1
|
Matxinandiarena E, Peñas MI, Curole BJ, Król M, Polo Fonseca L, Ruokolainen J, Grayson SM, Sangroniz L, Müller AJ. Crystallization-Induced Self-Assembly of Poly(ethylene glycol) Side Chains in Dithiol-yne-Based Comb Polymers: Side Chain Spacing and Molecular Weight Effects. Macromolecules 2024; 57:4906-4917. [PMID: 38827961 PMCID: PMC11140754 DOI: 10.1021/acs.macromol.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/12/2024] [Accepted: 05/07/2024] [Indexed: 06/05/2024]
Abstract
The chain architecture and topology of macromolecules impact their physical properties and final performance, including their crystallization process. In this work, comb polymers constituted by poly(ethylene glycol), PEG, side chains, and a dithiol-yne-based ring polymer backbone have been studied, focusing on the micro- and nanostructures of the system, thermal behavior, and crystallization kinetics. The designed comb system allows us to investigate the role of a ring backbone, the impact of varying the distance between two neighboring side chains, and the effect of the molecular weight of the side chain. The results reflect that the governing factor in the crystalline properties is the molar mass of the side chains and that the tethering of PEG chains to the ring backbone brings important constraints to the crystallization process, reducing the crystallinity degree and slowing down the crystallization kinetics in comparison to analogue PEG homopolymers. We demonstrate that the effect of spatial hindrance in the comb-like PEG polymers drives the morphology toward highly ordered, self-assembled, semicrystalline superstructures with either extended interdigitated chain crystals or novel (for comb polymers) interdigitated folded chain lamellar crystals. These structures depend on PEG molecular weight, the distance between neighboring tethered PEG chains, and the crystallization conditions (nonisothermal versus isothermal). This work sheds light on the role of chain architecture and topology in the structure of comb-like semicrystalline polymers.
Collapse
Affiliation(s)
- Eider Matxinandiarena
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Mario Iván Peñas
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Brennan J. Curole
- Department
of Chemistry, Tulane University, 6400 Freret Street, 2015 Percival
Stern Hall, New Orleans, Louisiana 70118, United States
| | - Monika Król
- Department
of Applied Physics, School of Science, Aalto
University, FIN-00076 Espoo, Finland
| | - Lucas Polo Fonseca
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Janne Ruokolainen
- Department
of Applied Physics, School of Science, Aalto
University, FIN-00076 Espoo, Finland
| | - Scott M. Grayson
- Department
of Chemistry, Tulane University, 6400 Freret Street, 2015 Percival
Stern Hall, New Orleans, Louisiana 70118, United States
| | - Leire Sangroniz
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
| | - Alejandro J. Müller
- POLYMAT
and Department of Polymers and Advanced Materials: Physics, Chemistry
and Technology, Faculty of Chemistry, University
of the Basque Country UPV/EHU, Paseo Manuel de Lardizábal, 3, 20018 Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain
| |
Collapse
|
2
|
Chuang PY, Liao SY, Wu KH, Hu YR, Lo CT. Competitive Effects of Hydrogen Bonds and Molecular Weights on the Phase and Crystallization Behaviors of Binary Block Copolymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Po-Yun Chuang
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| | - Shu-Yu Liao
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| | - Kuang-Hsin Wu
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| | - Yu-Rong Hu
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| | - Chieh-Tsung Lo
- Department of Chemical Engineering, National Cheng Kung University, No. 1, University Road, Tainan City 701, Taiwan
| |
Collapse
|
3
|
Kang S, Lee J, Kim E, Seo Y, Choi C, Kim JK. Inverted Cylindrical Microdomains from Binary Block Copolymer Blends Capable of Hydrogen Bonding. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sukwon Kang
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jaeyong Lee
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Eunyoung Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yeseong Seo
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Chungryong Choi
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| |
Collapse
|
4
|
Kwon G, Kim M, Jung WH, Park S, Tam TTH, Oh SH, Choi SH, Ahn DJ, Lee SH, Kim BS. Designing Cooperative Hydrogen Bonding in Polyethers with Carboxylic Acid Pendants. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c01314] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Geehwan Kwon
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Minseong Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Woo Hyuk Jung
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Suebin Park
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| | - Thi-Thanh Huynh Tam
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| | - Seung-Hwan Oh
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Dong June Ahn
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Ho Lee
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulsan 44412, Republic of Korea
| | - Byeong-Su Kim
- Department of Chemistry, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|