1
|
Sumrra SH, Hassan AU, Zafar W, Chohan ZH, Alrashidi KA. Molecular Engineering for UV-Vis to NIR Absorption/Emission Bands of Pyrazine-based A-π-D- π-A Switches to Design TiO 2 Tuned Dyes: DFT Insights. J Fluoresc 2024:10.1007/s10895-024-03891-7. [PMID: 39276306 DOI: 10.1007/s10895-024-03891-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Accepted: 08/02/2024] [Indexed: 09/16/2024]
Abstract
This study investigates the tuning of the UV-Vis/NIR absorption bands of pyrazine-based A-D-A switches for designing efficient UV retardancy over TiO2 surfaces. The electronic properties and optical characteristics of seven dyes (DP1-DP7) were analyzed using computational methods. The results indicate that the dyes possessed distinct UV-Vis/NIR absorption properties. Their absorption wavelengths ranged from 389 to 477 nm, with corresponding energies ranging from 2.59 to 3.19 eV. The major contributions to the absorption were found to be the HOMO-LUMO transitions, varying from 86 to 96%. The dyes exhibited different donor (D) and acceptor (A) groups, influencing their electronic properties and absorption characteristics. The tunable electronic and optical properties of these dyes make them promising candidates for applications requiring UV protection for TiO2-based materials. The results contribute to understand the structure-property relationships in the design of UV-Vis/NIR absorbers and provide a foundation for further experimental investigations in the field of UV retardancy.
Collapse
Affiliation(s)
| | - Abrar Ul Hassan
- Department of Chemistry, Lunaan Institute of Research Technology, Tangzou, 277509, China.
| | - Wardha Zafar
- Department of Chemistry, University of Gujrat, Gujrat, Punjab, 50700, Pakistan
| | | | - Khalid Abdullah Alrashidi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
2
|
Bhutto JA, Siddique B, Moussa IM, El-Sheikh MA, Hu Z, Yurong G. Machine learning assisted designing of non-fullerene electron acceptors: A quest for lower exciton binding energy. Heliyon 2024; 10:e30473. [PMID: 38711638 PMCID: PMC11070922 DOI: 10.1016/j.heliyon.2024.e30473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/05/2024] [Accepted: 04/27/2024] [Indexed: 05/08/2024] Open
Abstract
The designing of acceptors materials for the organic solar cells is a hot topic. The normal experimental methods are tedious and expensive for large screening. Machine learning guided exploration is more suitable solution. Bagging regression, random forest regression, gradient boosting regression, and linear regression are trained to predict exciton binding energy. Breaking Retrosynthetically Interesting Chemical Substructures (BRICS) methodology has utilized for designing of new non-fullerene acceptors (NFAs). The predicted values were used to select the designed NFAs. On the selected NFAs, clustering and chemical similarity analyses are also performed. Chemical fingerprints are used for this purpose, and the synthetic accessibility score of the new NFAs is also investigated.30 NFAs have selected with low exciton binding energy values. This approach will allow for the rapid screening of NFAs for organic solar cells. Our proposed framework stands out as a valuable tool for strategically selecting the most effective NFAs for organic solar cells and offers a streamlined approach for material discovery.
Collapse
Affiliation(s)
- Jameel Ahmed Bhutto
- College of Computer Science, Huang Gang Normal University, Huanggang, 438000, China
| | - Bilal Siddique
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, 54770, Pakistan
| | - Ihab Mohamed Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mohamed A. El-Sheikh
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Zhihua Hu
- College of Computer Science, Huang Gang Normal University, Huanggang, 438000, China
| | - Guan Yurong
- College of Computer Science, Huang Gang Normal University, Huanggang, 438000, China
| |
Collapse
|
3
|
Shafiq I, Khalid M, Maria G, Raza N, Braga AAC, Bullo S, Khairy M. Use of benzothiophene ring to improve the photovoltaic efficacy of cyanopyridinone-based organic chromophores: a DFT study. RSC Adv 2024; 14:12841-12852. [PMID: 38645518 PMCID: PMC11027887 DOI: 10.1039/d3ra06817j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 04/08/2024] [Indexed: 04/23/2024] Open
Abstract
The benzothiophene based chromophores (A1D1-A1D5) with A-π-A configuration were designed via end-capped tailoring with benzothiophene type acceptors using reference compound (A1R). Quantum chemical calculations were accomplished at M06/6-311G(d,p) level to probe optoelectronic and photophysical properties of designed chromophores. Therefore, frontier molecular orbitals (FMOs), binding energy (Eb), open circuit voltage (Voc), transition density matrix (TDM), density of state (DOS) and UV-Vis analyses of A1R and A1D1-A1D5 were accomplished. The designed compounds (A1D1-A1D5) exhibited absorption values in the visible region as 616.316-649.676 nm and 639.753-665.508 nm in gas and chloroform phase, respectively, comparing with reference chromophore. An efficient charge transference from HOMO towards LUMO was found in A1D1-A1D5 chromophores which was further supported by TDM and DOS analyses. Among all chromophores, A1D2 exhibited unique characteristics such as reduced band gap (2.354 eV), higher softness (σ = 0.424 eV), lower exciton binding energy (0.491 eV) and maximum value of open circuit voltage (Voc = 1.981 V). Consequently, A1D2 may be considered as potential candidate for the development of optoelectronic devices. These analyses revealed that the studied compounds exhibited promising findings. They may be utilized in the realm of organic solar cells.
Collapse
Affiliation(s)
- Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Gul Maria
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Nadeem Raza
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh Saudi Arabia
| | - Ataualpa A C Braga
- Departamento de Qu'ımica Fundamental, Instituto de Qu'ımica, Universidade de Saõ Paulo Av. Prof. Lineu Prestes, 748 Sao Paulo 05508-000 Brazil
| | - Saifullah Bullo
- Department of Human and Rehabilitation Sciences, Begum Nusrat Bhutto Women University Sukkur Sindh Pakistan
| | - Mohamed Khairy
- Department of Chemistry, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU) Riyadh Saudi Arabia
- Chemistry Department, Faculty of Science, Benha University Egypt
| |
Collapse
|
4
|
Hassan AU, Sumrra SH, Mohyuddin A, Nkungli NK, Alhokbany N. Realizing the effect of s-block metals on a charge transfer crystal of indol-2-one for enhanced NLO responses with efficient energetic offsets. J Mol Model 2024; 30:126. [PMID: 38581440 DOI: 10.1007/s00894-024-05923-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 04/02/2024] [Indexed: 04/08/2024]
Abstract
CONTEXT Due to their unique photophysical properties, organic charge transfer crystals are becoming promising materials for next-generation optoelectronic devices. This research paper explores the impact of s-block metals on a charge transfer crystal of indol-2-one for enhanced nonlinear optical (NLO) responses with efficient energetic offsets. The study reveals that alkali metals can enhance NLO performance due to their free electrons. METHOD The Perdew-Burke-Ernzerhof functional of DFT with dispersion correction (D3) was used, and the λmax values ranged between 596 and 669 nm, with the highest value for dichloromethane (DCM). Leveraging the unique properties of metals allowed for the development of nonlinear optical materials with improved performance and versatility. Softness (σ) values provide insight into electron density changes, with higher values indicating a greater tendency for changes and lower values indicating the opposite. The NLO results for the chromophores MMI1-MMI6 show varying linear polarizability (< α0 >) along with their first (β0) and second (γ0) hyperpolarizabilities. Chromophore MMI4 stands out with the highest NLO performance, having two potassium (K) atoms. Its < α0 > , β0, and γ0 values of 4.19, 7.09, and 17.43 (× 10-24 e.s.u), respectively, indicate a significant enhancement in NLO response compared to the other chromophores. The transitions involving (O20)LP → (C3-N5)π* and (O19)LP → (N12-C13)π* exhibit the highest level of stabilization, followed by (O23)π → (C10-C11)π*, while (C6-N12)π → (C6-C7)π* shows the lowest level of stabilization for chromophore MMI4. The present research work is facile in its nature, and it can be helpful for synthetic scientist to design the new materials for uniting crystal properties with metal doping for efficient NLO devices.
Collapse
Affiliation(s)
- Abrar U Hassan
- Lu'nan Research Institute of Beijing Institute of Technology, 888 Zhengtai Road, Tengzhou, 277599, People's Republic of China.
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Sajjad H Sumrra
- Department of Chemistry, University of Gujrat, Gujrat, 50700, Punjab, Pakistan.
| | - Ayesha Mohyuddin
- Department of Chemistry, School of Science, University of Management and Technology, Lahore, 54770, Pakistan
| | - Nyiang K Nkungli
- Department of Chemistry, Faculty of Science, The University of Bamenda, P.O. Box 39, Bambili, Bamenda, Cameroon
| | - Norah Alhokbany
- Department of Chemistry, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| |
Collapse
|
5
|
Waddar B, Gandi S, Parne SR, Chari VR, Prasanth GR. Investigation of second-order NLO properties of novel 1,3,4-oxadiazole derivatives: a DFT study. J Mol Model 2024; 30:118. [PMID: 38561544 DOI: 10.1007/s00894-024-05910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
CONTEXT In this study, we have developed four new chromophores (TM1-TM4) and performed quantum chemical calculations to explore their nonlinear optical properties. Our focus was on understanding the impact of electron-donating substituents on 1,3,4-oxadiazole derivative chromophores. The natural bond orbital analysis confirmed the interactions between donors and acceptors as well as provided insights into intramolecular charge transfer. We also estimated dipole moment, linear polarizability molecular electrostatic potential, UV-visible spectra, and first hyperpolarizability. Our results revealed that TM1 with a strong and stable electron-donating group exhibited high first hyperpolarizability (β) 293,679.0178 × 10-34 esu. Additionally, TM1 exhibited a dipolar moment (μ) of 5.66 Debye and polarizability (α) of 110.62 × 10-24 esu when measured in dimethyl sulfoxide (DMSO) solvent. Furthermore, in a benzene solvent, TM1 showed a low energy band gap of 5.33 eV by using the ωB97XD functional with a 6-311 + + G(d, p) basis set. Moreover, our study of intramolecular charge transfers highlighted N, N dimethyl triphenylamine and carbazole as major electron-donating groups among the four 1,3,4-oxadiazole derivative chromophores. This research illustrates the potential applications of these organic molecules in photonics due to their versatile nature. METHODS The molecules were individually optimized using different functionals, including APFD, B3LYP, CAM B3LYP, and ωB97XD combined with the 6-311 + + G (d, p) basis set in Gaussian 16 software. These methods encompass long-range functionals such as APFD and B3LYP, along with long-range corrected functionals like CAM B3LYP and ωB97XD. The employed functionals of APFD, B3LYP, CAM B3LYP, and ωB97XD with the 6-311 + + G (d,p) basis set were used to extract various properties such as geometrical structures, dipole moment, molecular electrostatic potential, and first hyperpolarizability through precise density functional theory (DFT). Additionally, TD-DFT was utilized for obtaining UV-visible spectra. All studies have been conducted in both gas and solvent phases.
Collapse
Affiliation(s)
- Balachandar Waddar
- Department of Applied Sciences, National Institute of Technology Goa, Kottamoll Plateau, Cuncolim, Goa, 403703, India
| | - Suman Gandi
- Department of Applied Sciences, National Institute of Technology Goa, Kottamoll Plateau, Cuncolim, Goa, 403703, India
| | - Saidi Reddy Parne
- Department of Applied Sciences, National Institute of Technology Goa, Kottamoll Plateau, Cuncolim, Goa, 403703, India.
| | - Vishnu Rama Chari
- School of Chemical Sciences, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Gurusiddappa R Prasanth
- Department of Electronics & Communication Engineering, National Institute of Technology Goa, Kottamoll Plateau, Cuncolim, Goa, 403703, India
| |
Collapse
|
6
|
Paulino PHS, Guimarães L, Nascimento CS. Chemical modification and doping of poly(p-phenylenes): A theoretical study. J Mol Model 2024; 30:114. [PMID: 38558272 DOI: 10.1007/s00894-024-05920-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024]
Abstract
CONTEXT Conjugated polymers (CPs) have been recognized as promising materials for the manufacture of electronic devices. However, further studies are still needed to enhance the electrical conductivity of these type of organic materials. The two main strategies for achieving this improvement are the doping process and chemical modification of the polymer chain. Therefore, in this article, we conduct a theoretical investigation, employing DFT calculations to evaluate the structural, energetic, and electronic properties of pristine and push-pull-derived poly(p-phenylene) oligomers (PPPs), as well as the analysis at the molecular level of the polymer doping process. As a primary conclusion, we determined that the PPP oligomer substituted with the push-pull group 4-EtN/CNPhNO2 exhibited the smallest HOMO-LUMO gap (Eg) among the studied oligomers. Moreover, we observed that the doping process, whether through electron removal or the introduction of the dopant anion ClO4-, led to a substantial reduction in the Eg of the PPP, indicating an enhancement in the polymer's electrical conductivity. METHODS DFT calculations were conducted using the PBE0 functional along with the Pople's split valence 6-31G(d,p) basis set, which includes polarization functions on all atoms (B97D/6-31G(d,p)).
Collapse
Affiliation(s)
- Paulo Henrique S Paulino
- Grupo de Pesquisa Em Química Computacional Aplicada (GPQCA), Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom BoscoSão João Del Rei, Minas Gerais, 36301-160, Brazil
| | - Luciana Guimarães
- Grupo de Pesquisa Em Química Computacional Aplicada (GPQCA), Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom BoscoSão João Del Rei, Minas Gerais, 36301-160, Brazil
| | - Clebio S Nascimento
- Grupo de Pesquisa Em Química Computacional Aplicada (GPQCA), Departamento de Ciências Naturais (DCNAT), Universidade Federal de São João Del-Rei (UFSJ), Campus Dom BoscoSão João Del Rei, Minas Gerais, 36301-160, Brazil.
| |
Collapse
|
7
|
Wang S, Yu Z, Li L, Qiao J, Gao L. Theoretical analysis on D-π-A dye molecules with different acceptors and terminal branches for highly efficient dye-sensitized solar cells. J Mol Graph Model 2024; 127:108677. [PMID: 38043394 DOI: 10.1016/j.jmgm.2023.108677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/05/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Triphenylamine and 9-phenylcarbazole are the most common electron donor groups, now based on the two groups, eight D-π-A dyes are designed as sensitizers for dye-sensitized solar cells (DSSCs).The eight dyes use the same π-conjugated bridge (thiophene moiety and carbon-carbon double bond) and acceptor fragment (cyanoacrylic acid), and the donor group is added with additional electron-D groups to the original triphenylamine and 9-phenylcarbazole (C4H9 alkyl chain, C4F9 perfluoroalkyl chain, and methoxy), and comparing the properties of several donor groups and terminal branched chains while ensuring that the π-bridges and acceptors are identical. The photophysical properties, electronically excited states, and chemical reactivity affecting the performed dyes have been determined with DFT and TD-DFT calculations of bond lengths and dihedral angles between fragments, frontier molecular orbitals, density of states, isosurface molecular electrostatic potential, charge density differences, fragment transition density matrix, UV-Vis absorption spectra, quantum chemical, and photovoltaic parameters. Comparisons have been made between the dyes under study's photophysical characteristics, electrically excited states, and chemical reactivity. Among all the different donor dyes designed, SH-3 and ZD-3 are poorly molecularly planar compared to the same series of molecules with parameters such as large HOMO-LUMO energy gaps (2.78 eV, 3.28 eV), maximum excited energies (2.93 eV, 3.13 eV), and the shortest absorption peaks (422.76 nm, 396.48 nm), which are considered to be the worst material for photovoltaic applications. Whereas, SH-4 and ZD-4 have the smallest energy gap values (2.35 eV, 2.74 eV) and vertical excitation energies (2.66 eV, 3.04 eV) as well as having the longest absorption peaks (465.34 nm, 408.42 nm), the largest open circuit voltages (1.42 eV, 1.34 eV), which are the best designs among the two groups of molecules. The rest of the designed organic dyes have suitable photophysical properties and all of them are highly recommended for DSSCs.
Collapse
Affiliation(s)
- Songhao Wang
- College of Science, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Zhenshuo Yu
- College of Science, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Lei Li
- College of Science, University of Science and Technology Liaoning, Anshan, 114051, PR China
| | - Jun Qiao
- College of Material and Metallurgy, University of Science and Technology Liaoning, Anshan, 114051, Liaoning, PR China
| | - Liang Gao
- College of Science, University of Science and Technology Liaoning, Anshan, 114051, PR China; College of Material and Metallurgy, University of Science and Technology Liaoning, Anshan, 114051, Liaoning, PR China.
| |
Collapse
|
8
|
Tahir M, Aftab H, Shafiq I, Khalid M, Haq S, El-Kott AF, Zein MA, Hani U, Shafiq Z. Synthesis, characterization and NLO properties of 1,4-phenylenediamine-based Schiff bases: a combined theoretical and experimental approach. RSC Adv 2024; 14:4221-4229. [PMID: 38292270 PMCID: PMC10826287 DOI: 10.1039/d3ra07642c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 01/01/2024] [Indexed: 02/01/2024] Open
Abstract
In the current study, three novel 1,4-phenylenediamine-based chromophores (3a-3c) were synthesized and characterized and then their nonlinear optical (NLO) characteristics were explored theoretically. The characterization was done by spectroscopic analysis, i.e. FT-IR, UV-Visible, and NMR spectroscopy, and elemental analysis. Notably, these chromophores exhibited UV-Visible absorption within the range of 378.635-384.757 nm in acetonitrile solvent. Additionally, the FMO findings for 3a-3c revealed the narrowest band gap (4.129 eV) for 3c. The GRPs for these chromophores were derived from HOMO-LUMO energy values, which showed correspondence with FMO results by depicting a minimum hardness (2.065 eV) for 3c. Among these compounds, 3c displayed the highest nonlinear behavior with maximum μtot, βtot and γtot values of 4.79 D, 8.00 × 10-30 and 8.13 × 10-34 a.u., respectively. Our findings disclosed that the synthesized 1,4-phenylenediamine chromophores may be considered promising candidates for nonlinear optical materials, showing potential applications in the realm of optoelectronic devices.
Collapse
Affiliation(s)
- Muhammad Tahir
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Hina Aftab
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| | - Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Saadia Haq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Attalla F El-Kott
- Biology Department, College of Science, King Khalid University Abha Saudi Arabia
- Zoology Department, College of Science, Damanhour University Egypt
| | - Mohamed Abdellatif Zein
- Chemistry Department, University College of AlWajh, University of Tabuk Tabuk Saudi Arabia
- Chemistry Department, Faculty of Science, Damanhour University Egypt
| | - Umme Hani
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University Multan 60800 Pakistan
| |
Collapse
|
9
|
Ishfaq M, Mubashir T, Abdou SN, Tahir MH, Halawa MI, Ibrahim MM, Xie Y. Data mining and library generation to search electron-rich and electron-deficient building blocks for the designing of polymers for photoacoustic imaging. Heliyon 2023; 9:e21332. [PMID: 37964821 PMCID: PMC10641172 DOI: 10.1016/j.heliyon.2023.e21332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/08/2023] [Accepted: 10/19/2023] [Indexed: 11/16/2023] Open
Abstract
Photoacoustic imaging is a good method for biological imaging, for this purpose, materials with strong near infrared (NIR) absorbance are required. In the present study, machine learning models are used to predict the light absorption behavior of polymers. Molecular descriptors are utilized to train a variety of machine learning models. Building blocks are searched from chemical databases, as well as new building blocks are designed using chemical library enumeration method. The Breaking Retrosynthetically Interesting Chemical Substructures (BRICS) method is employed for the creation of 10,000 novel polymers. These polymers are designed based on the input of searched and selected building blocks. To enhance the process, the optimal machine learning model is utilized to predict the UV/visible absorption maxima of the newly designed polymers. Concurrently, chemical similarity analysis is also performed on the selected polymers, and synthetic accessibility of selected polymers is calculated. In summary, the polymers are all easy to synthesize, increasing their potential for practical applications.
Collapse
Affiliation(s)
| | - Tayyaba Mubashir
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Safaa N. Abdou
- Department of Chemistry, Khurmah University College, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mudassir Hussain Tahir
- Research Faculty of Agriculture, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, 060-8589, 060-0811, Japan
| | - Mohamed Ibrahim Halawa
- Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura, 35516, Mansoura, Egypt
- Guangdong Laboratory of Artificial Intelligence & Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, China
| | - Mohamed M. Ibrahim
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Yulin Xie
- Huanggang Normal University, Huanggang, 438000, China
| |
Collapse
|
10
|
Sagir M, Mushtaq K, Khalid M, Khan M, Tahir MB, Braga AAC. Exploration of linear and third-order nonlinear optical properties for donor-π-linker-acceptor chromophores derived from ATT-2 based non-fullerene molecule. RSC Adv 2023; 13:31855-31872. [PMID: 37920195 PMCID: PMC10618729 DOI: 10.1039/d3ra04580c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 10/09/2023] [Indexed: 11/04/2023] Open
Abstract
In the current study, seven non-fullerene compounds abbreviated as ATTD2-ATTD8 were designed through structural tailoring and their nonlinear optical (NLO) properties were reported. The objective of this study was to explore the potential for newly configured D-π-A type non-fullerene-based compounds. Quantum chemical methods were adopted and revealed the molecules as highly efficient materials with favorable NLO characteristics for use in optoelectronic devices. The M06 functional along with the 6-311G(d,p) basis set in chloroform solvent were utilized for the natural bonding orbital (NBO) analysis, absorption spectra and computational assessments of frontier molecular orbitals (FMOs), global reactivity descriptors (GRPs), transition density matrix (TDM) and nonlinear optical properties (NLO) for ATTR1 and ATTD2-ATTD8. The HOMO-LUMO energy gap was significantly reduced in all the designed moieties compared to the reference compound in the following decreasing order: ATTR1 > ATTD8 > ATTD4 > ATTD5 > ATTD2 > ATTD7 > ATTD6 > ATTD3. All of the designed molecules (ATTD2-ATTD8) showed good NLO response. Global reactivity parameters were found to be closely associated with the band gap between the HOMO and LUMO orbitals, and the compound with the smallest energy gap, ATTD3, exhibited a lower hardness value of 1.754 eV and higher softness value of 0.570 eV with outstanding NLO response. For the reference compound and ATTD2-ATTD8 derivatives, attributes like dipole moment (μtot), average polarizability 〈α〉, first hyperpolarizability (βtot), and second hyperpolarizability γtot were calculated. Out of all the derivatives, ATTD3 revealed the highest amplitude with a βtot of 8.23 × 10-27 esu, which was consistent with the reduced band gap (1.754 eV) and suggested it was the best possibility for NLO materials in the future.
Collapse
Affiliation(s)
- Muhammad Sagir
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Kalsoom Mushtaq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Mashal Khan
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Bilal Tahir
- Institute of Physics, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de Saõ Paulo Av. Prof. Lineu Prestes, 748 Sao Paulo 05508-000 Brazil
| |
Collapse
|
11
|
Abid S, Khalid M, Sagir M, Imran M, Braga AAC, Chandra Ojha S. Exploration of nonlinear optical enhancement in acceptor-π-donor indacenodithiophene based derivatives via structural variations: a DFT approach. RSC Adv 2023; 13:28076-28088. [PMID: 37746336 PMCID: PMC10517168 DOI: 10.1039/d3ra04858f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/18/2023] [Indexed: 09/26/2023] Open
Abstract
Herein, a series of indacenodithiophene-based derivatives (TNPD1-TNPD6) were designed having D-π-A architecture via end capped acceptor modulation of a reference molecule (TNPR) to investigate nonlinear optical (NLO) behavior. Quantum chemical calculations were accomplished to examine electronic, structural and optical properties utilizing a density functional theory (DFT) approach at M06 functional with 6-311G(d,p) basis set. For this, natural bond orbitals (NBOs), density of states (DOS), frontier molecular orbitals (FMOs), transition density matrix (TDM) and non-linear optical (NLO) analyses were performed for TNPR and TNPD1-TNPD6. The structural modifications revealed a significant electronic contribution in tuning the HOMOs and LUMOs of the derivatives with lowered energy gaps and wider absorption spectra. FMOs findings revealed that compound TNPD5 was found with the lowest energy gap (1.692 eV) and with the highest softness (0.591 eV-1) among the derivatives. Furthermore, a UV-Vis study also disclosed that maximum absorption (λmax = 852.242 nm) was exhibited by TNPD5 in chloroform solvent. All the derivatives exhibited significant NLO results; in particular, TNPD5 showed the highest first hyper-polarizability (βtot = 4.653 × 10-27 esu) and second hyper-polarizability (γtot = 9.472 × 10-32 esu). These DFT findings revealed that the end-capped substituents play a key role in enhancing the NLO response of these push-pull chromophores and the studied derivatives can be utilized as efficient NLO materials.
Collapse
Affiliation(s)
- Saba Abid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Sagir
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University P.O. Box 9004 Abha 61413 Saudi Arabia
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo Av. Prof. Lineu Prestes, 748 São Paulo 05508-000 Brazil
| | - Suvash Chandra Ojha
- Department of Infectious Diseases, The Affiliated Hospital of Southwest Medical University Luzhou 646000 China
| |
Collapse
|
12
|
Xiao F, Saqib M, Razzaq S, Mubashir T, Tahir MH, Moussa IM, El-Ansary HO. Performance prediction of polymer-fullerene organic solar cells and data mining-assisted designing of new polymers. J Mol Model 2023; 29:270. [PMID: 37530879 DOI: 10.1007/s00894-023-05677-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 07/25/2023] [Indexed: 08/03/2023]
Abstract
CONTEXT Selecting high performance polymer materials for organic solar cells (OSCs) remains a compelling goal to improve device morphology, stability, and efficiency. To achieve these goals, machine learning has been reported as a powerful set of algorithms/techniques to solve complex problems and help/guide exploratory researchers to screen, map, and develop high performance materials. In present work, we have applied machine learning tools to screen data from reported studies and designed new polymer acceptor materials, respectively. Quantitative structure-activity relationship (QSAR) models were generated using machine learning-assisted simulation techniques. For this purpose, 3000 molecular descriptors are generated. Consequently, molecular descriptors having key effect on power conversion efficiency (PCE) were identified. Moreover, numerous regression models (e.g., random forest and bagging regressor models) were developed to predict the PCE. In particular, new materials were designed based on the similarity analysis. The GDB17 chemical database consisting of 166 million organic molecules in an ordered form is used for performing similarity analysis. A similarity behavior between GDB17 materials and the materials reported in literature is studied using RDKit (a cheminformatics software). Noteworthily, 100 monomers proved to be unique and effective, and PCEs of these monomers are predicted. Among these monomers, four monomers exhibited PCE higher than 14%, which is better than various reported studies. Our methodology provides a unique, time- and cost-efficient approach to screening and designing new polymers for OSCs using similarity analysis without revisiting the reported studies. METHODS To perform machine learning analysis, data from reported studies and online databases was collected. Different molecular descriptors were generated for polymer materials utilizing Dragon software. 3D structures of studied molecules were applied as input (SDF; structure data file format). Importantly, about 3000 molecular descriptors were generated. Comma-separated value (.csv) file format was used to export these molecular descriptors. To shortlist best descriptors, univariate regression analysis was performed. These descriptors were further utilized for training machine learning models. Moreover, necessary packages of Python for data analysis and visualization were imported such as Matplotlib, Numpy, Pandas, Scikit-learn, Seaborn, and Scipy. Random forest and bagging regressor models were applied for performing machine learning analysis. A cheminformatics software, RDKit, was applied for similarity analysis.
Collapse
Affiliation(s)
- Fei Xiao
- College of Computer Science, Huanggang Normal University, Huanggang, 438000, Hubei, China
| | - Muhammad Saqib
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan.
| | - Soha Razzaq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Tayyaba Mubashir
- Institute of Chemistry, University of Sargodha, Sargodha, 40100, Pakistan
| | - Mudassir Hussain Tahir
- Research Faculty of Agriculture, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido, 060-8589, 060-0811, Japan
| | - Ihab Mohamed Moussa
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2460, Riyadh, 11451, Saudi Arabia
| | - Hosam O El-Ansary
- Plant Production Department, College of Food & Agriculture Sciences, King Saud University, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
13
|
Khan MU, Janjua MRSA, Yaqoob J, Hussain R, Khalid M, Syed A, Elgorban AM, Zaghloul NS. First theoretical framework of superalkali metals [M3X(M = Li, Na, k; X = O, S, F, N)] doped all-boron B38 nanocluster: A promising class of nonlinear optical materials for optoelectronic applications. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
14
|
Katubi KM, Saqib M, Maryam M, Mubashir T, Tahir MH, Sulaman M, Alrowaili Z, Al-Buriahi M. Machine learning assisted designing of organic semiconductors for organic solar cells: High-throughput screening and reorganization energy prediction. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
15
|
Arshad MN, Shafiq I, Khalid M, Asad M, Asiri AM, Alotaibi MM, Braga AAC, Khan A, Alamry KA. Enhancing the Photovoltaic Properties via Incorporation of Selenophene Units in Organic Chromophores with A 2-π 2-A 1-π 1-A 2 Configuration: A DFT-Based Exploration. Polymers (Basel) 2023; 15:polym15061508. [PMID: 36987288 PMCID: PMC10051165 DOI: 10.3390/polym15061508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/08/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Currently, polymer organic solar cells (POSCs) are widely utilized due to their significant application, such as low-cost power conversion efficiencies (PCEs). Therefore, we designed a series of photovoltaic materials (D1, D2, D3, D5 and D7) by the incorporation of selenophene units (n = 1-7) as π1-spacers by considering the importance of POSCs. Density functional theory (DFT) calculations were accomplished at MPW1PW91/6-311G (d, p) functional to explore the impact of additional selenophene units on the photovoltaic behavior of the above-mentioned compounds. A comparative analysis was conducted for designed compounds and reference compounds (D1). Reduction in energy gaps (∆E = 2.399 - 2.064 eV) with broader absorption wavelength (λmax = 655.480 - 728.376 nm) in chloroform along with larger charge transference rate was studied with the addition of selenophene units as compared to D1. A significantly higher exciton dissociation rate was studied as lower values of binding energy (Eb = 0.508 - 0.362 eV) were noted in derivatives than in the reference (Eb = 0.526 eV). Moreover, transition density matrix (TDM) and density of state (DOS) data also supported the efficient charge transition origination from HOMOs to LUMOs. Open circuit voltage (Voc) was also calculated for all the aforesaid compounds to check the efficiency, and significant results were seen (1.633-1.549 V). All the analyses supported our compounds as efficient POSCs materials with significant efficacy. These compounds might encourage the experimental researchers to synthesize them due to proficient photovoltaic materials.
Collapse
Affiliation(s)
- Muhammad Nadeem Arshad
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Iqra Shafiq
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Centre for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Mohammad Asad
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Abdullah M Asiri
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Maha M Alotaibi
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Ataualpa A C Braga
- Departamento de Química Fundamental, Instituto de Química, Universidade de Sao Paulo, Av. Prof. Lineu Prestes, 748, Sao Paulo 05508-000, Brazil
| | - Anish Khan
- Center of Excellence for Advanced Material Research (CEAMR), King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| | - Khalid A Alamry
- Chemistry Department, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
| |
Collapse
|
16
|
Haroon M, Akhtar T, Khalid M, Mehmood H, Asghar MA, Baby R, Orfali R, Perveen S. Synthesis, characterization and exploration of photovoltaic behavior of hydrazide based scaffolds: a concise experimental and DFT study. RSC Adv 2023; 13:7237-7249. [PMID: 36891493 PMCID: PMC9986803 DOI: 10.1039/d3ra00431g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 02/16/2023] [Indexed: 03/08/2023] Open
Abstract
Solar energy being a non-depleting energy resource, has attracted scientists' attention to develop efficient solar cells to meet energy demands. Herein, a series of hydrazinylthiazole-4-carbohydrazide organic photovoltaic compounds (BDTC1-BDTC7) with an A1-D1-A2-D2 framework was synthesized with 48-62% yields, and their spectroscopic characterization was accomplished using FT-IR, HRMS, 1H and 13C-NMR techniques. Density functional theory (DFT) and time dependent DFT analyses were performed utilizing the M06/6-31G(d,p) functional to calculate the photovoltaic and optoelectronic properties of BDTC1-BDTC7via numerous simulations of the frontier molecular orbitals (FMOs), transition density matrix (TDM), open circuit voltage (V oc) and density of states (DOS). Moreover, the conducted analysis on the FMOs revealed efficient transference of charge from the highest occupied to the lowest unoccupied molecular orbitals (HOMO → LUMO), further supported by TDM and DOS analyses. Furthermore, the values of binding energy (E b = 0.295 to 1.150 eV), as well as reorganization energy of the holes (-0.038-0.025 eV) and electrons (-0.023-0.00 eV), were found to be smaller for all the studied compounds, which suggests a higher exciton dissociation rate with greater hole mobility in BDTC1-BDTC7. V oc analysis was accomplished with respect to HOMOPBDB-T-LUMOACCEPTOR. Among all the synthesized molecules, BDTC7 was found to have a reduced band gap (3.583 eV), with a bathochromic shift and absorption maximum at 448.990 nm, and a promising V oc (1.97 V), thus it is regarded as a potential candidate for high performance photovoltaic applications.
Collapse
Affiliation(s)
- Muhammad Haroon
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur AJK Pakistan .,Department of Chemistry, Government Major Muhammad Afzal Khan (Shaheed), Boys Degree College Afzalpur, Mirpur (Affiliated with Mirpur University of Science and Technology (MUST)) 10250-Mirpur AJK Pakistan
| | - Tashfeen Akhtar
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur AJK Pakistan
| | - Muhammad Khalid
- Institute of Chemistry, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan .,Center for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology Rahim Yar Khan 64200 Pakistan
| | - Hasnain Mehmood
- Department of Chemistry, Mirpur University of Science and Technology (MUST) 10250-Mirpur AJK Pakistan
| | - Muhammad Adnan Asghar
- Department of Chemistry, Division of Science and Technology, University of Education Lahore Pakistan
| | - Rabia Baby
- Department of Education, Sukkur IBA University 65200 Pakistan
| | - Raha Orfali
- Department of Pharmacognosy, Collage of Pharmacy, King Saud University PO Box 2457 Riyadh 11451 Saudi Arabia
| | - Shagufta Perveen
- Department of Chemistry, School of Computer, Mathematical and Natural Sciences, Morgan State University Baltimore MD 21251 USA
| |
Collapse
|
17
|
Synthesis, Photoswitching Behavior and Nonlinear Optical Properties of Substituted Tribenzo[ a, d, g]coronene. Molecules 2023; 28:molecules28031419. [PMID: 36771085 PMCID: PMC9919552 DOI: 10.3390/molecules28031419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/13/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
A family of tribenzocoronene derivatives bearing various substituents (3) were constructed through the Diels-Alder reaction, followed by the Scholl oxidation, where the molecular structure of 3b was determined via single crystal X-ray diffraction analysis. The effect of substitution on the optical and electrochemical property was systematically investigated, with the assistance of theoretical calculations. Moreover, the thin films of the resulting molecules 3b and 3e complexed with fullerene produced strong photocurrent response upon irradiation of white light. In addition, 3b and 3e exhibit a positive nonlinear optical response resulting from the two-photon absorption and excited state absorption processes.
Collapse
|
18
|
Dowarah J, Hazarika B, Sran BS, Khiangte D, Singh VP. Design, synthesis, structural investigation and binding study of 2-pyridone-based pharmaceutical precursor with DNA. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
19
|
Structural insights, spectral, flourescence, Z-scan, C-H…O/N-H…O hydrogen bonding and AIM, RDG, ELF, LOL, FUKUI analysis, NLO activity of N-2(Methoxy phenyl) acetamide. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
20
|
Ishfaq M, Aamir M, Ahmad F, M Mebed A, Elshahat S. Machine Learning-Assisted Prediction of the Biological Activity of Aromatase Inhibitors and Data Mining to Explore Similar Compounds. ACS OMEGA 2022; 7:48139-48149. [PMID: 36591131 PMCID: PMC9798507 DOI: 10.1021/acsomega.2c06174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Designing molecules for drugs has been a hot topic for many decades. However, it is hard and expensive to find a new molecule. Thus, the cost of the final drug is also increased. Machine learning can provide the fastest way to predict the biological activity of druglike molecules. In the present work, machine learning models are trained for the prediction of the biological activity of aromatase inhibitors. Data was collected from the literature. Molecular descriptors are calculated to be used as independent features for model training. The results showed that the R 2 values for linear regression, random forest regression, gradient boosting regression, and bagging regression are 0.58, 0.84, 0.77, and 0.80, respectively. Using these models, it is possible to predict the activity of new molecules in a short period of time and at a reasonable cost. Furthermore, Tanimoto similarity is used for similarity analysis, as well as a chemical database is mined to search for similar molecules. Nonetheless, this study provides a framework for repurposing other effective drug molecules to prevent cancer.
Collapse
Affiliation(s)
- Muhammad Ishfaq
- College
of Computer Science, Huanggang Normal University, Huanggang 438000, China
| | - Muhammad Aamir
- College
of Computer Science, Huanggang Normal University, Huanggang 438000, China
| | - Farooq Ahmad
- Department
of Biomedical Engineering, College of Engineering and Applied Sciences,
School of Chemistry and Chemical Engineering, Chemistry and Biomedicine
Innovation Center (ChemBIC), Nanjing University, Nanjing 210093, China
| | - Abdelazim M Mebed
- Physics
Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
- Department
of Physics, College of Science, Jouf University, P.O. Box 2014, Al-Jouf, Sakaka 72388, Saudi Arabia
| | - Sayed Elshahat
- Physics
Department, Faculty of Science, Assiut University, Assiut 71516, Egypt
- Beijing
Key Lab of Nanophotonics and Ultrafine Optoelectronic Systems, Center
for Micro-Nanotechnology; Key Lab of Advanced Optoelectronic Quantum
Design and Measurement, Ministry of Education, School of Physics, Beijing Institute of Technology, Beijing 100081, P. R. China
| |
Collapse
|
21
|
Designing of gigantic first-order hyperpolarizability molecules via joining the promising organic fragments: a DFT study. J Mol Model 2022; 29:5. [PMID: 36481956 DOI: 10.1007/s00894-022-05401-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
A suitable substitution of carbazole with a π-spacer group like cyanoethynylethene offers exciting future opportunities in terms of smart nonlinear optical material. In the quest of better organic nonlinear optical material, we have designed a series of derivatives based on carbazole and cyanoethynylethene fragment combinations in a unique fashion by employing the density functional (DFT) methods. The calculated time-dependent density functional theory (TD-DFT) calculations infer that the gigantic first static hyperpolarizability (βtot) values are due to a lower energy gap and higher transition dipole moment for the crucial electronic transition. Furthermore, to see the in-depth execution for enhanced second-order nonlinear optics and the structure property relationship on nonlinear optics (NLO) behavior, we have performed frontier molecular orbitals (FMO), density of state (DOS), and transition density matrix (TDM). Furthermore, CAM-B3LYP functional-based calculated results infer that the designed molecule 10 show the first static hyperpolarizability is 923.93 × 10-30 esu which is 69 times larger than that of p-nitroaniline.
Collapse
|
22
|
Wong QA, Quah CK, Wong XA, Maidur SR, Kwong HC, Win YF, Patil PS, Gummagol NB. Structure-Property Relationship of Three 2-Chloro-4-fluoro Chalcone Derivatives: A Comprehensive Study on Linear and Non-linear Optical Properties, Structural Characterizations and Density Functional Theory. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
23
|
Exploration of Electronic and Non-Linear Optical Properties of Novel 4-Aryl-2-methylpyridine Based Compounds Synthesized via High-Yielding Pd(0) Catalysed Reaction. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
24
|
Surface functionalization of Si6Li6 cluster with superalkalis to achieve high nonlinear optical response: A DFT study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Faye O, Szpunar JA, Eduok U. A Comparative Density Functional Theory Study of Hydrogen Storage in Cellulose and Chitosan Functionalized by Transition Metals (Ti, Mg, and Nb). MATERIALS (BASEL, SWITZERLAND) 2022; 15:7573. [PMID: 36363163 PMCID: PMC9655284 DOI: 10.3390/ma15217573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 06/16/2023]
Abstract
The focus of this work is hydrogen storage in pristine cellulose, chitosan, and cellulose. Chitosan doped with magnesium, titanium, and niobium is analyzed using spin unrestricted plane-wave density functional theory implemented in the Dmol3 module. The results of this study demonstrate that hydrogen interaction with pure cellulose and chitosan occurred in the gas phase, with an adsorption energy of Eb = 0.095 eV and 0.090 eV for cellulose and chitosan, respectively. Additionally, their chemical stability was determined as Eb= 4.63 eV and Eb = 4.720 eV for pure cellulose and chitosan, respectively, by evaluating their band gap. Furthermore, the presence of magnesium, titanium, and niobium on cellulose and chitosan implied the transfer of an electron from metal to cellulose and chitosan. Moreover, our calculations predict that cellulose doped with niobium is the most favorable medium where 6H2 molecules are stored compared with molecules stored in niobium-doped chitosan with Tmax = 818 K to release all H2 molecules. Furthermore, our findings showed that titanium-doped cellulose has a storage capacity of five H2 molecules, compared to a storage capacity of four H2 molecules in titanium-doped chitosan. However, magnesium-doped cellulose and chitosan have insufficient hydrogen storage capacity, with only two H2 molecules physisorbed in the gas phase. These results suggest that niobium-doped cellulose and chitosan may play a crucial role in the search for efficient and inexpensive hydrogen storage media.
Collapse
|
26
|
Machine Learning Assisted Prediction of Power Conversion Efficiency of All-Small Molecule Organic Solar Cells: A Data Visualization and Statistical Analysis. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27185905. [PMID: 36144642 PMCID: PMC9502131 DOI: 10.3390/molecules27185905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 11/25/2022]
Abstract
Organic solar cells are famous for their cheap solution processing. Their industrialization needs fast designing of efficient materials. For this purpose, testing of large number of materials is necessary. Machine learning is a better option due to cheaper prediction of power conversion efficiencies. In the present work, machine learning was used to predict power conversion efficiencies. Experimental data were collected from the literature to feed the machine learning models. A detailed data visualization analysis was performed to study the trends of the dataset. The relationship between descriptors and power conversion efficiency was quantitatively determined by Pearson correlations. The importance of features was also determined using feature importance analysis. More than 10 machine learning models were tried to find better models. Only the two best models (random forest regressor and bagging regressor) were selected for further analysis. The prediction ability of these models was high. The coefficient of determination (R2) values for the random forest regressor and bagging regressor models were 0.892 and 0.887, respectively. The Shapley additive explanation (SHAP) method was used to identify the impact of descriptors on the output of models.
Collapse
|
27
|
Upendranath K, Venkatesh T, Lohith T, Sridhar M. Synthesis, characterizations of new Schiff base heterocyclic derivatives and their optoelectronic, computational studies with level II & III features of LFPs. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
28
|
Afsar N, Jonathan DR, Satheesh D, Manivannan S. Computational description of quantum chemical calculations and pharmacological studies of the synthesized chalcone derivative: A promising NLO material. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
29
|
Sasi BA, Nair SS, Jose BK, James C, Sajan D. Hydrogen bonding interaction and topological insights of the electron localization/delocalization of l- arginine acetate. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
30
|
Dehghani Z, Azizi-Toupkanloo H, Nadafan M, Guirao JL. The effect of Ag on the structural, dielectric, linear and third-order nonlinear optical properties of graphitic carbon nitride nanosheets. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
31
|
Kausar N, Murtaza S, Khalid M, Shoukat U, Asad M, Arshad MN, Asiri AM, Braga AA. Experimental and Quantum Chemical Approaches for Hydrazide-based Crystalline Organic Chromophores: Synthesis, SC-XRD, Spectroscopic and Nonlinear Optical Properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
32
|
Ma C, Gong L, Lv J, Wang L, Jiang B. Theoretical Study on Photophysical Properties of Twisted D-A interaction TPA-BSM derivatives. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Khalid M, Zafar M, Hussain S, Asghar MA, Khera RA, Imran M, Abookleesh FL, Akram MY, Ullah A. Influence of End-Capped Modifications in the Nonlinear Optical Amplitude of Nonfullerene-Based Chromophores with a D-π-A Architecture: A DFT/TDDFT Study. ACS OMEGA 2022; 7:23532-23548. [PMID: 35847337 PMCID: PMC9281312 DOI: 10.1021/acsomega.2c02052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nonlinear optical (NLO) materials have several uses in many fields such as solid physics, biology, medicine, nuclear physics, and material research. Therefore, a series of nonfullerene-based derivatives (CC10D1-CC10D8) with a D-π-A configuration was planned for the NLO investigation using CC10R as the reference molecule with structural alternations at acceptor moieties. Natural bonding orbital (NBO), UV-vis spectra, frontier molecular orbitals (FMOs), global reactivity parameters (GRPs), transition density matrix (TDM), and density of states (DOS) were analyzed using the M06/6-311G(d,p) functional in chloroform solvent to understand the NLO responses of CC10R and CC10D1-CC10D8. The highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) band gaps of CC10D1-CC10D6 were illustrated to be lower than that of CC10R, with the larger bathochromic shift (726.408-782.674 nm) resulting in a significant NLO response. Along with the band gap, the FMO method also identified an efficient interfacial charge transfer from D to A moieties via a π-bridge, which was further supported by the DOS and TDM map. Moreover, NBO calculations demonstrated that extended hyperconjugation and strong internal molecular interactions were important in their stabilization. The dipole moment (μ), linear polarizability ⟨α⟩, hyperpolarizability (βtotal), and second-order hyperpolarizability (γtotal.) were studied for CC10R and CC10D1-CC10D8. Among all of the derivatives, CC10D2 was proven to be the most appropriate candidate because of its suitable NLO behavior such as being well-supported by a reduced band gap (2.093 eV) and having a suitable maximum absorption wavelength (782.674 nm). Therefore, CC10D2 was reported to have a greater value of first hyperpolarizability (208 659.330 a.u.) compared with other derivatives and CC10R. For the second hyperpolarizability, a greater value was obtained for CC10R (5.855 × 107 a.u.), and its derivatives showed results comparable to that of the parent chromophore for γtotal. This theoretical framework reveals that structural customization with different acceptor units plays a significant role in obtaining attractive NLO materials for optoelectronic applications.
Collapse
Affiliation(s)
- Muhammad Khalid
- Research
Center for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Institute
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Maryam Zafar
- Research
Center for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Institute
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Shabbir Hussain
- Research
Center for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Institute
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Adnan Asghar
- Department
of Chemistry, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Frage Lhadi Abookleesh
- Department
of Agricultural, Food and Nutritional Science, Faculty of Agricultural,
Life and Environmental Sciences, University
of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Muhammad Yasir Akram
- Research
Center for Theoretical and Computational Research, Khwaja Fareed University of Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
- Institute
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Aman Ullah
- Department
of Agricultural, Food and Nutritional Science, Faculty of Agricultural,
Life and Environmental Sciences, University
of Alberta, Edmonton, AB T6G 2P5, Canada
| |
Collapse
|
34
|
Synthesis, spectroscopic (13C/1H-NMR, FT-IR) investigations, quantum chemical modelling (FMO, MEP, NBO analysis), and antioxidant activity of the bis-benzimidazole molecule. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132729] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
35
|
Yahya M, Kurtay G, Suvitha AR. On the Viability of Divergent Donor Moieties in Malononitrile‐Based Donor‐π‐Acceptor NLO active materials: A DFT/TD‐DFT Study. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Mohamed Yahya
- Department of Chemistry, Faculty of Science Gazi University Ankara Turkey
- Current address : Department of Chemistry University of Nevada Reno NV USA
| | - Gülbin Kurtay
- Department of Chemistry, Faculty of Science Ankara University Ankara Turkey
| | | |
Collapse
|
36
|
Ramesh G, Reddy BV. Investigation of Barrier Potential, Structure (Monomer & Dimer), Chemical Reactivity, NLO, MEP, and NPA Analysis of Pyrrole-2- Carboxaldehyde Using Quantum Chemical Calculations. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2086889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- G. Ramesh
- Department of Physics, University P.G College (Satavahana University), Godavarikhani, Telangana, India
| | | |
Collapse
|
37
|
Khan MU, Hussain S, Asghar MA, Munawar KS, Khera RA, Imran M, Ibrahim MM, Hessien MM, Mersal GAM. Exploration of Nonlinear Optical Properties for the First Theoretical Framework of Non-Fullerene DTS(FBTTh 2) 2-Based Derivatives. ACS OMEGA 2022; 7:18027-18040. [PMID: 35664583 PMCID: PMC9161415 DOI: 10.1021/acsomega.2c01474] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Organic compounds having significant nonlinear optical (NLO) applications are being employed in the optoelectronics field. In the current work, a series of non-fullerene acceptor (NFA) based compounds are designed by modifying the acceptors with different substituents using DTS(FBTTh 2 ) 2 R1 as a reference compound. To study the NLO responses to the tuning of various acceptors, DFT and TD-DFT based parameters were calculated at the M06 level along with the 6-31G(d,p) basis set. The designed compounds (MSTD2-MSTD7) showed smaller values of the energy gap in comparison to the reference compound. The energy gaps of the title compounds were linked to global reactivity insights; MSTD7 provided a lower band gap, with smaller and larger quantities for hardness and softness characteristics, respectively. Further, UV-vis analyses were performed for all of the designed compounds, displaying wavelengths red-shifted from that of DTS(FBTTh 2 ) 2 R1 . The intraelectron transfer (ICT) process and stability of the title compounds were explored via frontier molecular orbital (FMO) and natural bond orbital (NBO) studies, respectively. Out of all the designed compounds, the highest value of linear polarizability ⟨α⟩ of 3.485 × 10-22 esu, first hyperpolarizability (βtotal) of 13.44 × 10-27 esu and second-order hyperpolarizability ⟨γ⟩ of 3.66 × 10-31 esu were exhibited by MSTD7. In short, all of the designed compounds exhibited promising NLO properties because of their low charge transport resistance. These NLO properties may be useful for experimental researchers to uncover NLO materials for modern applications.
Collapse
Affiliation(s)
| | - Shabbir Hussain
- Department
of Chemistry, Khwaja Fareed University of
Engineering & Information Technology, Rahim Yar Khan 64200, Pakistan
| | - Muhammad Adnan Asghar
- Department
of Chemistry, Division of Science and Technology, University of Education Lahore 54770, Pakistan
| | | | - Rasheed Ahmad Khera
- Department
of Chemistry, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Imran
- Department
of Chemistry, Faculty of Science, King Khalid
University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Mohamed M. Ibrahim
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Mahmoud M. Hessien
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Gaber A. M. Mersal
- Department
of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| |
Collapse
|
38
|
Alwadai N, Elqahtani ZM, Khan SU, Pembere AMS, Badshah A, Mehboob MY, Nazar MF. Impact of halogens on electronic and photovoltaic properties of organic semiconductors: A multiscale computational modeling. J PHYS ORG CHEM 2022. [DOI: 10.1002/poc.4388] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Norah Alwadai
- Department of Physics College of Sciences, Princess Nourah bint Abdulrahman University Riyadh Saudi Arabia
| | - Zainab Mufarreh Elqahtani
- Department of Physics College of Sciences, Princess Nourah bint Abdulrahman University Riyadh Saudi Arabia
| | - Salah Ud‐Din Khan
- Sustainable Energy Technologies Center College of Engineering, King Saud University Riyadh Saudi Arabia
| | - Anthony M. S. Pembere
- Department of Physical Sciences Jaramogi Oginga Odinga University of Science and Technology Bondo Kenya
| | - Amir Badshah
- Department of Chemistry Kohat University of Science and Technology Kohat Pakistan
| | | | - Muhammad Faizan Nazar
- Department of Chemistry, Division of Science and Technology University of Education Lahore Multan Campus Pakistan
| |
Collapse
|
39
|
DFT investigations of AgMC 7H 10N 2 (M = Cl, Br, and I) metal organic molecules: NMR, optoelectronic, and transport properties. J Mol Model 2022; 28:136. [PMID: 35511304 DOI: 10.1007/s00894-022-05114-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/18/2022] [Indexed: 10/18/2022]
Abstract
The full-potential linearized augmented plane wave (FP-LAPW) method was used for the calculation of the structural, nuclear magnetic resonance (NMR), optoelectronic, and thermoelectric properties of AgMC7H10N2 (M = Cl, Br, and I) compounds. The calculated wide band gap of AgMC7H10N2 (M = Cl, Br, and I) metal organic molecules with the density of states approach were 3.32, 3.29, and 3.10 eV, respectively. The NMR parameters are calculated for the Ag, Cl, Br, I, C, N, O, and H elements. It is found that by decreasing bandgap, the isotropic NMR chemical shielding values of Cl, Br, and I elements increase. The strong hybridization of Ag-4d, Cl-3p, Br-4p, and I-5p states are observed at the top of the valence band. The birefringence and anisotropic properties are observed in the optical spectra with high plasmon energies, and the figure of merit, ZT, of 0.98 for AgCl(C7H10N2) compound is found at 300 K. Hence, these compounds are attractive flexible metal organic molecules for optoelectronic and transport applications.
Collapse
|
40
|
Influence of acceptor tethering on the performance of nonlinear optical properties for pyrene-based materials with A-π-D-π-D architecture. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103673] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
41
|
Saqib M, Bashir S, Ali S, Hao R. Highly selective and sensitive detection of mercury (II) and dopamine based on the efficient electrochemiluminescence of Ru(bpy)32+ with acridine orange as a coreactant. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115896] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
42
|
Mahmood A, Irfan A, Wang JL. Developing Efficient Small Molecule Acceptors with sp 2 -Hybridized Nitrogen at Different Positions by Density Functional Theory Calculations, Molecular Dynamics Simulations and Machine Learning. Chemistry 2021; 28:e202103712. [PMID: 34767281 DOI: 10.1002/chem.202103712] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Indexed: 12/29/2022]
Abstract
Chemical structure of small molecule acceptors determines their performance in organic solar cells. Multiscale simulations are necessary to avoid trial-and-error based design, ultimately to save time and resources. In current study, the effect of sp2 -hybridized nitrogen substitution at the inner or the outmost position of central core, side chain, and terminal group of small molecule acceptors is investigated using multiscale computational modelling. Quantum chemical analysis is used to study the electronic behavior. Nitrogen substitution at end-capping has significantly decreased the electron-reorganization energy. No big change is observed in transfer integral and excited state behavior. However, nitrogen substitution at terminal group position is good way to improve electron-mobility. Power conversion efficiency (PCE) of newly designed acceptors is predicted using machine learning. Molecular dynamics simulations are also performed to explore the dynamics of acceptor and their blends with PBDB-T polymer donor. Florgy-Huggins parameter is calculated to study the mixing of designed small molecule acceptors with PBDB-T. Radial distribution function has indicated that PBDB-T has a closer packing with N3 and N4. From all analysis, it is found that nitrogen substitution at end-capping group is a better strategy to design efficient small molecule acceptors.
Collapse
Affiliation(s)
- Asif Mahmood
- Department Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ahmad Irfan
- Department of Chemistry, College of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Jin-Liang Wang
- Department Key Laboratory of Cluster Science of Ministry of Education, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
43
|
Khalid M, Khan MU, -Razia ET, Shafiq Z, Alam MM, Imran M, Akram MS. Exploration of efficient electron acceptors for organic solar cells: rational design of indacenodithiophene based non-fullerene compounds. Sci Rep 2021; 11:19931. [PMID: 34620948 PMCID: PMC8497501 DOI: 10.1038/s41598-021-99254-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022] Open
Abstract
The global need for renewable sources of energy has compelled researchers to explore new sources and improve the efficiency of the existing technologies. Solar energy is considered to be one of the best options to resolve climate and energy crises because of its long-term stability and pollution free energy production. Herein, we have synthesized a small acceptor compound (TPDR) and have utilized for rational designing of non-fullerene chromophores (TPD1-TPD6) using end-capped manipulation in A2-A1-D-A1-A2 configuration. The quantum chemical study (DFT/TD-DFT) was used to characterize the effect of end group redistribution through frontier molecular orbital (FMO), optical absorption, reorganization energy, open circuit voltage (Voc), photovoltaic properties and intermolecular charge transfer for the designed compounds. FMO data exhibited that TPD5 had the least ΔE (1.71 eV) with highest maximum absorption (λmax) among all compounds due to the four cyano groups as the end-capped acceptor moieties. The reorganization energies of TPD1-TPD6 hinted at credible electron transportation due to the lower values of λe than λh. Furthermore, open circuit voltage (Voc) values showed similar amplitude for all compounds including parent chromophore, except TPD4 and TPD5 compounds. These designed compounds with unique end group acceptors have the potential to be used as novel fabrication materials for energy devices.
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | | | - Eisha-Tul -Razia
- Department of Chemistry, Khwaja Fareed University of Engineering and Information Technology, Rahim Yar Khan, 64200, Pakistan
| | - Zahid Shafiq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, 60800, Pakistan
| | - Mohammed Mujahid Alam
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Muhammad Imran
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Muhammad Safwan Akram
- School of Health and Life Sciences, Teesside University, Middlesbrough, TS1 3BX, UK.
- National Horizons Centre, Teesside University, Darlington, DL1 1HG, UK.
| |
Collapse
|
44
|
Khan MU, Khalid M, Shafiq I, Khera RA, Shafiq Z, Jawaria R, Shafiq M, Alam MM, Braga AAC, Imran M, Kanwal F, Xu Z, Lu C. Theoretical investigation of nonlinear optical behavior for rod and T-Shaped phenothiazine based D-π-A organic compounds and their derivatives. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Siddiqui SA. DFT and TD-DFT Analysis for the Modeling of Efficient Organic Light Emitting Diode (OLED). RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2021. [DOI: 10.1134/s0036024421070232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
46
|
Urino H, Kodaira A, Takahashi H, Pac C, Fujii S, Kanaizuka K, Moriyama H. Construction of Ultrathin Layer-by-Layer Films of Oligothiophene Derivatives on an Electrode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:978-982. [PMID: 33412853 DOI: 10.1021/acs.langmuir.0c03549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Oligothiophene derivatives, which are known as p-type materials, have been synthesized, and their ultrathin layer-by-layer films have been constructed on an electrode using a simple and convenient dipping method. The stepwise deposition behavior of quaterthiophene and sexithiophene derivatives on the electrode via hydrogen bonding was monitored by electronic spectra measurement, and the constructed films were evaluated by X-ray photoelectron spectroscopy, grazing-incidence small-angle X-ray scattering, and cyclic voltammetry. It has been clarified that the constructed layer-by-layer films were electroactive and photoelectroactive.
Collapse
Affiliation(s)
- Hiroto Urino
- Department of Chemistry, Toho University, Miyama 2-2-1, Funabashi, 274-8510, Japan
| | - Akira Kodaira
- Department of Chemistry, Toho University, Miyama 2-2-1, Funabashi, 274-8510, Japan
| | - Hiromi Takahashi
- System Instruments Co., Ltd., 776-2, Komiya-cho, Hachioji-shi, Tokyo 192-0031, Japan
| | - Chongjin Pac
- Department of Materials Chemistry, Korea University, Sejong Jochiwon, Chung-Nam 339-700, Korea
| | - Sho Fujii
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita-10, Nishi-8, Kita-ku, Sapporo 060-0810, Japan
| | - Katsuhiko Kanaizuka
- Faculty of Science, Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560, Japan
| | - Hiroshi Moriyama
- Department of Chemistry, Toho University, Miyama 2-2-1, Funabashi, 274-8510, Japan
- Faculty of Science, Yamagata University, Kojirakawa 1-4-12, Yamagata 990-8560, Japan
| |
Collapse
|
47
|
Khalid M, Ali A, Jawaria R, Asghar MA, Asim S, Khan MU, Hussain R, Fayyaz ur Rehman M, Ennis CJ, Akram MS. First principles study of electronic and nonlinear optical properties of A–D–π–A and D–A–D–π–A configured compounds containing novel quinoline–carbazole derivatives. RSC Adv 2020; 10:22273-22283. [PMID: 35516655 PMCID: PMC9054527 DOI: 10.1039/d0ra02857f] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 05/19/2020] [Indexed: 01/09/2023] Open
Abstract
Materials with nonlinear optical (NLO) properties have significant applications in different fields, including nuclear science, biophysics, medicine, chemical dynamics, solid physics, materials science and surface interface applications. Quinoline and carbazole, owing to their electron-deficient and electron-rich character respectively, play a role in charge transfer applications in optoelectronics. Therefore, an attempt has been made herein to explore quinoline–carbazole based novel materials with highly nonlinear optical properties. Structural tailoring has been made at the donor and acceptor units of two recently synthesized quinoline–carbazole molecules (Q1, Q2) and acceptor–donor–π–acceptor (A–D–π–A) and donor–acceptor–donor–π–acceptor (D–A–D–π–A) type novel molecules Q1D1–Q1D3 and Q2D2–Q2D3 have been quantum chemically designed, respectively. Density functional theory (DFT) and time-dependent density functional theory (TDDFT) computations are performed to process the impact of acceptor and donor units on photophysical, electronic and NLO properties of selected molecules. The λmax values (321 and 319 nm) for Q1 and Q2 in DSMO were in good agreement with the experimental values (326 and 323 nm). The largest shift in absorption maximum is displayed by Q1D2 (436 nm). The designed compounds (Q1D3–Q2D3) express absorption spectra with an increased border and with a reduced band gap compared to the parent compounds (Q1 and Q2). Natural bond orbital (NBO) investigations showed that the extended hyper conjugation and strong intramolecular interaction play significant roles in stabilising these systems. All molecules expressed significant NLO responses. A large value of βtot was elevated in Q1D2 (23 885.90 a.u.). This theoretical framework reveals the NLO response properties of novel quinoline–carbazole derivatives that can be significant for their use in advanced applications. Materials with nonlinear optical properties have significant applications in nuclear science, biophysics, medicine, chemical dynamics, solid physics & materials science. We show how π bridges, donors & acceptors can be reconfigured to improve optical properties.![]()
Collapse
Affiliation(s)
- Muhammad Khalid
- Department of Chemistry
- Khawaja Fareed University of Engineering & Information Technology
- Rahim Yar Khan
- Pakistan
| | - Akbar Ali
- Department of Chemistry
- University of Sargodha
- Sargodha 40100
- Pakistan
| | - Rifat Jawaria
- Department of Chemistry
- Khawaja Fareed University of Engineering & Information Technology
- Rahim Yar Khan
- Pakistan
| | | | - Sumreen Asim
- Department of Chemistry
- Khawaja Fareed University of Engineering & Information Technology
- Rahim Yar Khan
- Pakistan
| | | | - Riaz Hussain
- Department of Chemistry
- University of Okara
- Okara-56300
- Pakistan
| | | | | | - Muhammad Safwan Akram
- School of Health and Life Sciences
- Teesside University
- Middlesbrough
- UK
- National Horizons Centre
| |
Collapse
|
48
|
|
49
|
A Quarterthiophene-Based Dye as an Efficient Interface Modifier for Hybrid Titanium Dioxide/Poly(3-hexylthiophene)(P3HT) Solar Cells. Polymers (Basel) 2019; 11:polym11111752. [PMID: 31731443 PMCID: PMC6918415 DOI: 10.3390/polym11111752] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 10/20/2019] [Accepted: 10/22/2019] [Indexed: 11/20/2022] Open
Abstract
This work focused on studying the influence of dyes, including a thiophene derivative dye with a cyanoacrylic acid group ((E)-2-cyano-3-(3′,3′′,3′′′-trihexyl-[2,2′:5′,2′′:5′′,2′′′- quaterthiophene]-5-yl) acrylicacid)(4T), on the photovoltaic performance of titanium dioxide (TiO2)/poly(3-hexyl thiophene)(P3HT) solar cells. The insertion of dye at the interface improved the efficiency regardless of the dye used. However, 4T dye significantly improved the efficiency by a factor of three when compared to the corresponding control. This improvement is mainly due to an increase in short circuit current density (JSC), which is consistent with higher hole-mobility reported in TiO2/P3HT nanocomposite with 4T dye. Optical absorption data further revealed that 4T extended the spectral response of the TiO2/P3HT nanocomposite, which could also enhance the JSC. The reduced dark current upon dye insertion ensured the carrier recombination was controlled at the interface. This, in turn, increased the open circuit voltage. An optimized hybrid TiO2/P3HT device with 4T dye as an interface modifier showed an average efficiency of over 2% under-simulated irradiation of 100 mWcm−2 (1 sun) with an Air Mass 1.5 filter.
Collapse
|
50
|
Irfan A. Comparison of mono- and di-substituted triphenylamine and carbazole based sensitizers @(TiO2)38 cluster for dye-sensitized solar cells applications. COMPUT THEOR CHEM 2019. [DOI: 10.1016/j.comptc.2019.04.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|