1
|
Gilbert A, Haines RS, Harper JB. The effects of using an ionic liquid as a solvent for a reaction that proceeds through a phenonium ion. J PHYS ORG CHEM 2021. [DOI: 10.1002/poc.4217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Alyssa Gilbert
- School of Chemistry University of New South Wales, UNSW Sydney Sydney New South Wales Australia
| | - Ronald S. Haines
- School of Chemistry University of New South Wales, UNSW Sydney Sydney New South Wales Australia
| | - Jason B. Harper
- School of Chemistry University of New South Wales, UNSW Sydney Sydney New South Wales Australia
| |
Collapse
|
2
|
Schindl A, Hawker RR, Schaffarczyk McHale KS, Liu KTC, Morris DC, Hsieh AY, Gilbert A, Prescott SW, Haines RS, Croft AK, Harper JB, Jäger CM. Controlling the outcome of S N2 reactions in ionic liquids: from rational data set design to predictive linear regression models. Phys Chem Chem Phys 2020; 22:23009-23018. [PMID: 33043942 DOI: 10.1039/d0cp04224b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Rate constants for a bimolecular nucleophilic substitution (SN2) process in a range of ionic liquids are correlated with calculated parameters associated with the charge localisation on the cation of the ionic liquid (including the molecular electrostatic potential). Simple linear regression models proved effective, though the interdependency of the descriptors needs to be taken into account when considering generality. A series of ionic liquids were then prepared and evaluated as solvents for the same process; this data set was rationally chosen to incorporate homologous series (to evaluate systematic variation) and functionalities not available in the original data set. These new data were used to evaluate and refine the original models, which were expanded to include simple artificial neural networks. Along with showing the importance of an appropriate data set and the perils of overfitting, the work demonstrates that such models can be used to reliably predict ionic liquid solvent effects on an organic process, within the limits of the data set.
Collapse
Affiliation(s)
- Alexandra Schindl
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Rebecca R Hawker
- School of Chemistry, University of New South Wales, UNSW Sydney, 2052, Australia.
| | | | - Kenny T-C Liu
- School of Chemistry, University of New South Wales, UNSW Sydney, 2052, Australia.
| | - Daniel C Morris
- School of Chemistry, University of New South Wales, UNSW Sydney, 2052, Australia. and School of Chemical Engineering, University of New South Wales, UNSW Sydney, 2052, Australia
| | - Andrew Y Hsieh
- School of Chemistry, University of New South Wales, UNSW Sydney, 2052, Australia.
| | - Alyssa Gilbert
- School of Chemistry, University of New South Wales, UNSW Sydney, 2052, Australia.
| | - Stuart W Prescott
- School of Chemical Engineering, University of New South Wales, UNSW Sydney, 2052, Australia
| | - Ronald S Haines
- School of Chemistry, University of New South Wales, UNSW Sydney, 2052, Australia.
| | - Anna K Croft
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| | - Jason B Harper
- School of Chemistry, University of New South Wales, UNSW Sydney, 2052, Australia.
| | - Christof M Jäger
- Department of Chemical and Environmental Engineering, University of Nottingham, Nottingham NG7 2RD, UK.
| |
Collapse
|
3
|
Schaffarczyk McHale KS, Haines RS, Harper JB. The Dependence of Ionic Liquid Solvent Effects on the Nucleophilic Heteroatom in S N Ar Reactions. Highlighting the Potential for Control of Selectivity. Chempluschem 2019; 84:465-473. [PMID: 31943898 DOI: 10.1002/cplu.201900173] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 04/09/2019] [Indexed: 11/11/2022]
Abstract
Nucleophilic aromatic substitution (SN Ar) reactions of 1-fluoro-4-nitrobenzene using similar nitrogen and sulfur nucleophiles were studied through extensive kinetic analysis in mixtures containing ionic liquids. The interactions of the ionic liquid components with the starting materials and transition state for each process were investigated in an attempt to construct a broad predictive framework for how ionic liquids affect reaction outcome. It was found that, based on the activation parameters, the microscopic interactions and thus the ionic liquid solvent effect were different for each of the nucleophiles considered. The results from this study suggest that it may be possible to rationally select a given ionic liquid mixture to selectively control reaction outcome of an SN Ar reaction where multiple nucleophiles are present.
Collapse
Affiliation(s)
| | - Ronald S Haines
- School of Chemistry, University of New South Wales, UNSW Sydney, NSW 2052, Australia
| | - Jason B Harper
- School of Chemistry, University of New South Wales, UNSW Sydney, NSW 2052, Australia
| |
Collapse
|
4
|
Gilbert A, Haines RS, Harper JB. Understanding the effects of ionic liquids on a unimolecular substitution process: correlating solvent parameters with reaction outcome. Org Biomol Chem 2019; 17:675-682. [DOI: 10.1039/c8ob02460j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The polarisability of an ionic liquid is key in determining the rate constant of a unimolecular substitution process.
Collapse
Affiliation(s)
- Alyssa Gilbert
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| | | | - Jason B. Harper
- School of Chemistry
- University of New South Wales
- Sydney
- Australia
| |
Collapse
|