1
|
Feng S, Guo J, Yang Q, Guan F, Yao Q, Wang Y, Quan F, Zeng S. Development of polyvinyl alcohol/carrageenan hydrogels and fibers via KOH treatment for Morse code information transmission. Int J Biol Macromol 2024; 265:130803. [PMID: 38484811 DOI: 10.1016/j.ijbiomac.2024.130803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/02/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
To solve the inherent problems of conductive hydrogels, such as relatively low mechanical properties and fatigue resistance, inability to work after water loss, and difficulty weaving. In this study, the borax-crosslinked polyvinyl alcohol/k-carrageenan (kC) conducting hydrogels (BPKKOH) were prepared by a simple one-pot method, and KOH treatment was used instead of the cumbersome and time-consuming freeze-thaw cycle to improve the comprehensive properties. The KOH treatment increased the hydrogel hydrogen bonding content by 7.72 % and synergized with the induction of kC by K+ to enhance the tensile and compressive strengths by 8.12 and 34.6 times, respectively. Meanwhile, the BPKKOH hydrogel's fatigue resistance and shape recovery after water loss were improved. Additionally, the BPKKOH hydrogels can be monitored for finger bending, showing clear and stable differences in electrical signals. BPKKOH hydrogels combined with Morse code realize applications in information transmission and encryption/decryption. Notably, introducing KOH ensures the molding and preparation of BPKKOH hydrogel fibers while having good signal responsiveness and monitoring ability. More importantly, it can be woven into fabrics that can be loaded with heavy weights, which has the potential to be directly applied in smart wearables. This work provides new ideas for applying flexible sensors and wearable smart textiles.
Collapse
Affiliation(s)
- Shi Feng
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jing Guo
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Qiang Yang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fucheng Guan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Qiang Yao
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yonghe Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Fengyu Quan
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Shijun Zeng
- Dalian Huayang New Material Technology Co., Ltd., Dalian 116047, China
| |
Collapse
|
2
|
Wang J, Liu Z, Zhou Y, Zhu S, Gao C, Yan X, Wei K, Gao Q, Ding C, Luo T, Yang R. A multifunctional sensor for real-time monitoring and pro-healing of frostbite wounds. Acta Biomater 2023; 172:330-342. [PMID: 37806374 DOI: 10.1016/j.actbio.2023.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Flexible epidermal sensors based on conductive hydrogels hold great promise for various applications, such as wearable electronics and personal healthcare monitoring. However, the integration of conductive hydrogel epidermal sensors into multiple applications remains challenging. In this study, a multifunctional PAAm/PEG/hydrolyzed keratin (Hereinafter referred to as HK)/MXene conductive hydrogel (PPHM hydrogel) was designed as a high-performance therapeutic all-in-one epidermal sensor. This sensor not only accelerates wound healing but also provides wearable human-computer interaction. The developed sensor possesses highly sensitive sensing properties (Gauge Factor = 4.82 at high strain), strong mechanical tensile properties (capable of achieving a maximum elongation at break of 600 %), rapid self-healing capability, stable self-adhesive capability, biocompatibility, freeze resistance at -20 °C, and adjustable photo-thermal conversion capability. This therapeutic all-in-one sensor can sensitively monitor human movements, enabling the detection of small electrophysiological signals for diagnosing relevant activities and diseases. Furthermore, using a rat frostbite model, we demonstrated that the composite hydrogel sensor can serve as an effective wound dressing to accelerate the healing process. This study serves as a valuable reference for the development of multifunctional flexible epidermal sensors for personal smart health monitoring. STATEMENT OF SIGNIFICANCE: Accelerated wound healing reduces the risk of wound infection, and conductive hydrogel-based sensors can monitor physiological signals. The multifunctional application of conductive hydrogel sensors combined with wound diagnostic and therapeutic capabilities can meet personalized medical requirements for wound healing and sensor monitoring. The aim of this study is to develop a multifunctional hydrogel patch. The multifunctional hydrogel can be assembled into a flexible wearable high-performance diagnostic and therapeutic integrated sensor that can effectively accelerate the healing of frostbite wounds and satisfy the real-time monitoring of multi-application scenarios. We expect that this study will inform efforts to integrate wound therapy and sensor monitoring.
Collapse
Affiliation(s)
- Jian Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Zhenyu Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Yang Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Shilu Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Chen Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xinze Yan
- School of Life Science, Anhui Medical University, Hefei, 230032, China
| | - Kun Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Qian Gao
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| | - Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Zhang J, Liang Y, Deng Z, Xu H, Zhang H, Guo B, Zhang J. Adhesive Ion-Conducting Hydrogel Strain Sensor with High Sensitivity, Long-Term Stability, and Extreme Temperature Tolerance. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37319345 DOI: 10.1021/acsami.3c03624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Ion-conducting hydrogels with excellent flexibility and ductility have great potential in human movements monitoring. However, some obstacles, including a small detection range, low sensitivity, low electrical conductivity, and poor stability under extreme conditions, impede their use as sensors. Herein, an ion-conducting hydrogel comprising acrylamide (AM), lauryl methacrylate (LMA), 2-acrylamido-2-methylpropanesulfonic acid (AMPS), and a water/glycerol binary solvent (named the AM-LMA-AMPS-LiCl (water/glycerol) hydrogel) is designed, which exhibits an enlarged detection range of 0%-1823% and improved transparency. Notably, the ion channel constructed using AMPS and LiCl significantly improves the sensitivity (gauge factor = 22.15 ± 2.86) of the hydrogel. The water/glycerol binary solvent endows the hydrogel with electrical and mechanical stability under extreme conditions (70 and -80 °C). Furthermore, the AM-LMA-AMPS-LiCl (water/glycerol) hydrogel exhibits antifatigue properties for 10 cycles (0%-1000%) because of noncovalent interactions such as hydrophobic interactions and hydrogen bonding. The hydrogel can be used to monitor human movements such as joint bending and perceive subtle discrepancies such as different joint bending speeds and angles, showing its great potential application in human movement monitoring, electronic skin, and wearable devices.
Collapse
Affiliation(s)
- Jiaodi Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuqing Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zexing Deng
- College of Materials Science and Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Huiru Xu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Hualei Zhang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Baolin Guo
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jie Zhang
- Institute of Preventive Medicine, Fourth Military Medical University, Xi'an 710032, China
| |
Collapse
|
4
|
Zhang H, Shi LWE, Zhou J. Recent developments of polysaccharide‐based double‐network hydrogels. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20220510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Haodong Zhang
- Hubei Engineering Center of Natural Polymer‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Ling Wa Eric Shi
- Hubei Engineering Center of Natural Polymer‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| | - Jinping Zhou
- Hubei Engineering Center of Natural Polymer‐based Medical Materials, Key Laboratory of Biomedical Polymers of Ministry of Education, College of Chemistry and Molecular Sciences Wuhan University Wuhan China
| |
Collapse
|
5
|
Qi C, Dong Z, Huang Y, Xu J, Lei C. Tough, Anti-Swelling Supramolecular Hydrogels Mediated by Surfactant-Polymer Interactions for Underwater Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30385-30397. [PMID: 35737578 DOI: 10.1021/acsami.2c06395] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
It is a great challenge for traditional hydrogel-based sensors to be effective underwater due to unsatisfactory water resistance and insufficient wet adhesion. Herein, a tough supramolecular hydrogel aiming at underwater sensing is prepared by the modification of hydrophilic poly(acrylic acid) (PAA) with a small amount of hydrophobic lauryl methacrylate (LMA) in the presence of high concentrations of the cationic surfactant cetyltrimethylammonium bromide (CTAB). Owing to the synergistic effects of the electrostatic interactions and hydrophobic associations of CTAB with the P(AA-co-LMA) copolymer, the hydrogel with a water content of approximately 58.5 wt % demonstrates outstanding anti-swelling feature, superior tensile strength (≈1.6 MPa), large stretchability (>900%), rapid room-temperature self-recovery (≈3 min at 100% strain), and robust wet adhesion to diverse substrates. Moreover, the strain sensor based on the hydrogel displays keen sensitivity in a sensing range of 0-900% (gauge factor is 0.42, 3.44, 5.44, and 7.39 in the strain range of 0-100, 100-300, 300-500, and 500-900%, respectively) and pronounced stability both in air and underwater. Additionally, the hydrogel can be easily recycled by dissolving in anhydrous ethanol. This work provides a facile strategy to fabricate eco-friendly, tough supramolecular hydrogels for underwater sensing.
Collapse
Affiliation(s)
- Chuyi Qi
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Zhixian Dong
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Yuekai Huang
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Jinbao Xu
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P.R. China
| | - Caihong Lei
- Guangdong Provincial Key Laboratory of Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, P.R. China
| |
Collapse
|