Hassan HHAM, Fattah MA, Maged FA. Poly (aniline-co-aniline-2,5-disulfonic acid) / L-ascorbic acid / Ag@SiO
2 / polysafranin nanocomposite: synthesis, characterization and anomalous electrical behaviour.
BMC Chem 2024;
18:79. [PMID:
38643154 PMCID:
PMC11032599 DOI:
10.1186/s13065-024-01174-7]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/25/2024] [Indexed: 04/22/2024] Open
Abstract
We report the synthesis of sulfonated copolyaniline/polysafranin/L-ascorbic acid/Ag@SiO2 fine powdered nanocomposites and investigate the influence of incorporating the dye on their conductivity. The composite was characterized via IR, UV, cyclic voltammetry (CV), electric, dielectric, SEM, TEM, TGA and DSC measurements. Microscopy images revealed intensified spherical particles that were dispersed across the entire surface, and the SiO2/Ag particles were distributed on the surface. The XRD results exhibited peaks at many 2q values, and their interatomic spacing (d) and crystallite (grain) sizes were calculated. The thermal degradation curves exhibited an interesting model of stability. The cyclic voltammogram exhibited redox peaks identical to those of the reported analogues. The d.c. conductivity of the oligomer varied from 0.06 - 0.016 (s/cm), and that of the composite varied from 0.008 to 0.016 (s/cm). The material changed from a semiconductor to a metallic material. The observed conductivity is mainly attributed to self-doping between the sulfonate groups and the charged nitrogen atoms in the polymer chains. The frequency dependence of the permittivity, ε', showed a marked effect on the frequency window under consideration. The permittivity, ε', is independent of the increase in the frequency of the oligomer and the composite. This behavior supports the non-Debye dependency by confirming the occurrence of electrode polarization and space charge effects. In conclusion, the incorporation of safranin dye with a thermally stable, highly sulfonated polyaniline derivative/Ag@SO2 nanocomposite achieved improved conductivity after heating. The d.c. conductivities are comparable to those of many commercial inorganic or organic composites, and because of their attractive electrical properties, we suggest that these materials are promising for electronic field applications.
Collapse