the binding affinity of these new ligands.
Collapse
Affiliation(s)
- Ludmila E Campos
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, 5700 San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700 San Luis, Argentina
| | - Francisco M Garibotto
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, 5700 San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700 San Luis, Argentina
| | - Emilio Angelina
- Laboratorio de Estructura Molecular y Propiedades, Área de Química Física, Departamento de Química, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5460, 3400 Corrientes, Argentina
| | - Jiri Kos
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 78371 Olomouc, Czech Republic
| | - Tihomir Tomašič
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Nace Zidar
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Danijel Kikelj
- University of Ljubljana, Faculty of Pharmacy, Aškerčeva 7, 1000 Ljubljana, Slovenia
| | - Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 61242 Brno, Czech Republic
| | - Pavlina Marvanova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 61242 Brno, Czech Republic
| | - Petr Mokry
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 61242 Brno, Czech Republic
| | - Josef Jampilek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University Olomouc, Slechtitelu 27, 78371 Olomouc, Czech Republic; Department of Analytical Chemistry, Faculty of Natural Sciences, Comenius University, Ilkovicova 6, 84215 Bratislava, Slovakia
| | - Sergio E Alvarez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, 5700 San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700 San Luis, Argentina.
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Ejército de los Andes 950, 5700 San Luis, Argentina; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Ejército de los Andes 950, 5700 San Luis, Argentina.
| |
Collapse
|
11
|
Theoretical models to predict the inhibitory effect of ligands of sphingosine kinase 1 using QTAIM calculations and hydrogen bond dynamic propensity analysis. J Comput Aided Mol Des 2018; 32:781-791. [DOI: 10.1007/s10822-018-0129-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 07/02/2018] [Indexed: 11/27/2022]
|
12
|
Padrtova T, Marvanova P, Odehnalova K, Kubinova R, Parravicini O, Garro A, Enriz RD, Humpa O, Oravec M, Mokry P. Synthesis, Analysis, Cholinesterase-Inhibiting Activity and Molecular Modelling Studies of 3-(Dialkylamino)-2-hydroxypropyl 4-[(Alkoxy-carbonyl)amino]benzoates and Their Quaternary Ammonium Salts. Molecules 2017; 22:molecules22122048. [PMID: 29168793 PMCID: PMC6149889 DOI: 10.3390/molecules22122048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 11/08/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022] Open
Abstract
Tertiary amines 3-(dialkylamino)-2-hydroxypropyl 4-[(alkoxycarbonyl)amino]benzoates and their quaternary ammonium salts were synthesized. The final step of synthesis of quaternary ammonium salts was carried out by microwave-assisted synthesis. Software-calculated data provided the background needed to compare fifteen new resulting compounds by their physicochemical properties. The acid dissociation constant (pKa) and lipophilicity index (log P) of tertiary amines were determined; while quaternary ammonium salts were characterized by software-calculated lipophilicity index and surface tension. Biological evaluation aimed at testing acetylcholinesterase and butyrylcholinesterase-inhibiting activity of synthesized compounds. A possible mechanism of action of these compounds was determined by molecular modelling study using combined techniques of docking; molecular dynamics simulations and quantum mechanics calculations.
Collapse
Affiliation(s)
- Tereza Padrtova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 61242 Brno, Czech Republic.
| | - Pavlina Marvanova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 61242 Brno, Czech Republic.
| | - Klara Odehnalova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 61242 Brno, Czech Republic.
| | - Renata Kubinova
- Department of Natural Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 61242 Brno, Czech Republic.
| | - Oscar Parravicini
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL-CONICET, Chacabuco 915, San Luis 5700, Argentina.
| | - Adriana Garro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL-CONICET, Chacabuco 915, San Luis 5700, Argentina.
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL-CONICET, Chacabuco 915, San Luis 5700, Argentina.
| | - Otakar Humpa
- CEITEC-Central European Institute of Technology, Masaryk University, Kamenice 753/5, 62500 Brno, Czech Republic.
| | - Michal Oravec
- Global Change Research Institute CAS, Belidla 986/4a, 60300 Brno, Czech Republic.
| | - Petr Mokry
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1, 61242 Brno, Czech Republic.
| |
Collapse
|
13
|
Tetrahydroisoquinolines functionalized with carbamates as selective ligands of D2 dopamine receptor. J Mol Model 2017; 23:273. [DOI: 10.1007/s00894-017-3441-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 08/15/2017] [Indexed: 01/11/2023]
|
14
|
Vettorazzi M, Angelina E, Lima S, Gonec T, Otevrel J, Marvanova P, Padrtova T, Mokry P, Bobal P, Acosta LM, Palma A, Cobo J, Bobalova J, Csollei J, Malik I, Alvarez S, Spiegel S, Jampilek J, Enriz RD. An integrative study to identify novel scaffolds for sphingosine kinase 1 inhibitors. Eur J Med Chem 2017; 139:461-481. [PMID: 28822281 DOI: 10.1016/j.ejmech.2017.08.017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/02/2017] [Accepted: 08/05/2017] [Indexed: 10/19/2022]
Abstract
Sphingosine kinase 1 (SphK1), the enzyme that produces the bioactive sphingolipid metabolite, sphingosine-1-phosphate, is a promising new molecular target for therapeutic intervention in cancer and inflammatory diseases. In view of its importance, the main objective of this work was to find new and more potent inhibitors for this enzyme possessing different structural scaffolds than those of the known inhibitors. Our theoretical and experimental study has allowed us to identify two new structural scaffolds (three new compounds), which could be used as starting structures for the design and then the development of new inhibitors of SphK1. Our study was carried out in different steps: virtual screening, synthesis, bioassays and molecular modelling. From our results, we propose a new dihydrobenzo[b]pyrimido[5,4-f]azepine and two alkyl{3-/4-[1-hydroxy-2-(4-arylpiperazin-1-yl)ethyl]phenyl}carbamates as initial structures for the development of new inhibitors. In addition, our molecular modelling study using QTAIM calculations, allowed us to describe in detail the molecular interactions that stabilize the different Ligand-Receptor complexes. Such analyses indicate that the cationic head of the different compounds must be refined in order to obtain an increase in the binding affinity of these ligands.
Collapse
Affiliation(s)
- Marcela Vettorazzi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina
| | - Emilio Angelina
- Laboratorio de Estructura Molecular y Propiedades, Área de Química Física, Departamento de Química, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Avda. Libertad 5460, 3400 Corrientes, Argentina
| | - Santiago Lima
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Jan Otevrel
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Pavlina Marvanova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Tereza Padrtova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Petr Mokry
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Pavel Bobal
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic
| | - Lina M Acosta
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, Carrera 27, Calle 9, A.A 678, Bucaramanga, Colombia
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química, Universidad Industrial de Santander, Carrera 27, Calle 9, A.A 678, Bucaramanga, Colombia
| | - Justo Cobo
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071, Jaén, Spain
| | - Janette Bobalova
- Institute of Analytical Chemistry of the Czech Academy of Sciences, v. v. i., Veveri 97, 602 00 Brno, Czech Republic
| | - Jozef Csollei
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Palackeho 1, 612 42 Brno, Czech Republic; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Ivan Malik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Sergio Alvarez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Josef Jampilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojarov 10, 83232 Bratislava, Slovakia
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL), Chacabuco 915, 5700 San Luis, Argentina.
| |
Collapse
|
15
|
Petelski AN, Pamies SC, Benítez EI, Rovaletti MML, Sosa GL. Molecular Insights into Protein-Polyphenols Aggregation: A Dynamic and Topological Description. ChemistrySelect 2017. [DOI: 10.1002/slct.201700726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- André N. Petelski
- Chemical Engineering Department. Grupo de Investigación en Química Teórica y Experimental (QuiTEx), Facultad Regional Resistencia; Universidad Tecnológica Nacional; French 414 H3500CHJ) Resistencia, Chaco Argentina
- Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), UNNE-CONICET.; Avenida Libertad 5460 3400) Corrientes Argentina
| | - Silvana C. Pamies
- Chemical Engineering Department. Grupo de Investigación en Química Teórica y Experimental (QuiTEx), Facultad Regional Resistencia; Universidad Tecnológica Nacional; French 414 H3500CHJ) Resistencia, Chaco Argentina
| | - Elisa I. Benítez
- Chemical Engineering Department. Grupo de Investigación en Química Teórica y Experimental (QuiTEx), Facultad Regional Resistencia; Universidad Tecnológica Nacional; French 414 H3500CHJ) Resistencia, Chaco Argentina
- Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), UNNE-CONICET.; Avenida Libertad 5460 3400) Corrientes Argentina
| | - María M. Lataza Rovaletti
- Chemical Engineering Department. Grupo de Investigación en Química Teórica y Experimental (QuiTEx), Facultad Regional Resistencia; Universidad Tecnológica Nacional; French 414 H3500CHJ) Resistencia, Chaco Argentina
| | - Gladis L. Sosa
- Chemical Engineering Department. Grupo de Investigación en Química Teórica y Experimental (QuiTEx), Facultad Regional Resistencia; Universidad Tecnológica Nacional; French 414 H3500CHJ) Resistencia, Chaco Argentina
- Instituto de Química Básica y Aplicada del Nordeste Argentino (IQUIBA-NEA), UNNE-CONICET.; Avenida Libertad 5460 3400) Corrientes Argentina
| |
Collapse
|
16
|
Rajeshwar T R, Krishnan M. Direct Determination of Site-Specific Noncovalent Interaction Strengths of Proteins from NMR-Derived Fast Side Chain Motional Parameters. J Phys Chem B 2017; 121:5174-5186. [PMID: 28452484 DOI: 10.1021/acs.jpcb.7b01402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A novel approach to accurately determine residue-specific noncovalent interaction strengths (ξ) of proteins from NMR-measured fast side chain motional parameters (Oaxis2) is presented. By probing the environmental sensitivity of side chain conformational energy surfaces of individual residues of a diverse set of proteins, the microscopic connections between ξ, Oaxis2, conformational entropy (Sconf), conformational barriers, and rotamer stabilities established here are found to be universal among proteins. The results reveal that side chain flexibility and conformational entropy of each residue decrease with increasing ξ and that for each residue type there exists a critical range of ξ, determined primarily by the mean side chain conformational barriers, within which flexibility of any residue can be reversibly tuned from highly flexible (with Oaxis2 ∼ 0) to highly restricted (with Oaxis2 ∼ 1) by increasing ξ by ∼3 kcal/mol. Beyond this critical range of ξ, both side chain flexibility and conformational entropy are insensitive to ξ. The interrelationships between conformational dynamics, conformational entropy, and noncovalent interactions of protein side chains established here open up new avenues to probe perturbation-induced (for example, ligand-binding, temperature, pressure) changes in fast side chain dynamics and thermodynamics of proteins by comparing their conformational energy surfaces in the native and perturbed states.
Collapse
Affiliation(s)
- Rajitha Rajeshwar T
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology , Gachibowli, Hyderabad 500 032, India
| | - Marimuthu Krishnan
- Center for Computational Natural Sciences and Bioinformatics, International Institute of Information Technology , Gachibowli, Hyderabad 500 032, India
| |
Collapse
|
17
|
The electronic density obtained from a QTAIM analysis used as molecular descriptor. A study performed in a new series of DHFR inhibitors. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.12.060] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Kumar Deb D, Sarkar B. Theoretical investigation of gas-phase molecular complex formation between 2-hydroxy thiophenol and a water molecule. Phys Chem Chem Phys 2017; 19:2466-2478. [DOI: 10.1039/c6cp08442g] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A systematic study of the interaction energies and hydrogen bonding interaction of a gas-phase molecular complex between 2-hydroxy thiophenol and a water molecule.
Collapse
Affiliation(s)
- Debojit Kumar Deb
- Department of Chemistry
- Centre for Advanced Studies
- North-Eastern Hill University
- Shillong 793022
- India
| | - Biplab Sarkar
- Department of Chemistry
- Centre for Advanced Studies
- North-Eastern Hill University
- Shillong 793022
- India
| |
Collapse
|
19
|
Luchi AM, Angelina EL, Andujar SA, Enriz RD, Peruchena NM. Halogen bonding in biological context: a computational study of D2 dopamine receptor. J PHYS ORG CHEM 2016; 29:645-655. [DOI: 10.1002/poc.3586] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
In this work, Halogen Bond (X‐bond) interactions formed by halogenated ligands (LX) at the Dopamine Receptor D2 (DRD2) binding pocket were studied by Molecular Dynamics (MD) and charge density analysis. The X‐bonds were contrasted with the Hydrogen Bond (H‐bond) interactions established by hydroxylated analogs (LOH, where X was replaced by OH). The ligands for this study were extracted from a dataset of compounds deposited in ZINC database that were active in binding assays to DRD2. This dataset was subjected to the filtering rules by employing cheminformatics tools to find the LX/LOH pairs that were then submitted to MD simulations. A homology model of DRD2 was employed for the simulations because no crystal structure is yet available for the receptor. To mimic the positive cap (σ‐hole) on the halogen atom, a massless, positive charged extra‐point was introduced in the force field. An analysis of the charge density (QTAIM) was performed on reduced models of simulated complexes to explain their binding differences. Results show that the halogen atom tends to form X‐bond with protein backbone oxygen atom. Two out of the four halogenated ligands studied form a specific X‐bond with the carbonyl oxygen of Ser193. This specific X‐bond decreases the inherent propensity of transmembrane 5 to unfolding. These results suggest a possible role of the X‐bond as a protein secondary structure modulator because of the ability of the halogen to interact with the protein backbone. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Adriano M. Luchi
- Lab. Estructura Molecular y Propiedades, IQUIBA‐NEA Universidad Nacional del Nordeste, CONICET, FACENA Av. Libertad 5470 Corrientes 3400 Argentina
| | - Emilio L. Angelina
- Lab. Estructura Molecular y Propiedades, IQUIBA‐NEA Universidad Nacional del Nordeste, CONICET, FACENA Av. Libertad 5470 Corrientes 3400 Argentina
| | - Sebastián A. Andujar
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis Universidad Nacional de San Luis, CONICET, FQBF Chacabuco 917 San Luis 5700 Argentina
| | - Ricardo D. Enriz
- Instituto Multidisciplinario de Investigaciones Biológicas San Luis Universidad Nacional de San Luis, CONICET, FQBF Chacabuco 917 San Luis 5700 Argentina
| | - Nélida M. Peruchena
- Lab. Estructura Molecular y Propiedades, IQUIBA‐NEA Universidad Nacional del Nordeste, CONICET, FACENA Av. Libertad 5470 Corrientes 3400 Argentina
| |
Collapse
|
20
|
Nakarada Đ, Etinski M, Petković M. Using Density Functional Theory To Study Neutral and Ionized Stacked Thymine Dimers. J Phys Chem A 2016; 120:7704-7713. [PMID: 27626138 DOI: 10.1021/acs.jpca.6b06493] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Stacking interactions in thymine dimers are studied with density functional theory. According to our calculations, six dimers of comparable stability can be prepared at low temperature, but dimerization is impossible at room temperature due to the large entropy contribution that accompanies it. Analysis of vibrational anharmonic coupling terms shows that each of the dimers exhibits distinct vibrational dynamics. Properties of electron density in the intermolecular region are used to analyze neutral stacked species and their ionized forms. Bond paths and critical points in the intermolecular region are identified, but a simple relationship between binding energy and total electron density in the intermolecular critical points could not be found due to an uneven electron distribution in the binding region. The reduced density gradient was confirmed to be a useful tool for analysis of weak stacking interactions. Those interactions also affect vertical and adiabatic ionization energies, which are computed to be slightly lower for the dimers compared to the monomer.
Collapse
Affiliation(s)
- Đura Nakarada
- Faculty of Physical Chemistry, University of Belgrade , Studentski trg 12-16, 11 158 Belgrade, Serbia
| | - Mihajlo Etinski
- Faculty of Physical Chemistry, University of Belgrade , Studentski trg 12-16, 11 158 Belgrade, Serbia
| | - Milena Petković
- Faculty of Physical Chemistry, University of Belgrade , Studentski trg 12-16, 11 158 Belgrade, Serbia
| |
Collapse
|
21
|
Evolution of the hydrogen-bonding motif in the melamine-cyanuric acid co-crystal: a topological study. J Mol Model 2016; 22:202. [PMID: 27491851 DOI: 10.1007/s00894-016-3070-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Accepted: 07/10/2016] [Indexed: 11/27/2022]
Abstract
The melamine (M)/cyanuric acid (CA) supramolecular system is perhaps one of the most exploited in the field of self-assembly because of the high complementarity of the components. However, it is necessary to investigate further the factors involved in the assembly process. In this study, we analyzed a set of 13 M n /CA m clusters (with n , m = 1, 2, 3), taken from crystallographic data, to characterize the nature of the hydrogen bonds involved in the self-assembly of these components as well as to provide greater understanding of the phenomenon. The calculations were performed at the B3LYP/6-311++G(d,p) and ω-B97XD (single point) levels of theory, and the interactions were analyzed within the framework of the quantum theory of atoms in molecules and by means of molecular electrostatic potential maps. Our results show that the stablest structure is the rosette-type motif and the aggregation mechanism is governed by a combination of cooperative and anticooperative effects. Our topological results explain the polymorphism in the self-assembly of coadsorbed monolayers of M and CA. Graphical abstract The aggregation steps of the melamine-cyanuric co-crystal is driven by a hydrogen-bonded network which is governed by a complex combination of cooperative and anticooperative effects.
Collapse
|
22
|
Párraga J, Andujar SA, Rojas S, Gutierrez LJ, El Aouad N, Sanz MJ, Enriz RD, Cabedo N, Cortes D. Dopaminergic isoquinolines with hexahydrocyclopenta[ij]-isoquinolines as D2-like selective ligands. Eur J Med Chem 2016; 122:27-42. [PMID: 27343851 DOI: 10.1016/j.ejmech.2016.06.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 06/07/2016] [Accepted: 06/08/2016] [Indexed: 01/11/2023]
Abstract
Dopamine receptors (DR) ligands are potential drug candidates for treating neurological disorders including schizophrenia or Parkinson's disease. Three series of isoquinolines: (E)-1-styryl-1,2,3,4-tetrahydroisoquinolines (series 1), 7-phenyl-1,2,3,7,8,8a-hexahydrocyclopenta[ij]-IQs (HCPIQs) (series 2) and (E)-1-(prop-1-en-1-yl)-1,2,3,4- tetrahydroisoquinolines (series 3), were prepared to determine their affinity for both D1 and D2-like DR. The effect of different substituents on the nitrogen atom (methyl or allyl), the dioxygenated function (methoxyl or catechol), the substituent at the β-position of the THIQ skeleton, and the presence or absence of the cyclopentane motif, were studied. We observed that the most active compounds in the three series (2c, 2e, 3a, 3c, 3e, 5c and 5e) possessed a high affinity for D2-like DR and these remarkable features: a catechol group in the IQ-ring and the N-substitution (methyl or allyl). The series showed the following trend to D2-RD affinity: HCPIQs > 1-styryl > 1-propenyl. Therefore, the substituent at the β-position of the THIQ and the cyclopentane ring also modulated this affinity. Among these dopaminergic isoquinolines, HCPIQs stood out for unexpected selectivity to D2-DR since the Ki D1/D2 ratio reached values of 2465, 1010 and 382 for compounds 3a, 3c and 3e, respectively. None of the most active THIQs in D2 DR displayed relevant cytotoxicity in human neutrophils and HUVEC. Finally, and in agreement with the experimental data, molecular modeling studies on DRs of the most characteristic ligands of the three series revealed stronger molecular interactions with D2 DR than with D1 DR, which further supports to the encountered enhanced selectivity to D2 DR.
Collapse
Affiliation(s)
- Javier Párraga
- Departamento de Farmacología, Laboratorio de Farmacoquímica, Facultad de Farmacia, Universidad de Valencia, 46100, Burjassot, Valencia, Spain
| | - Sebastián A Andujar
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL, Chacabuco 915, 5700, San Luis, Argentina
| | - Sebastián Rojas
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL, Chacabuco 915, 5700, San Luis, Argentina
| | - Lucas J Gutierrez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL, Chacabuco 915, 5700, San Luis, Argentina
| | | | - M Jesús Sanz
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain; Departamento de Farmacología, Facultad de Medicina, Universidad de Valencia, 46010, Valencia, Spain
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis-IMIBIO-SL, Chacabuco 915, 5700, San Luis, Argentina
| | - Nuria Cabedo
- Institute of Health Research-INCLIVA, University Clinic Hospital of Valencia, 46010, Valencia, Spain.
| | - Diego Cortes
- Departamento de Farmacología, Laboratorio de Farmacoquímica, Facultad de Farmacia, Universidad de Valencia, 46100, Burjassot, Valencia, Spain.
| |
Collapse
|
23
|
Impact of deformation energy on the hydrogen bonding interactions in gas phase 3-X catechol⋯H2O complexes (X = H, F, Cl, Br): The effect of approach of a water molecule. Chem Phys 2016. [DOI: 10.1016/j.chemphys.2016.03.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Gutierrez LJ, Angelina E, Gyebrovszki A, Fülöp L, Peruchena N, Baldoni HA, Penke B, Enriz RD. New small-size peptides modulators of the exosite of BACE1 obtained from a structure-based design. J Biomol Struct Dyn 2016; 35:413-426. [DOI: 10.1080/07391102.2016.1145143] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lucas J. Gutierrez
- Laboratorio de Estructura Molecular y Propiedades, Área de Química Física, Departamento de Químicam, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, Corrientes 3400, Argentina
| | - Emilio Angelina
- Laboratorio de Estructura Molecular y Propiedades, Área de Química Física, Departamento de Químicam, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, Corrientes 3400, Argentina
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL, CONICET), Ejercito de Los Andes 950, 5700 San Luis, Argentina
| | - Andrea Gyebrovszki
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm tér 8., Hungary
| | - Lívia Fülöp
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm tér 8., Hungary
| | - Nelida Peruchena
- Laboratorio de Estructura Molecular y Propiedades, Área de Química Física, Departamento de Químicam, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Av. Libertad 5470, Corrientes 3400, Argentina
| | - Héctor A. Baldoni
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina
- Instituto de Matemática Aplicada San Luis (IMASL,CONICET), Italia 1556, 5700 San Luis, Argentina
| | - Botond Penke
- Department of Medical Chemistry, University of Szeged, H-6720 Szeged, Dóm tér 8., Hungary
| | - Ricardo D. Enriz
- Instituto Multidisciplinario de Investigaciones Biológicas de San Luis (IMIBIO-SL, CONICET), Ejercito de Los Andes 950, 5700 San Luis, Argentina
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Chacabuco 917, 5700 San Luis, Argentina
| |
Collapse
|
25
|
Conformational transition of Aβ 42 inhibited by a mimetic peptide. A molecular modeling study using QM/MM calculations and QTAIM analysis. COMPUT THEOR CHEM 2016. [DOI: 10.1016/j.comptc.2016.02.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
26
|
Yang J, Yuan Y, Zhao H. Theoretical study of the interactions of a graphene-on-Ni(111) composite with dopamine. Mol Phys 2015. [DOI: 10.1080/00268976.2015.1123314] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Junwei Yang
- Department of Mathematics and Physics, Shanghai Dianji University, Shanghai, China
| | - Yanhong Yuan
- Department of Mathematics and Physics, Shanghai Dianji University, Shanghai, China
| | - Hua Zhao
- Department of Mathematics and Physics, Shanghai Dianji University, Shanghai, China
| |
Collapse
|
27
|
Aakeröy CB, Wijethunga TK, Haj MA, Desper J, Moore C. The structural landscape of heteroaryl-2-imidazoles: competing halogen- and hydrogen-bond interactions. CrystEngComm 2014. [DOI: 10.1039/c4ce00803k] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|