1
|
Suna G, Erdemir E, Liv L, Karakus AC, Gunturkun D, Ozturk T, Karakuş E. A novel thienothiophene-based "dual-responsive" probe for rapid, selective and sensitive detection of hypochlorite. Talanta 2024; 270:125545. [PMID: 38128280 DOI: 10.1016/j.talanta.2023.125545] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Hypochlorite/hypochlorous acid (ClO-/HOCl) is a biologically crucial reactive oxygen species (ROS), produced in living organisms and has a critical role as an antimicrobial agent in the natural defense system. However, when ClO- is produced excessively, it can lead to the oxidative damage of biomolecules, resulting in organ damage and various diseases. Therefore, it is imperative to have a straightforward, quick and reliable method for over watching the minimum amount of ClO- in different environments. RESULTS Herein, a new probe TTM, containing thienothiophene and malononitrile units, was developed for exceptionally selective and sensitive hypochlorite (ClO-) detection. TTM demonstrated a rapid "turn-on" fluorescence response (<30 s), naked-eye detection (colorimetric), voltammetric read-out with anodic scan, low detection limit (LOD = 0.58 μM and 1.43 μM for optical and electrochemical methods, respectively) and applicability in detecting ClO- in real water samples and living cells. SIGNIFICANCE AND NOVELTY This study represents one of the rare examples of a small thienothiophene-based molecule for both optical and electrochemical detections of ClO- in an aqueous medium.
Collapse
Affiliation(s)
- Garen Suna
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey; Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Eda Erdemir
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey; Department of Chemistry, Faculty of Science, Istanbul University, 34134, Beyazit, Istanbul, Turkey
| | - Lokman Liv
- Electrochemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey
| | - Aysenur Cataler Karakus
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey
| | - Dilara Gunturkun
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Turan Ozturk
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey; Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey.
| | - Erman Karakuş
- Organic Chemistry Laboratory, Chemistry Group, The Scientific & Technological Research Council of Turkey, National Metrology Institute, (TUBITAK UME), 41470, Gebze, Kocaeli, Turkey.
| |
Collapse
|
2
|
Gencosman E, Kiliclar HC, Fiedor P, Yilmaz G, Ortyl J, Yagci Y, Kiskan B. Exploiting Visible-Light Induced Radical to Cation Transformation Pathway for Reactivity Enhanced Electrophilic Aromatic Substitution Polymerization of Heteroaromatics. Macromol Rapid Commun 2024; 45:e2300458. [PMID: 37955104 DOI: 10.1002/marc.202300458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/05/2023] [Indexed: 11/14/2023]
Abstract
A straightforward approach is employed to synthesize methylene-bridged poly(hetero aromatic)s based on furan, pyrrole, thiophene, and thiophene derivatives. The process involves an electrophilic aromatic substitution reaction facilitated by a visible light-initiated system consisting of manganese decacarbonyl and an iodonium salt. The approach mainly relies on the formation of halomethylium cation, the attack of this cation to heteroaromatic, regeneration of methylium cation on the heteroaromatic, and reactivity differences between halomethylium and heteroaromatic methylium cations for successful polymerizations. This innovative synthetic strategy lead to the formation of polymers with relatively high molecular weights as the stoichiometric imbalance between the comonomers increased. Accordingly, these newly obtained polymers exhibit remarkable fluorescence properties, even at excitation wavelengths as low as 330 nm. Moreover, by harnessing the halogens at chain ends of homopolymers, block copolymers are successfully synthesized, offering opportunities for tailored applications in diverse fields.
Collapse
Affiliation(s)
- Emirhan Gencosman
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Huseyin Cem Kiliclar
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Pawel Fiedor
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Kraków, 31-155, Poland
| | - Gorkem Yilmaz
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Joanna Ortyl
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, Kraków, 31-155, Poland
| | - Yusuf Yagci
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Baris Kiskan
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
3
|
Tabak T, Kaya K, Isci R, Ozturk T, Yagci Y, Kiskan B. Combining Step-Growth and Chain-Growth Polymerizations in One Pot: Light-Induced Fabrication of Conductive Nanoporous PEDOT-PCL Scaffold. Macromol Rapid Commun 2024; 45:e2300455. [PMID: 37633841 DOI: 10.1002/marc.202300455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/19/2023] [Indexed: 08/28/2023]
Abstract
A novel method based on light-induced fabrication of a poly (3,4-ethylenedioxythiophene)-polycaprolactone (PEDOT-PCL) scaffold using phenacyl bromide (PAB) as a single-component photoinitiator is presented. HBr released from the step-growth polymerization of EDOT is utilized as an in situ catalyst for the chain-growth polymerization of ε-caprolactone. Detailed investigations disclose the formation of a self-assembled nanoporous electroconductive scaffold (1.2 mS cm-1 ). Fluorescence emission spectra of the fabricated scaffold exhibit a mixed solvatochromic behavior, indicating specific interactions between the self-assembled scaffold and solvents with varying polarities, as evidenced by transmission electron microscopy (TEM). Moreover, the same light-induced technique can also be applied for bulk photopolymerization showcasing the versatility and wide-ranging scope of the originated method. In brief, this study introduces a novel approach for light-induced polymerization reactions that is merging step-growth and chain-growth mechanisms. This innovative approach is promising to facilitate in situ polymerization of monomers possessing diverse functionalities.
Collapse
Affiliation(s)
- Tugberk Tabak
- Istanbul Technical University, Chemistry Department, Maslak, Istanbul, 34469, Turkey
| | - Kerem Kaya
- Istanbul Technical University, Chemistry Department, Maslak, Istanbul, 34469, Turkey
| | - Recep Isci
- Istanbul Technical University, Chemistry Department, Maslak, Istanbul, 34469, Turkey
| | - Turan Ozturk
- Istanbul Technical University, Chemistry Department, Maslak, Istanbul, 34469, Turkey
- TUBITAK UME, Chemistry Group Laboratories, Kocaeli 54, Gebze, 41470, Turkey
| | - Yusuf Yagci
- Istanbul Technical University, Chemistry Department, Maslak, Istanbul, 34469, Turkey
| | - Baris Kiskan
- Istanbul Technical University, Chemistry Department, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
4
|
Isci R, Ozturk T. Thienothiophene-based organic light-emitting diode: synthesis, photophysical properties and application. Beilstein J Org Chem 2023; 19:1849-1857. [PMID: 38090628 PMCID: PMC10714501 DOI: 10.3762/bjoc.19.137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/28/2023] [Indexed: 10/16/2024] Open
Abstract
A donor-π-acceptor (D-π-A)-type pull-push compound, DMB-TT-TPA (8), comprising triphenylamine as donor and dimesitylboron as acceptor linked through a thieno[3,2-b]thiophene (TT) π-conjugated linker bearing a 4-MeOPh group, was designed, synthesized, and fabricated as an emitter via a solution process for an organic light-emitting diode (OLED) application. DMB-TT-TPA (8) exhibited absorption and emission maxima of 411 and 520 nm, respectively, with a mega Stokes shift of 109 nm and fluorescence quantum yields both in the solid state (41%) and in solution (86%). The optical properties were supported by computational chemistry using density functional theory for optimized geometry and absorption. A solution-processed OLED was fabricated using low turn-on voltage, which had performances with maximum power, current, and external quantum efficiencies of 6.70 lm/W, 10.6 cd/A, and 4.61%, respectively.
Collapse
Affiliation(s)
- Recep Isci
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Turan Ozturk
- Department of Chemistry, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
- TUBITAK UME, Chemistry Group Laboratories, 41470, Gebze, Kocaeli, Turkey
| |
Collapse
|
5
|
Kaya K, Kiliclar HC, Yagci Y. Photochemically generated ionic species for cationic and step-growth polymerizations. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.112000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2023]
|
6
|
Komaba K, Jo T, Kumai R, Goto H. Synthesis of conductive polymer alloys by electrochemical polymerization in chiral liquid crystal. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2138765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Kyoka Komaba
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomoaki Jo
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Reiji Kumai
- Photon Factory, Institute of Materials Structure Science, KEK, Tsukuba, Japan
| | - Hiromasa Goto
- Department of Materials Science, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
7
|
Celiker T, Altınışık S, Vaitusionak A, Kostjuk SV, Koyuncu S, Yagci Y. Sequential and Simultaneous Photoinduced Radical and Step-Growth Polymerizations of Carbazole Functional Styrene. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c01558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tugba Celiker
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Sinem Altınışık
- Department of Chemical Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| | - Aliaksei Vaitusionak
- Department of Chemistry, Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
| | - Sergei V. Kostjuk
- Department of Chemistry, Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
- Research Institute for Physical Chemical Problems of the Belarusian State University, 14 Leningradskaya St., 220006 Minsk, Belarus
| | - Sermet Koyuncu
- Department of Chemical Engineering, Canakkale Onsekiz Mart University, 17100 Canakkale, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
8
|
Kocaarslan A, Kaya K, Jockusch S, Yagci Y. Phenacyl Bromide as a Single‐Component Photoinitiator: Photoinduced Step‐Growth Polymerization of
N
‐Methylpyrrole and
N
‐Methylindole. Angew Chem Int Ed Engl 2022; 61:e202208845. [DOI: 10.1002/anie.202208845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Azra Kocaarslan
- Department of Chemistry Istanbul Technical University Maslak, Istanbul 34469 Turkey
| | - Kerem Kaya
- Department of Chemistry Istanbul Technical University Maslak, Istanbul 34469 Turkey
| | - Steffen Jockusch
- Center for Photochemical Sciences Bowling Green State University Bowling Green OH 43403 USA
| | - Yusuf Yagci
- Department of Chemistry Istanbul Technical University Maslak, Istanbul 34469 Turkey
- Centre of Excellence for Advanced Materials Research (CEAMR) and Chemistry Department King Abdulaziz University 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
9
|
Kocaarslan A, Kaya K, Jockusch S, Yagci Y. Phenacyl Bromide as a Single‐Component Photoinitiator: Photoinduced Step‐Growth Polymerization of
N
‐Methylpyrrole and
N
‐Methylindole. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202208845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Azra Kocaarslan
- Department of Chemistry Istanbul Technical University Maslak, Istanbul 34469 Turkey
| | - Kerem Kaya
- Department of Chemistry Istanbul Technical University Maslak, Istanbul 34469 Turkey
| | - Steffen Jockusch
- Center for Photochemical Sciences Bowling Green State University Bowling Green OH 43403 USA
| | - Yusuf Yagci
- Department of Chemistry Istanbul Technical University Maslak, Istanbul 34469 Turkey
- Centre of Excellence for Advanced Materials Research (CEAMR) and Chemistry Department King Abdulaziz University 80203 Jeddah 21589 Saudi Arabia
| |
Collapse
|
10
|
Fluorescent bioassay for SARS-CoV-2 detection using polypyrene-g-poly(ε-caprolactone) prepared by simultaneous photoinduced step-growth and ring-opening polymerizations. Mikrochim Acta 2022; 189:202. [PMID: 35474492 PMCID: PMC9042169 DOI: 10.1007/s00604-022-05244-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 11/16/2022]
Abstract
The construction of a rapid and easy immunofluorescence bioassay for SARS-CoV-2 detection is described. We report for the first time a novel one-pot synthetic approach for simultaneous photoinduced step-growth polymerization of pyrene (Py) and ring-opening polymerization of ε-caprolactone (PCL) to produce a graft fluorescent copolymer PPy-g-PCL that was conjugated to SARS-CoV-2-specific antibodies using EDC/NHS chemistry. The synthesis steps and conjugation products were fully characterized using standard spectral analysis. Next, the PPy-g-PCL was used for the construction of a dot-blot assay which was calibrated for applications to human nasopharyngeal samples. The analytical features of the proposed sensor showed a detection range of 6.03–8.7 LOG viral copy mL−1 (Ct Scores: 8–25), the limit of detection (LOD), and quantification (LOQ) of 1.84 and 6.16 LOG viral copy mL−1, respectively. The repeatability and reproducibility of the platform had a coefficient of variation (CV) ranging between 1.2 and 5.9%. The fluorescence-based dot-blot assay was tested with human samples. Significant differences were observed between the fluorescence intensity of the negative and positive samples, with an overall correct response of 93.33%. The assay demonstrated a high correlation with RT-PCR data. This strategy opens new insights into simplified synthesis procedures of the reporter molecules and their high potential sensing and diagnosis applications.
Collapse
|
11
|
Isci R, Unal M, Kucukcakir G, Gurbuz NA, Gorkem SF, Ozturk T. Triphenylamine/4,4'-Dimethoxytriphenylamine-Functionalized Thieno[3,2- b]thiophene Fluorophores with a High Quantum Efficiency: Synthesis and Photophysical Properties. J Phys Chem B 2021; 125:13309-13319. [PMID: 34807616 DOI: 10.1021/acs.jpcb.1c09448] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A wide series of 10 new triphenylamine (TPA)/4,4'-dimethoxytriphenylamine (TPA(OMe)2)-functionalized thieno[3,2-b]thiophene (TT) fluorophores, 4a-e and 5a-e, bearing different electron-donating and electron-withdrawing substituents (-PhCN, -PhF, -PhOMe, -Ph, and -C6H13) at the terminal thienothiophene units were designed and synthesized by the Suzuki coupling reaction. Their optical and electrochemical properties were investigated by experimental and computational studies. Solid-state fluorescent quantum yields were recorded to be from 20 to 69%, and the maximum solution-state quantum efficiency reached 97%. Moreover, the photophysical characterization of the novel chromophores demonstrated a significant Stokes shift, reaching 179 nm with a bathochromic shift. They exhibited tuning color emission from orange to dark blue in solution and showed fluorescence lifetime reaching 4.70 ns. The relationship between triphenylamine (TPA)/4,4'-dimethoxytriphenylamine (TPA(OMe)2)-derived triarylamines and different functional groups on thieno[3,2-b] thiophene units was discussed.
Collapse
Affiliation(s)
- Recep Isci
- Chemistry Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Melis Unal
- Chemistry Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Gizem Kucukcakir
- Chemistry Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Naime A Gurbuz
- Chemistry Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
| | - Sultan F Gorkem
- Chemistry Department, Eskisehir Technical University, 26470 Eskisehir, Turkey
| | - Turan Ozturk
- Chemistry Department, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey.,Chemistry Group Laboratories, TUBITAK UME, 41470 Gebze, Kocaeli, Turkey
| |
Collapse
|
12
|
Light induced step-growth polymerization of Donor-Acceptor-Donor (DAD) type monomers based on thiophene – [1,2,5] Chalcogenazolo[3,4-f]-benzo [1,2,3] triazole – Thiophene. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110831] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
13
|
Woods EF, Berl AJ, Kantt LP, Eckdahl CT, Wasielewski MR, Haines BE, Kalow JA. Light Directs Monomer Coordination in Catalyst-Free Grignard Photopolymerization. J Am Chem Soc 2021; 143:18755-18765. [PMID: 34699721 DOI: 10.1021/jacs.1c09595] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
π-Conjugated polymers can serve as active layers in flexible and lightweight electronics and are conventionally synthesized by transition-metal-mediated polycondensation at elevated temperatures. We recently reported a photopolymerization of electron-deficient heteroaryl Grignard monomers that enables the catalyst-free synthesis of n-type π-conjugated polymers. Herein, we describe an experimental and computational investigation into the mechanism of this photopolymerization. Spectroscopic studies performed in situ and after quenching reveal that the propagating chain is a radical anion with halide end groups. DFT calculations for model oligomers suggest a Mg-templated SRN1-type coupling, in which Grignard monomer coordination to the radical anion chain avoids the formation of free sp2 radicals and allows C-C bond formation with very low barriers. We find that light plays an unusual role in the reaction, photoexciting the radical anion chain to shift electron density to the termini and thus enabling productive monomer binding.
Collapse
Affiliation(s)
- Eliot F Woods
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Alexandra J Berl
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Leanna P Kantt
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Christopher T Eckdahl
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Michael R Wasielewski
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| | - Brandon E Haines
- Department of Chemistry, Westmont College, 955 La Paz Rd, Santa Barbara, California 93108, United States
| | - Julia A Kalow
- Department of Chemistry, Northwestern University, 2145 Sheridan Rd, Evanston, Illinois 60208, United States
| |
Collapse
|
14
|
Kaya K, Yagci Y. Contemporary Approaches for Conventional and Light‐Mediated Synthesis of Conjugated Heteroaromatic Polymers. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kerem Kaya
- Chemistry Department Istanbul Technical University Maslak Istanbul 34469 Turkey
| | - Yusuf Yagci
- Chemistry Department Istanbul Technical University Maslak Istanbul 34469 Turkey
| |
Collapse
|
15
|
Kiliclar HC, Gencosman E, Yagci Y. Visible Light Induced Conventional Step-Growth and Chain-Growth Condensation Polymerizations by Electrophilic Aromatic Substitution. Macromol Rapid Commun 2021; 43:e2100584. [PMID: 34610174 DOI: 10.1002/marc.202100584] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/26/2021] [Indexed: 11/06/2022]
Abstract
A novel visible light induced step-growth polymerization by electrophilic aromatic substitution between photochemically generated carbocations and dimethoxybenzene nucleophile is described. Conventional step-growth polymerization and chain-growth condensation polymerization (CCP) mechanisms are presented. It is found that by changing the molar ratios of the monomers slightly, the CCP mechanism becomes operative and relatively higher molecular weight polymers are obtained because of the higher reactivity of the end groups of the intermediates and oligomers than that of the monomers. The possibility of grafting onto polymers containing epoxide at their side chains by photoinduced chain end activation of poly(dimethoxyphenylene methylene) is demonstrated. This study is expected to promote potential applications of the combination of photoinduced electron transfer reactions and CCP in macromolecular synthesis and material science.
Collapse
Affiliation(s)
- Huseyin Cem Kiliclar
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Emirhan Gencosman
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey.,Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| |
Collapse
|
16
|
Gouda MA, Abu-Hashem AA, Abdelgawad AAM. Thieno[3,2-c] quinoline Heterocyclic Synthesis and Reactivity part (VI). MINI-REV ORG CHEM 2021. [DOI: 10.2174/1570193x18666211004102537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
:
The biological and medicinal properties of thieno[3, 2-c] quinoline have prompted enormous research aimed at developing synthetic routes to these systems. This review focuses on the chemical properties associated with this system. The most-reported reactions are Bischler-Napieralski, Suzuki−Miyaura−Schlüter, Pictet-Spengler, Stille coupling. Friedlander and Beckmann rearrangement reaction.
Collapse
Affiliation(s)
- Moustafa A. Gouda
- Department of Chemistry, Faculty of Science and Arts, Taibah University, Ulla, Medina, Saudi Arabia
| | - Ameen A. Abu-Hashem
- Photochemistry Department (Heterocyclic Unit), National Research Centre, Dokki, Giza 12622, Egypt
| | | |
Collapse
|
17
|
Topal S, Isci R, Sezer E, Ozturk T, Ustamehmetoglu B. Synthesis and electropolymerization of 3-arylthieno[3,2-b]thiophenes and triphenylamine based comonomers. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138688] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Synthesis and characterization of 3-(4-fluorophenyl)thieno[3,2-b]thiophene and 3,3’-(4- fluorophenyl)dithieno[3,2-b;2’,3’-d]thiophene molecules. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138837] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
19
|
Zhu Y, Xu D, Zhang Y, Zhou Y, Yagci Y, Liu R. Phenacyl Phenothiazinium Salt as a New Broad-Wavelength-Absorbing Photoinitiator for Cationic and Free Radical Polymerizations. Angew Chem Int Ed Engl 2021; 60:16917-16921. [PMID: 34048634 DOI: 10.1002/anie.202104531] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/08/2021] [Indexed: 11/10/2022]
Abstract
A novel broad-wavelength-absorbing photoinitiator based on phenacyl phenothiazinium hexafluroantimonate (P-PTh) possessing both phenacyl and phenothiazine chromophoric groups was reported. P-PTh absorbs light at UV, Visible and Near-IR region. Photophysical, photochemical, and computational investigations revealed that P-PTh in solution decomposes at all wavelengths by homolytic and heterolytic cleavages and generates cationic and radical species, which could efficiently initiate cationic and free radical polymerizations. It is anticipated that the photoinitiator with such wavelength flexibility may open up new pathways in curing applications of formulations of pigment systems.
Collapse
Affiliation(s)
- Yi Zhu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China.,International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Dandan Xu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Yuchao Zhang
- School of Chemistry and Chemical Engineering, Nanjing University, 210023, Nanjing, Jiangsu, P. R. China
| | - Yufan Zhou
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| | - Yusuf Yagci
- International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China.,Department of Chemistry, Faculty of Science and Letters, Istanbul Technical University, 34469, Maslak, Istanbul, Turkey
| | - Ren Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China.,International Research Center for Photoresponsive Molecules and Materials, Jiangnan University, 214122, Wuxi, Jiangsu, P. R. China
| |
Collapse
|
20
|
Zhu Y, Xu D, Zhang Y, Zhou Y, Yagci Y, Liu R. Phenacyl Phenothiazinium Salt as a New Broad‐Wavelength‐Absorbing Photoinitiator for Cationic and Free Radical Polymerizations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202104531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yi Zhu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 214122 Wuxi Jiangsu P. R. China
- International Research Center for Photoresponsive Molecules and Materials Jiangnan University 214122 Wuxi Jiangsu P. R. China
| | - Dandan Xu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 214122 Wuxi Jiangsu P. R. China
| | - Yuchao Zhang
- School of Chemistry and Chemical Engineering Nanjing University 210023 Nanjing Jiangsu P. R. China
| | - Yufan Zhou
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 214122 Wuxi Jiangsu P. R. China
| | - Yusuf Yagci
- International Research Center for Photoresponsive Molecules and Materials Jiangnan University 214122 Wuxi Jiangsu P. R. China
- Department of Chemistry Faculty of Science and Letters Istanbul Technical University 34469, Maslak Istanbul Turkey
| | - Ren Liu
- Key Laboratory of Synthetic and Biological Colloids Ministry of Education School of Chemical and Material Engineering Jiangnan University 214122 Wuxi Jiangsu P. R. China
- International Research Center for Photoresponsive Molecules and Materials Jiangnan University 214122 Wuxi Jiangsu P. R. China
| |
Collapse
|
21
|
Kiliclar HC, Altinkok C, Yilmaz G, Yagci Y. Visible light induced step-growth polymerization by electrophilic aromatic substitution reactions. Chem Commun (Camb) 2021; 57:5398-5401. [PMID: 33942841 DOI: 10.1039/d1cc01444g] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel visible light induced step-growth polymerization to form poly(phenylene methylene) by electrophilic aromatic substitution reactions is described. The effect of different nucleophilic aromatic molecules on polymerization has been investigated. The possibility of combining step-growth polymerization with conventional free radical and free radical promoted cationic polymerizations through photoinduced chain-end activation has been demonstrated. Highly fluorescent fibers of the resulting block copolymers were obtained using the electrospinning technique. The versatile photoinduced step-growth polymerization process reported herein paves the way for a new generation of polycondensates and their combination with chain polymers that cannot be obtained by conventional methods.
Collapse
Affiliation(s)
- Huseyin Cem Kiliclar
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul 34469, Turkey.
| | - Cagatay Altinkok
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul 34469, Turkey.
| | - Gorkem Yilmaz
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul 34469, Turkey.
| | - Yusuf Yagci
- Istanbul Technical University, Department of Chemistry, Maslak, Istanbul 34469, Turkey.
| |
Collapse
|
22
|
Kiliclar HC, Yilmaz G, Yagci Y. Visible Light Induced Step-Growth Polymerization by Substitution Reactions. Macromol Rapid Commun 2021; 42:e2000686. [PMID: 33570222 DOI: 10.1002/marc.202000686] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/18/2020] [Indexed: 01/28/2023]
Abstract
A new visible light induced step-growth polymerization of dibromoxylene, and diols using dimanganese decacarbonyl and diphenyliodonium salt is described. The polymerization is suggested to proceed by substitution reaction between dixylenium cations formed upon visible light irradiation in the presence of dimanganese decacarbonyl and diphenyl iodonium salt. For the described substitution reaction with diols as nucleophilic component, the scope of the process is studied. Furthermore, the presence of halide groups at chain ends of the resulting polymers provided the possibility of initiating subsequent free radical and free radical promoted cationic resulting in the formation of polyether-based block copolymers.
Collapse
Affiliation(s)
- Huseyin Cem Kiliclar
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Gorkem Yilmaz
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| | - Yusuf Yagci
- Department of Chemistry, Istanbul Technical University, Maslak, Istanbul, 34469, Turkey
| |
Collapse
|
23
|
Celiker T, Suerkan A, Altinisik S, Akgun M, Koyuncu S, Yagci Y. Hollow microspherical carbazole-based conjugated polymers by photoinduced step-growth polymerization. Polym Chem 2021. [DOI: 10.1039/d1py00822f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A new photochemical approach for the synthesis of metal-free three-dimensional hollow spherical conjugated polymers is described.
Collapse
Affiliation(s)
- Tugba Celiker
- Istanbul Technical University, Department of Chemistry, 34469, Maslak, Istanbul, Turkey
| | - Ali Suerkan
- Istanbul Technical University, Department of Chemistry, 34469, Maslak, Istanbul, Turkey
| | - Sinem Altinisik
- Canakkale Onsekiz Mart University, Department of Chemical Engineering, 17100, Canakkale, Turkey
| | - Mert Akgun
- Canakkale Onsekiz Mart University, Science and Technology Application and Research Center, 17100, Canakkale, Turkey
| | - Sermet Koyuncu
- Canakkale Onsekiz Mart University, Department of Chemical Engineering, 17100, Canakkale, Turkey
| | - Yusuf Yagci
- Istanbul Technical University, Department of Chemistry, 34469, Maslak, Istanbul, Turkey
- Faculty of Science, Chemistry Department, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
24
|
Isci R, Gunturkun D, Yalin AS, Ozturk T. Copolymers of 4‐thieno[3,2‐
b
]thiophen‐3‐ylbenzonitrile with anthracene and biphenyl; synthesis, characterization, electronic, optical, and thermal properties. JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1002/pol.20200635] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Recep Isci
- Department of Chemistry Istanbul Technical University Maslak Turkey
| | - Dilara Gunturkun
- Department of Chemistry Istanbul Technical University Maslak Turkey
| | - Ahsen Sare Yalin
- Department of Chemistry Istanbul Technical University Maslak Turkey
| | - Turan Ozturk
- Department of Chemistry Istanbul Technical University Maslak Turkey
- Chemistry Group Laboratories TUBITAK UME Gebze Turkey
| |
Collapse
|
25
|
Isci R, Tekin E, Mucur SP, Ozturk T. A Bifunctional Bulky Thienothiophene Derivative; Synthesis, Electronic‐Optical Properties and OLED Applications. ChemistrySelect 2020. [DOI: 10.1002/slct.202003273] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Recep Isci
- Istanbul Technical University Department of Chemistry Faculty of Science Maslak Istanbul 34469 Turkey
| | | | | | - Turan Ozturk
- Istanbul Technical University Department of Chemistry Faculty of Science Maslak Istanbul 34469 Turkey
- TUBITAK UME Chemistry Group Laboratories PBox 54 41470 Gebze Kocaeli Turkey
| |
Collapse
|
26
|
|