1
|
Noh J, Koo MB, Jung J, Peterson GI, Kim KT, Choi TL. Monodisperse Cyclic Polymer Mechanochemistry: Scission Kinetics and the Dynamic Memory Effect with Ultrasonication and Ball-Mill Grinding. J Am Chem Soc 2023; 145:18432-18438. [PMID: 37486970 DOI: 10.1021/jacs.3c04733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
A series of monodisperse cyclic and linear poly(d,l-lactide)s (c-PLA and l-PLA, respectively) were prepared with various degrees of polymerization (DP) using an iterative convergent synthesis approach. The absence of a molecular weight distribution provided us a chance to study their mechanochemical reactivity without obstructions arising from the size distribution. Additionally, we prepared l- and c-PLAs with identical DPs, which enabled us to attribute differences in scission rates to the cyclic polymer architecture alone. The polymers were subjected to ultrasonication (US) and ball-mill grinding (BMG), and their degradation kinetics were explored. Up to 9.0 times larger scission rates were observed for l-PLA (compared to c-PLA) with US, but the difference was less than 1.9 times with BMG. Fragmentation requires two backbone scission events for c-PLA, and we were able to observe linear intermediates (formed after a single scission) for the first time. We also developed a new method of studying the dynamic memory effect in US by characterizing and comparing the daughter fragment molecular weight distributions of l- and c-PLAs. These results provide new insights into the influence of the cyclic polymer architecture on mechanochemical reactions as well as differences in reactivity observed with US and BMG.
Collapse
Affiliation(s)
- Jinkyung Noh
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Mo Beom Koo
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jisoo Jung
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Gregory I Peterson
- Department of Chemistry and Research Institute of Basic Science, Incheon National University, Incheon 22012, Republic of Korea
| | - Kyoung Taek Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Materials, ETH Zürich, Zürich 8093, Switzerland
| |
Collapse
|
2
|
Willis-Fox N, Watchorn-Rokutan E, Rognin E, Daly R. Technology pull: scale-up of polymeric mechanochemical force sensors. TRENDS IN CHEMISTRY 2023. [DOI: 10.1016/j.trechm.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
|
3
|
Zhang H, Diesendruck CE. Off-center Mechanophore Activation in Block Copolymers. Angew Chem Int Ed Engl 2023; 62:e202213980. [PMID: 36394518 PMCID: PMC10108114 DOI: 10.1002/anie.202213980] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Indexed: 11/18/2022]
Abstract
Block copolymers (BCPs) are used in numerous applications in modern materials science. Yet, like homopolymers, BCPs can undergo covalent bond scission when mechanically stressed (mechanochemistry), which could lead to unexpected consequences in such applications. BCPs' heterogeneity may affect force transduction, perhaps changing force distribution and localization. To verify this, a gem-dichlorocyclopropane (gDCC) embedded linear chain is prepared and extended with a poly(methyl methacrylate) block. When stressed in solution, the mechanochemical ring-opening of gDCC is accelerated compared to homopolymers, even though the mechanophores are at the chain ends. Moreover, a higher mechanophore activation selectivity is obtained. These results indicate that mechanochemical response outside, and even far from the chain center is quite prominent in BCPs, and that forces along the polymer chain can efficiently activate multi-mechanophores regions, even when far from the polymer midchain.
Collapse
Affiliation(s)
- Hang Zhang
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyHaifa3200008Israel
| | - Charles E. Diesendruck
- Schulich Faculty of Chemistry, Technion—Israel Institute of TechnologyHaifa3200008Israel
| |
Collapse
|
4
|
Abstract
Polymer chains, if long enough, are known to undergo bond scission when mechanically stressed. While the mechanochemical response of random coils is well understood, biopolymers and some key synthetic chains adopt well-defined secondary structures such as helices. To understand covalent mechanochemistry in such structures, poly(γ-benzyl glutamates) are prepared while regulating the feed-monomer chirality, producing chains with similar molecular weights and backbone chemistry but different helicities. Such chains are stressed in solution and their mechanochemistry rates compared by following molecular weight change and using a rhodamine mechanochromophore. Results reveal that while helicity itself is not affected by the covalent bond scissions, chains with higher helicity undergo faster mechanochemistry. Considering that the polymers tested differ only in conformation, these results indicate that helix-induced chain rigidity improves the efficiency of mechanical energy transduction.
Collapse
Affiliation(s)
- Hang Zhang
- Schulich Faculty of ChemistryTechnion—Israel Institute of TechnologyHaifa3200008Israel
| | | |
Collapse
|
5
|
Diesendruck C, Zhang H. Accelerated Mechanochemistry in Helical Polymers. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202115325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Charles Diesendruck
- Technion - Israel Institute of Technology Schulich Faculty of Chemistry Kiryat Hatechnion 3200008 Haifa ISRAEL
| | - Hang Zhang
- Technion Israel Institute of Technology Schulich Faculty of Chemistry Haifa ISRAEL
| |
Collapse
|
6
|
Noh J, Peterson GI, Choi T. Mechanochemical Reactivity of Bottlebrush and Dendronized Polymers: Solid vs. Solution States. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jinkyung Noh
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Gregory I. Peterson
- Department of Chemistry Incheon National University 119 Academy-ro, Yeonsu-gu Incheon 22012 Republic of Korea
| | - Tae‐Lim Choi
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
7
|
Noh J, Peterson GI, Choi TL. Mechanochemical Reactivity of Bottlebrush and Dendronized Polymers: Solid vs. Solution States. Angew Chem Int Ed Engl 2021; 60:18651-18659. [PMID: 34101320 DOI: 10.1002/anie.202104447] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/22/2021] [Indexed: 12/23/2022]
Abstract
We explored the mechanochemical degradation of bottlebrush and dendronized polymers in solution (with ultrasonication, US) and solid states (with ball-mill grinding, BMG). Over 50 polymers were prepared with varying backbone length and arm architecture, composition, and size. With US, we found that bottlebrush and dendronized polymers exhibited consistent backbone scission behavior, which was related to their elongated conformations in solution. Considerably different behavior was observed with BMG, as arm architecture and composition had a significant impact on backbone scission rates. Arm scission was also observed for bottlebrush polymers in both solution and solid states, but only in the solid state for dendronized polymers. Motivated by these results, multi-mechanophore polymers with bottlebrush and dendronized polymer architectures were prepared and their reactivity was compared. Although dendronized polymers showed slower arm-scission, the selectivity for mechanophore activation was much higher. Overall, these results have important implications to the development of new mechanoresponsive materials.
Collapse
Affiliation(s)
- Jinkyung Noh
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Gregory I Peterson
- Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon, 22012, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
8
|
Jia XM, Lin WF, Zhao HY, Qian HJ, Lu ZY. Supercooled melt structure and dynamics of single-chain nanoparticles: A computer simulation study. J Chem Phys 2021; 155:054901. [PMID: 34364327 DOI: 10.1063/5.0056293] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
By using coarse-grained molecular dynamics simulations, we have investigated the structure and dynamics of supercooled single-chain cross-linked nanoparticle (SCNP) melts having a range of cross-linking degrees ϕ. We find a nearly linear increase in glass-transition temperature (Tg) with increasing ϕ. Correspondingly, we have also experimentally synthesized a series of polystyrene-based SCNPs and have found that the measured Tg estimated from differential scanning calorimetry is qualitatively consistent with the trend predicted by our simulation estimates. Experimentally, an increase in Tg as large as ΔTg = 61 K for ϕ = 0.36 is found compared with their linear chain counterparts, indicating that the changes in dynamics with cross-links are quite appreciable. We attribute the increase in Tg to the enlarged effective hard-core volume and the corresponding reduction in the free volume of the polymer segments. Topological constraints evidently frustrate the local packing. In addition, the introduction of intra-molecular cross-linking bonds slows down the structural relaxation and simultaneously enhances the local coupling motion on the length scales within SCNPs. Consequently, a more pronounced dynamical heterogeneity (DH) is observed for larger ϕ, as quantified by measuring the dynamical correlation length through the four-point susceptibility parameter, χ4. The increase in DH is directly related to the enhanced local cooperative motion derived from intra-molecular cross-linking bonds and structural heterogeneity derived from the cross-linking process. These results shed new light on the influence of intra-molecular topological constraints on the segmental dynamics of polymer melts.
Collapse
Affiliation(s)
- Xiang-Meng Jia
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| | - Wen-Feng Lin
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| | - Huan-Yu Zhao
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| | - Hu-Jun Qian
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| | - Zhong-Yuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, Institute of Theoretical Chemistry, Jilin University, Changchun 130021, China
| |
Collapse
|
9
|
Peterson GI, Choi TL. The influence of polymer architecture in polymer mechanochemistry. Chem Commun (Camb) 2021; 57:6465-6474. [PMID: 34132272 DOI: 10.1039/d1cc02501e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polymer architecture is an important factor in polymer mechanochemistry. In this Feature Article, we summarize recent developments in utilizing polymer architecture to modulate mechanochemical reactions within polymers, or more specifically, the location and rates of bond scission events that lead to polymer fragmentation or mechanophore activation. Various well-defined architectures have been explored, including those of cyclic, intramolecularly cross-linked, dendritic, star, bottlebrush, and dendronized polymers. We primarily focus on describing the enhancement or suppression of mechanochemical reactivity, with respect to analogous linear polymers, as well as differences in solution- and solid-state behavior.
Collapse
Affiliation(s)
- Gregory I Peterson
- Department of Chemistry, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | | |
Collapse
|
10
|
Burshtein TY, Agami I, Sananis M, Diesendruck CE, Eisenberg D. Template-Free Formation of Regular Macroporosity in Carbon Materials Made from a Folded Polymer Precursor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100712. [PMID: 33987936 DOI: 10.1002/smll.202100712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Porous carbon materials attract great interest in a wide range of applications such as batteries, fuel cells, and membranes, due to their large surface area, structural and compositional tunability, and chemical stability. While micropores are typically obtained when preparing carbon materials by pyrolysis, the fabrication of mesoporous, and especially macroporous carbons is more challenging, yet important for enhancing mass transport. Herein, template-free regular macroporous carbons are prepared from a mixture of unfolded (linear) and folded (single-chain nanoparticles, SCNP) polyvinylpyrrolidone chains. While having the same chemical composition, the different molecular architectures lead to phase separation even before pyrolysis, creating a dense cell architecture, which is retained upon carbonization. Upon increasing the SCNP content, the homogeneity of the pore network increases and the specific surface area is enlarged 3-5-fold, until ideal properties are obtained at 75% SCNP, as observed by high-resolution scanning electron microscopy and N2 physisorption porosimetry. The materials are further investigated as hydrazine oxidation electrocatalysts, demonstrating the link between the evolving morphology and current density. Importantly, this study demonstrates the role of polymer architecture in macroporosity templating in carbon materials, providing a new approach to develop complex carbon architectures without the need for external templating.
Collapse
Affiliation(s)
- Tomer Y Burshtein
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Iris Agami
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Matan Sananis
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Charles E Diesendruck
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - David Eisenberg
- Schulich Faculty of Chemistry and the Grand Technion Energy Program, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
11
|
Bloesser FR, Walden SL, Irshadeen IM, Chambers LC, Barner-Kowollik C. Chemiluminescent self-reported unfolding of single-chain nanoparticles. Chem Commun (Camb) 2021; 57:5203-5206. [PMID: 33908468 DOI: 10.1039/d1cc00068c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We demonstrate the light-induced, crosslinker mediated collapse of linear polymer chains into single-chain nanoparticles (SCNPs) capable of self-reporting their unfolding. The crosslinker entails a phenyloxalate motif allowing for the targeted degradation of the SCNPs via addition of hydrogen peroxide that triggers chemiluminescence (CL). The time-dependant CL emission can serve as a guide to follow the time dependent unfolding of the SCNPs, allowing for a qualitative assessment of the underlying mechanism.
Collapse
Affiliation(s)
- Fabian R Bloesser
- School of Chemistry and Physics and Centre for Materials Science Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.
| | - Sarah L Walden
- School of Chemistry and Physics and Centre for Materials Science Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.
| | - Ishrath M Irshadeen
- School of Chemistry and Physics and Centre for Materials Science Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.
| | - Lewis C Chambers
- School of Chemistry and Physics and Centre for Materials Science Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.
| | - Christopher Barner-Kowollik
- School of Chemistry and Physics and Centre for Materials Science Queensland University of Technology (QUT), 2 George Street, Brisbane, QLD 4000, Australia.
| |
Collapse
|
12
|
Peterson GI, Noh J, Ha MY, Yang S, Lee WB, Choi TL. Influence of Grafting Density on Ultrasound-Induced Backbone and Arm Scission of Graft Copolymers. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Gregory I. Peterson
- Department of Chemistry, Incheon National University, 119 Academy-ro,
Yeonsu-gu, Incheon 22012, Republic of Korea
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinkyung Noh
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Min Young Ha
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Sanghee Yang
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Abstract
The mechanical strength of individual polymer chains is believed to underlie a number of performance metrics in bulk materials, including adhesion and fracture toughness. Methods by which the intrinsic molecular strength of the constituents of a given polymeric material might be switched are therefore potentially useful both for applications in which triggered property changes are desirable, and as tests of molecular theories for bulk behaviors. Here we report that the sequential oxidation of sulfide containing polyesters (PE-S) to the corresponding sulfoxide (PE-SO) and then sulfone (PE-SO2) first weakens (sulfoxide), and then enhances (sulfone), the effective mechanical integrity of the polymer backbone; PE-S ∼ PE-SO2 > PE-SO. The relative mechanical strength as a function of oxidation state is revealed through the use of gem-dichlorocyclopropane nonscissile mechanophores as an internal standard, and the observed order agrees well with the reported bond dissociation energies of C–S bonds in each species and with the results of CoGEF modeling. The mechanical strength of individual polymer chains is believed to underlie a number of performance metrics in bulk materials, including adhesion and fracture toughness.![]()
Collapse
Affiliation(s)
- Yangju Lin
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| | - Stephen L Craig
- Department of Chemistry, Duke University Durham North Carolina 27708 USA
| |
Collapse
|
14
|
Peterson GI, Ko W, Hwang YJ, Choi TL. Mechanochemical Degradation of Amorphous Polymers with Ball-Mill Grinding: Influence of the Glass Transition Temperature. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01510] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Gregory I. Peterson
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Wonyoung Ko
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Ye-Jin Hwang
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Tae-Lim Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|