1
|
Shainyan BA. Conjugative Stabilization versus Anchimeric Assistance in Carbocations. Molecules 2022; 28:molecules28010038. [PMID: 36615233 PMCID: PMC9822469 DOI: 10.3390/molecules28010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/16/2022] [Accepted: 12/18/2022] [Indexed: 12/24/2022] Open
Abstract
In this study, an old concept of anchimeric assistance is viewed from a different angle. Primary cations with two different heteroatomic substituents in the α-position to the cationic carbon atom CHXY−CH2+ (X, Y = Me2N, MeO, Me3Si, Me2P, MeS, MeS, Br) can be stabilized by the migration of either the X or Y group to the cation center. In each case, the migration can be either complete, resulting in the transfer of the migrating group to the adjacent carbon atom and the formation of a secondary carbocation stabilized by the remaining heteroatom, or incomplete, leading to an anchimerically assisted iranium ion. For all combinations of the above groups, these transformations have been studied by theoretical analysis at the MP2/aug-cc-pVTZ level and were shown to occur depending on the ability of anchimeric assistance by X and Y, as well as the conformation of the starting primary carbocation. In the conformers of α-amino cations with the p-orbital, C−N bond and the nitrogen lone pair in one plane, the Me2N group migrates to the cationic center to give aziranium ions. Otherwise, the second heteroatom is shifted to give iminium ions, without or with very slight anchimeric assistance. In the α-methoxy cations, the MeO group can be shifted to the cationic center to give the O-anchimerically assisted ions as local minima, the global minima being the ions anchimerically assisted by another heteroatom. The electropositive silicon tends to migrate towards the cationic center, but with the formation of a π-complex of the Me3Si cation with the C=C bond rather than a Si-anchimerically assisted cation. The phosphorus atom can either fully migrate to the cationic center (X = P, Y = S, Se) or form anchimerically stabilized phosphiranium ions (X = P, Y = O, Si, Br). The order of the anchimeric assistance for the heaviest atoms decreases in the order Se >> S > Br.
Collapse
Affiliation(s)
- Bagrat A Shainyan
- A.E. Favorsky Irkutsk Institute of Chemistry, Siberian Branch, Russian Academy of Sciences, 1 Favorsky Str., 664033 Irkutsk, Russia
| |
Collapse
|
2
|
Bitew M, Desalegn T, Demissie TB, Belayneh A, Endale M, Eswaramoorthy R. Pharmacokinetics and drug-likeness of antidiabetic flavonoids: Molecular docking and DFT study. PLoS One 2021; 16:e0260853. [PMID: 34890431 PMCID: PMC8664201 DOI: 10.1371/journal.pone.0260853] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/17/2021] [Indexed: 11/18/2022] Open
Abstract
Computer aided toxicity and pharmacokinetic prediction studies attracted the attention of pharmaceutical industries as an alternative means to predict potential drug candidates. In the present study, in-silico pharmacokinetic properties (ADME), drug-likeness, toxicity profiles of sixteen antidiabetic flavonoids that have ideal bidentate chelating sites for metal ion coordination were examined using SwissADME, Pro Tox II, vNN and ADMETlab web tools. Density functional theory (DFT) calculations were also employed to calculate quantum chemical descriptors of the compounds. Molecular docking studies against human alpha amylase were also conducted. The results were compared with the control drugs, metformin and acarbose. The drug-likeness prediction results showed that all flavonoids, except myricetin, were found to obey Lipinski's rule of five for their drug like molecular nature. Pharmacokinetically, chrysin, wogonin, genistein, baicalein, and apigenin showed best absorption profile with human intestinal absorption (HIA) value of ≥ 30%, compared to the other flavonoids. Baicalein, butein, ellagic acid, eriodyctiol, Fisetin and quercetin were predicted to show carcinogenicity. The flavonoid derivatives considered in this study are predicted to be suitable molecules for CYP3A probes, except eriodyctiol which interacts with P-glycoprotein (p-gp). The toxicological endpoints prediction analysis showed that the median lethal dose (LD50) values range from 159-3919 mg/Kg, of which baicalein and quercetin are found to be mutagenic whereas butein is found to be the only immunotoxin. Molecular docking studies showed that the significant interaction (-7.5 to -8.3 kcal/mol) of the studied molecules in the binding pocket of the α-amylase protein relative to the control metformin with the crucial amino acids Asp 197, Glu 233, Asp 197, Glu 233, Trp 59, Tyr 62, His 101, Leu 162, Arg 195, His 299 and Leu 165. Chrysin was predicted to be a ligand with high absorption and lipophilicity with 84.6% absorption compared to metformin (78.3%). Moreover, quantum chemical, ADMET, drug-likeness and molecular docking profiles predicted that chrysin is a good bidentate ligand.
Collapse
Affiliation(s)
- Mamaru Bitew
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Tegene Desalegn
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Taye B. Demissie
- Department of Chemistry, University of Botswana, Gaborone, Botswana
| | - Anteneh Belayneh
- Department of Pharmacy, College of Health Science, Debre Markos University, Debre Markos, Ethiopia
| | - Milkyas Endale
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
| | - Rajalakshmanan Eswaramoorthy
- Department of Applied Chemistry, School of Applied Natural Science, Adama Science and Technology University, Adama, Ethiopia
- Department of Biomaterials, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| |
Collapse
|
3
|
Dubost E, McErlain H, Babin V, Sutherland A, Cailly T. Recent Advances in Synthetic Methods for Radioiodination. J Org Chem 2020; 85:8300-8310. [PMID: 32369696 DOI: 10.1021/acs.joc.0c00644] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Organic compounds bearing radioisotopes of iodine are widely used for biological research, diagnostic imaging, and radiotherapy. Early reported synthetic methods for the incorporation of radioiodine have generally involved high temperature reactions or strongly oxidizing conditions. To overcome these limitations and to cope with the demand for novel radioiodinated probes, there has been a surge in the development of new synthetic methodology for radioiodination. This synopsis describes the key transformations developed recently.
Collapse
Affiliation(s)
- Emmanuelle Dubost
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Holly McErlain
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Victor Babin
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France
| | - Andrew Sutherland
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Thomas Cailly
- Normandie Univ, UNICAEN, Centre d'Etudes et de Recherche sur le Médicament de Normandie (CERMN), 14000 Caen, France.,Normandie Univ, UNICAEN, IMOGERE, 14000 Caen, France.,Department of Nuclear Medicine, CHU Côte de Nacre, 14000 Caen, France
| |
Collapse
|
4
|
Fjellaksel R, Moldes-Anaya A, Vasskog T, Oteiza A, Martin-Armas M, Hjelstuen OK, Hansen JH, Riss PJ, Sundset R. Evaluation by metabolic profiling and in vitro autoradiography of two promising GnRH-receptor ligands for brain SPECT imaging. J Labelled Comp Radiopharm 2020; 63:72-84. [PMID: 31813158 DOI: 10.1002/jlcr.3820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 10/04/2019] [Accepted: 12/03/2019] [Indexed: 11/07/2022]
Abstract
The increased expression of gonadotropin releasing hormone receptor (GnRH-R) in brain has been strongly linked to Alzheimer disease. Therefore, the development of radiolabeled imaging agents for GnRH-R is relevant for early diagnosis of Alzheimer disease. We have recently disclosed the discovery of two promising compounds displaying nanomolar-range affinity for the GnRH-R. In the present study, a preclinical evaluation of the compound properties was performed to evaluate their potential as single photon emission computed tomography (SPECT) radiotracers for imaging the GnRH-receptor. The compounds were assessed in vitro by performing serum stability analysis by human and rat serum, metabolic profiling by human liver microsomes, and exploratory rat brain autoradiography. The investigated compounds displayed satisfactory stability against human, rat serum, and liver microsomal metabolism, which favors their potential as SPECT-imaging agents. Additionally, we identified and quantified the formation rate of the metabolites by fragmentation of up to five mass spectrometric stages. The GnRH-R rat brain specificity of these compounds was tested in competition with a known ligand for the receptor and the in vitro autoradiography confirmed that compounds 3 and 4 binds to rat GnRH-R in different rat brain regions.
Collapse
Affiliation(s)
- Richard Fjellaksel
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Organic Chemistry Research Group, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| | - Angel Moldes-Anaya
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
- Pharmacology Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Neurobiology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
| | - Terje Vasskog
- Natural Products and Medicinal Chemistry Research group, UiT The Arctic University of Norway, Tromsø, Norway
| | - Ana Oteiza
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| | - Montserrat Martin-Armas
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| | - Ole Kristian Hjelstuen
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jørn H Hansen
- Organic Chemistry Research Group, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Patrick J Riss
- Department of Neuropsychiatry and Psychosomatic Medicine, Oslo University Hospital, Oslo, Norway
- Realomics SFI, Department of Chemistry, University of Oslo, Oslo, Norway
- Norsk Medisinsk Syklotronsenter AS, Oslo, Norway
| | - Rune Sundset
- Nuclear Medicine and Radiation Biology Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|
5
|
Fjellaksel R, Oteiza A, Martin-Armas M, Riss PJ, Hjelstuen OK, Kuttner S, Hansen JH, Sundset R. First in vivo evaluation of a potential SPECT brain radiotracer for the gonadotropin releasing hormone receptor. BMC Res Notes 2018; 11:811. [PMID: 30442192 PMCID: PMC6238273 DOI: 10.1186/s13104-018-3924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/09/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES In vivo evaluations of a gonadotropin releasing hormone-receptor single photon emission computed tomography radiotracer for non-invasive detection of gonadotropin releasing homone-receptors in brain. RESULTS We have used a simple, robust and high-yielding procedure to radiolabel an alpha-halogenated bioactive compound with high radiochemical yield. Literature findings showed similar alpha-halogenated compounds suitable for in vivo evaluations. The compound was found to possess nano molar affinity for the gonadotropin releasing hormone-receptor in a competition dependent inhibition study. Furthermore, liquid chromatography-mass spectrometry analysis in saline, human and rat serum resulted in 46%, 52% and 44% stability after incubation for 1 h respectively. In addition, rat brain single photon emission computed tomography and biodistribution studies gave further insight into the nature of the compound as a radiotracer.
Collapse
Affiliation(s)
- Richard Fjellaksel
- Medical Imaging Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
- Organic Chemistry Research Group, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| | - Ana Oteiza
- Medical Imaging Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| | - Montserrat Martin-Armas
- Medical Imaging Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| | - Patrick J. Riss
- Department of Neuropsychiatry and Psychosomatic Medicine, Oslo University Hospital, Oslo, Norway
- Realomics SFI, Department of Chemistry, University of Oslo, Oslo, Norway
- Norsk Medisinsk Syklotronsenter AS, Postboks 4950, Nydalen, Oslo, Norway
| | - Ole Kristian Hjelstuen
- Drug Transport and Delivery Research Group, Department of Pharmacy, UiT The Arctic University of Norway, Tromsø, Norway
| | - Samuel Kuttner
- Medical Imaging Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| | - Jørn H. Hansen
- Organic Chemistry Research Group, Department of Chemistry, UiT The Arctic University of Norway, Tromsø, Norway
| | - Rune Sundset
- Medical Imaging Research Group, Department of Clinical Medicine, UiT The Arctic University of Norway, Tromsø, Norway
- The PET Imaging Center, University Hospital of North Norway, Tromsø, Norway
| |
Collapse
|