1
|
De Faveri C, Mattheisen JM, Sakmar TP, Coin I. Noncanonical Amino Acid Tools and Their Application to Membrane Protein Studies. Chem Rev 2024; 124:12498-12550. [PMID: 39509680 PMCID: PMC11613316 DOI: 10.1021/acs.chemrev.4c00181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 11/15/2024]
Abstract
Methods rooted in chemical biology have contributed significantly to studies of integral membrane proteins. One recent key approach has been the application of genetic code expansion (GCE), which enables the site-specific incorporation of noncanonical amino acids (ncAAs) with defined chemical properties into proteins. Efficient GCE is challenging, especially for membrane proteins, which have specialized biogenesis and cell trafficking machinery and tend to be expressed at low levels in cell membranes. Many eukaryotic membrane proteins cannot be expressed functionally in E. coli and are most effectively studied in mammalian cell culture systems. Recent advances have facilitated broader applications of GCE for studies of membrane proteins. First, AARS/tRNA pairs have been engineered to function efficiently in mammalian cells. Second, bioorthogonal chemical reactions, including cell-friendly copper-free "click" chemistry, have enabled linkage of small-molecule probes such as fluorophores to membrane proteins in live cells. Finally, in concert with advances in GCE methodology, the variety of available ncAAs has increased dramatically, thus enabling the investigation of protein structure and dynamics by multidisciplinary biochemical and biophysical approaches. These developments are reviewed in the historical framework of the development of GCE technology with a focus on applications to studies of membrane proteins.
Collapse
Affiliation(s)
- Chiara De Faveri
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| | - Jordan M. Mattheisen
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
- Tri-Institutional
PhD Program in Chemical Biology, New York, New York 10065, United States
| | - Thomas P. Sakmar
- Laboratory
of Chemical Biology and Signal Transduction, The Rockefeller University, New York, New York 10065, United States
| | - Irene Coin
- Faculty
of Life Science, Institute of Biochemistry, Leipzig University, Leipzig 04103, Germany
| |
Collapse
|
2
|
Cory MB, Jones CM, Shaffer KD, Venkatesh Y, Giannakoulias S, Perez RM, Lougee MG, Hummingbird E, Pagar VV, Hurley CM, Li A, Mach RH, Kohli RM, Petersson EJ. FRETing about the details: Case studies in the use of a genetically encoded fluorescent amino acid for distance-dependent energy transfer. Protein Sci 2023; 32:e4633. [PMID: 36974585 PMCID: PMC10108435 DOI: 10.1002/pro.4633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
Förster resonance energy transfer (FRET) is a valuable method for monitoring protein conformation and biomolecular interactions. Intrinsically fluorescent amino acids that can be genetically encoded, such as acridonylalanine (Acd), are particularly useful for FRET studies. However, quantitative interpretation of FRET data to derive distance information requires careful use of controls and consideration of photophysical effects. Here we present two case studies illustrating how Acd can be used in FRET experiments to study small molecule induced conformational changes and multicomponent biomolecular complexes.
Collapse
Affiliation(s)
- Michael B. Cory
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Chloe M. Jones
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Kyle D. Shaffer
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Yarra Venkatesh
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Sam Giannakoulias
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Ryann M. Perez
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Marshall G. Lougee
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Eshe Hummingbird
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Vinayak V. Pagar
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Christina M. Hurley
- Graduate Group in Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Allen Li
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Robert H. Mach
- Department of RadiologyPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - Rahul M. Kohli
- Department of Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
- Department of MedicinePerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| | - E. James Petersson
- Department of ChemistrySchool of Arts and Sciences, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
- Department of Biochemistry and BiophysicsPerelman School of Medicine, University of PennsylvaniaPhiladelphiaPennsylvania19104USA
| |
Collapse
|
3
|
Araki Y, Shirakata H, Nakagawa T, Ubukata T, Yokoyama Y, Kawamura I. Fluorescent hydrogel based on self-assembling acridonylalanine-phenylalanine. CHEM LETT 2022. [DOI: 10.1246/cl.220170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuzuha Araki
- Graduate School of Engineering Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Hiroki Shirakata
- Graduate School of Engineering Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Tetsuya Nakagawa
- Graduate School of Engineering Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
- Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Takashi Ubukata
- Graduate School of Engineering Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
- Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Yasushi Yokoyama
- Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| | - Izuru Kawamura
- Graduate School of Engineering Science, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
- Graduate School of Engineering, Yokohama National University, 79-5, Tokiwadai, Hodogaya, Yokohama 240-8501, Japan
| |
Collapse
|
4
|
Cory MB, Hostetler ZM, Kohli RM. Kinetic dissection of macromolecular complex formation with minimally perturbing fluorescent probes. Methods Enzymol 2022; 664:151-171. [PMID: 35331372 DOI: 10.1016/bs.mie.2022.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The formation of macromolecular complexes containing multiple protein binding partners is at the core of many biochemical pathways. Studying the kinetics of complex formation can offer significant biological insights and complement static structural snapshots or approaches that reveal thermodynamic affinities. However, determining the kinetics of macromolecular complex formation can be difficult without significant manipulations to the system. Fluorescence anisotropy using a fluorophore-labeled constituent of the biologic complex offers potential advantages in obtaining time-resolved signals tracking complex assembly. However, an inherent challenge of traditional post-translational protein labeling is the orthogonality of labeling chemistry with regards to protein target and the potential disruption of complex formation. In this chapter, we will discuss the application of unnatural amino acid labeling as a means for generating a minimally perturbing reporter. We then describe the use of fluorescence anisotropy to define the kinetics of complex formation, using the key protein-protein-nucleic acid complex governing the bacterial DNA damage response-RecA nucleoprotein filaments binding to LexA-as a model system. We will also show how this assay can be expanded to ask questions about the kinetics of complex formation for unlabeled variants, thus assessing assembly kinetics in more native contexts and broadening its utility. We discuss the optimization process for our model system and offer guidelines for applying the same principles to other macromolecular systems.
Collapse
Affiliation(s)
- Michael B Cory
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Zachary M Hostetler
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Rahul M Kohli
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
5
|
Wang L, Wang S, Tang J, Espinoza VB, Loredo A, Tian Z, Weisman RB, Xiao H. Oxime as a general photocage for the design of visible light photo-activatable fluorophores. Chem Sci 2021; 12:15572-15580. [PMID: 35003586 PMCID: PMC8654061 DOI: 10.1039/d1sc05351e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/21/2021] [Indexed: 12/18/2022] Open
Abstract
Photoactivatable fluorophores have been widely used for tracking molecular and cellular dynamics with subdiffraction resolution. In this work, we have prepared a series of photoactivatable probes using the oxime moiety as a new class of photolabile caging group in which the photoactivation process is mediated by a highly efficient photodeoximation reaction. Incorporation of the oxime caging group into fluorophores results in loss of fluorescence. Upon light irradiation in the presence of air, the oxime-caged fluorophores are oxidized to their carbonyl derivatives, restoring strong fluorophore fluorescence. To demonstrate the utility of these oxime-caged fluorophores, we have created probes that target different organelles for live-cell confocal imaging. We also carried out photoactivated localization microscopy (PALM) imaging under physiological conditions using low-power light activation in the absence of cytotoxic additives. Our studies show that oximes represent a new class of visible-light photocages that can be widely used for cellular imaging, sensing, and photo-controlled molecular release.
Collapse
Affiliation(s)
- Lushun Wang
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Shichao Wang
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Juan Tang
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Vanessa B Espinoza
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Axel Loredo
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Zeru Tian
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - R Bruce Weisman
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
| | - Han Xiao
- Department of Chemistry, Rice University 6100 Main Street Houston Texas 77005 USA
- Department of Biosciences, Rice University 6100 Main Street Houston Texas 77005 USA
- Department of Bioengineering, Rice University 6100 Main Street Houston Texas 77005 USA
| |
Collapse
|
6
|
Jones CM, Robkis DM, Blizzard RJ, Munari M, Venkatesh Y, Mihaila TS, Eddins AJ, Mehl RA, Zagotta WN, Gordon SE, Petersson EJ. Genetic encoding of a highly photostable, long lifetime fluorescent amino acid for imaging in mammalian cells. Chem Sci 2021; 12:11955-11964. [PMID: 34976337 PMCID: PMC8634729 DOI: 10.1039/d1sc01914g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/18/2021] [Indexed: 01/28/2023] Open
Abstract
Acridonylalanine (Acd) is a fluorescent amino acid that is highly photostable, with a high quantum yield and long fluorescence lifetime in water. These properties make it superior to existing genetically encodable fluorescent amino acids for monitoring protein interactions and conformational changes through fluorescence polarization or lifetime experiments, including fluorescence lifetime imaging microscopy (FLIM). Here, we report the genetic incorporation of Acd using engineered pyrrolysine tRNA synthetase (RS) mutants that allow for efficient Acd incorporation in both E. coli and mammalian cells. We compare protein yields and amino acid specificity for these Acd RSs to identify an optimal construct. We also demonstrate the use of Acd in FLIM, where its long lifetime provides strong contrast compared to endogenous fluorophores and engineered fluorescent proteins, which have lifetimes less than 5 ns.
Collapse
Affiliation(s)
- Chloe M Jones
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania 3700 Hamilton Walk Philadelphia PA 19104 USA
| | - D Miklos Robkis
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania 3700 Hamilton Walk Philadelphia PA 19104 USA
| | - Robert J Blizzard
- Department of Biochemistry and Biophysics, Oregon State University 2011 Ag Life Sciences Building Corvallis Oregon 97331 USA
| | - Mika Munari
- Department of Physiology and Biophysics, University of Washington 1705 NE Pacific St., Box 357290 Seattle WA 98195 USA
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Tiberiu S Mihaila
- Department of Chemistry, University of Pennsylvania 231 South 34th Street Philadelphia PA 19104 USA
| | - Alex J Eddins
- Department of Biochemistry and Biophysics, Oregon State University 2011 Ag Life Sciences Building Corvallis Oregon 97331 USA
| | - Ryan A Mehl
- Department of Biochemistry and Biophysics, Oregon State University 2011 Ag Life Sciences Building Corvallis Oregon 97331 USA
| | - William N Zagotta
- Department of Physiology and Biophysics, University of Washington 1705 NE Pacific St., Box 357290 Seattle WA 98195 USA
| | - Sharona E Gordon
- Department of Physiology and Biophysics, University of Washington 1705 NE Pacific St., Box 357290 Seattle WA 98195 USA
| | - E James Petersson
- Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania 3700 Hamilton Walk Philadelphia PA 19104 USA
| |
Collapse
|
7
|
Jones CM, Petersson GA, Petersson EJ. Synthesis and characterization of fluorescent amino acid dimethylaminoacridonylalanine. ARKIVOC 2021; 2021:97-109. [PMID: 33967634 PMCID: PMC8104435 DOI: 10.24820/ark.5550190.p011.498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Fluorescent amino acids are powerful biophysical tools as they can be used in structural or imaging studies of a given protein without significantly perturbing its native fold or function. Here, we have synthesized and characterized 7-(dimethylamino)acridon-2-ylalanine (Dad), a red-shifted derivative of the genetically-incorporable amino acid, acridon-2-ylalanine. Alkylation increases the quantum yield and fluorescence lifetime of Dad relative to a previously published amino acid, 7-aminoacridon-2-ylalanine (Aad). These properties of Dad make it a potentially valuable protein label, and we have performed initial testing of its ability to be genetically incorporated using an evolved aminoacyl tRNA synthetase.
Collapse
Affiliation(s)
- Chloe M Jones
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, Pennsylvania 19104-6323, USA
- Biochemistry and Molecular Biophysics Graduate Group; University of Pennsylvania; 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| | - George A Petersson
- Temple University Institute for Computational Molecular Science, 1925 N. 12th Street, Philadelphia, PA 19122, USA
| | - E James Petersson
- Department of Chemistry; University of Pennsylvania; 231 South 34th Street; Philadelphia, Pennsylvania 19104-6323, USA
| |
Collapse
|
8
|
Boaro A, Ageitos L, Torres M, Bartoloni FH, de la Fuente-Nunez C. Light-Emitting Probes for Labeling Peptides. CELL REPORTS. PHYSICAL SCIENCE 2020; 1:100257. [PMID: 34396352 PMCID: PMC8360326 DOI: 10.1016/j.xcrp.2020.100257] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Peptides are versatile biopolymers composed of 2-100 amino acid residues that present a wide range of biological functions and constitute potential therapies for numerous diseases, partly due to their ability to penetrate cell membranes. However, their mechanisms of action have not been fully elucidated due to the lack of appropriate tools. Existing light-emitting probes are limited by their cytotoxicity and large size, which can alter peptide structure and function. Here, we describe the available fluorescent, bioluminescent, and chemiluminescent probes for labeling peptides, with a focus on minimalistic options.
Collapse
Affiliation(s)
- Andreia Boaro
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| | - Lucía Ageitos
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
- Centro de Investigacións Científicas Avanzadas (CICA) e Departamento de Química, Facultade de Ciencias, Universidade da Coruña, Calle de la Maestranza, 9, A Coruña 15071, Spain
| | - Marcelo Torres
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | - Fernando Heering Bartoloni
- Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, Avenida dos Estados, 5001, Santo André, São Paulo 09210-580, Brazil
| | - Cesar de la Fuente-Nunez
- Machine Biology Group, Departments of Psychiatry and Microbiology, Institute for Biomedical Informatics, Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, and Department of Bioengineering, University of Pennsylvania, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
Yoon J, Ferrie JJ, Petersson EJ. Improved Modeling of Thioamide FRET Quenching by Including Conformational Restriction and Coulomb Coupling. J Phys Chem B 2020; 124:10653-10662. [PMID: 33196192 DOI: 10.1021/acs.jpcb.0c06865] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Thioamide-containing amino acids have been shown to quench a wide range of fluorophores through distinct mechanisms. Here, we quantitatively analyze the mechanism through which the thioamide functional group quenches the fluorescence of p-cyanophenylalanine (Cnf), tyrosine (Tyr), and tryptophan (Trp). By comparing PyRosetta simulations to published experiments performed on polyproline ruler peptides, we corroborate previous findings that both Cnf and Tyr quenching occurs via Förster resonance energy transfer (FRET), while Trp quenching occurs through an alternate mechanism such as Dexter transfer. Additionally, optimization of the peptide sampling scheme and comparison of thioamides attached to the peptide backbone and side chain revealed that the significant conformational restriction associated with the thioamide moiety results in a high sensitivity of the apparent FRET efficiency to underlying conformational differences. Moreover, by computing FRET efficiencies from structural models using a variety of approaches, we find that quantitative accuracy in the role of Coulomb coupling is required to explain contributions to the observed quenching efficiency from individual structures on a detailed level. Last, we demonstrate that these additional considerations improve our ability to predict thioamide quenching efficiencies observed during binding of thioamide-labeled peptides to fluorophore-labeled variants of calmodulin.
Collapse
Affiliation(s)
- Jimin Yoon
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - John J Ferrie
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
10
|
Petersson GA, Frisch MJ, Dobek F, Zulueta B. Three-Body Dispersion Corrections to the Spherical Atom Model: The PFD-3B Density Functional. J Phys Chem A 2020; 124:10296-10311. [DOI: 10.1021/acs.jpca.0c05940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- George A. Petersson
- Institute for Computational Molecular Science, Temple University, 1925 N. 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Michael J. Frisch
- Gaussian, Inc., 340 Quinnipiac Street Building 40, Wallingford, Connecticut 06492, United States
| | - Frank Dobek
- Hall-Atwater Laboratories of Chemistry, Wesleyan University, Middletown, Connecticut 06459, United States
| | - Barbaro Zulueta
- Institute for Computational Molecular Science, Temple University, 1925 N. 12th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|
11
|
Chu JH, Su ZH, Yen KW, Chien HI. Investigation of Stepwise and Stoichiometric Palladium-Mediated ortho-C–H Bond Arylation and Alkylation of 9(10 H)-Acridinone. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jean-Ho Chu
- Department of Applied Science, National Taitung University, Taitung 95092, Taiwan
| | - Zhe-Hong Su
- Department of Applied Science, National Taitung University, Taitung 95092, Taiwan
| | - Ko-Wang Yen
- Department of Applied Science, National Taitung University, Taitung 95092, Taiwan
| | - Hsuan-I Chien
- Department of Applied Science, National Taitung University, Taitung 95092, Taiwan
| |
Collapse
|
12
|
Gao H, Zhang G. Synthesis, Structure and Properties of Fused π‐Extended Acridone Derivatives. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000871] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Hongshuai Gao
- Jiangsu Co‐Innovation Center for Efficient Processing and Utilization of Forest Products College of Chemical Engineering Nanjing Forestry University Longpan Road 159 210037 Nanjing P. R. China
| | - Gang Zhang
- Jiangsu Co‐Innovation Center for Efficient Processing and Utilization of Forest Products College of Chemical Engineering Nanjing Forestry University Longpan Road 159 210037 Nanjing P. R. China
| |
Collapse
|
13
|
Jun JV, Chenoweth DM, Petersson EJ. Rational design of small molecule fluorescent probes for biological applications. Org Biomol Chem 2020; 18:5747-5763. [PMID: 32691820 PMCID: PMC7453994 DOI: 10.1039/d0ob01131b] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Fluorescent small molecules are powerful tools for visualizing biological events, embodying an essential facet of chemical biology. Since the discovery of the first organic fluorophore, quinine, in 1845, both synthetic and theoretical efforts have endeavored to "modulate" fluorescent compounds. An advantage of synthetic dyes is the ability to employ modern organic chemistry strategies to tailor chemical structures and thereby rationally tune photophysical properties and functionality of the fluorophore. This review explores general factors affecting fluorophore excitation and emission spectra, molar absorption, Stokes shift, and quantum efficiency; and provides guidelines for chemist to create novel probes. Structure-property relationships concerning the substituents are discussed in detail with examples for several dye families. We also present a survey of functional probes based on PeT, FRET, and environmental or photo-sensitivity, focusing on representative recent work in each category. We believe that a full understanding of dyes with diverse chemical moieties enables the rational design of probes for the precise interrogation of biochemical and biological phenomena.
Collapse
Affiliation(s)
- Joomyung V Jun
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA. and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - David M Chenoweth
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA.
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, PA 19104, USA. and Department of Biochemistry and Molecular Biophysics, Perelman School of Medicine, University of Pennsylvania, 3700 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Abstract
Site-specific protein labeling can be used to monitor protein motions and interactions in real time using Förster resonance energy transfer (FRET). While there are many fluorophores available for protein labeling, few FRET pairs are suitable for monitoring intramolecular protein motions without being disruptive to protein folding and function. Here, we describe the synthesis and use of a minimally perturbing FRET pair comprised of methoxycoumarin maleimide (Mcm-Mal) and acridonylalanine (Acd). Acd can be incorporated into a protein through unnatural amino acid mutagenesis. Mcm-Mal is fluorogenic when reacted with cysteine and can label cysteine/Acd double mutant proteins. This labeling strategy provides an easy to install FRET pair with a working range or 15-40Å, making it ideal for monitoring most intramolecular motions. Additionally, Mcm/Acd FRET can be combined with tryptophan fluorescence for monitoring multiple protein motions via three color FRET.
Collapse
Affiliation(s)
- Chloe M Jones
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States; Biochemistry and Molecular Biophysics Graduate Group, University of Pennsylvania, Philadelphia, PA, United States
| | - Yarra Venkatesh
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States
| | - E James Petersson
- Department of Chemistry, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
15
|
Wilhelm MJ, Petersson GA, Smith JM, Behrendt D, Ma J, Letendre L, Dai HL. UV Photolysis of Pyrazine and the Production of Hydrogen Isocyanide. J Phys Chem A 2018; 122:9001-9013. [DOI: 10.1021/acs.jpca.8b09179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Michael J. Wilhelm
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - George A. Petersson
- Institute for Computational Molecular Science, Temple University, 1925 North 12th Street, Philadelphia, Pennsylvania 19122, United States
| | - Jonathan M. Smith
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Drew Behrendt
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Jianqiang Ma
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| | - Laura Letendre
- Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104, United States
| | - Hai-Lung Dai
- Department of Chemistry, Temple University, 1901 North 13th Street, Philadelphia, Pennsylvania 19122, United States
| |
Collapse
|