1
|
Panahi-Sarmad M, Alikarami N, Guo T, Haji M, Jiang F, Rojas OJ. Aerogels based on Bacterial Nanocellulose and their Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403583. [PMID: 39073312 DOI: 10.1002/smll.202403583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/01/2024] [Indexed: 07/30/2024]
Abstract
Microbial cellulose stands out for its exceptional characteristics in the form of biofilms formed by highly interlocked fibrils, namely, bacterial nanocellulose (BNC). Concurrently, bio-based aerogels are finding uses in innovative materials owing to their lightweight, high surface area, physical, mechanical, and thermal properties. In particular, bio-based aerogels based on BNC offer significant opportunities as alternatives to synthetic or mineral counterparts. BNC aerogels are proposed for diverse applications, ranging from sensors to medical devices, as well as thermal and electroactive systems. Due to the fibrous nanostructure of BNC and the micro-porosity of BNC aerogels, these materials enable the creation of tailored and specialized designs. Herein, a comprehensive review of BNC-based aerogels, their attributes, hierarchical, and multiscale features are provided. Their potential across various disciplines is highlighted, emphasizing their biocompatibility and suitability for physical and chemical modification. BNC aerogels are shown as feasible options to advance material science and foster sustainable solutions through biotechnology.
Collapse
Affiliation(s)
- Mahyar Panahi-Sarmad
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Niloofar Alikarami
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Tianyu Guo
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
| | - Mehri Haji
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Feng Jiang
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Orlando J Rojas
- Department of Wood Science, The University of British Columbia, 2900-2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
- Bioproducts Institute, University of British Columbia, 2385 Agronomy Rd and East Mall, Vancouver, BC, V6T 1Z4, Canada
- Department of Chemical and Biological Engineering, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z3, Canada
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
2
|
Fei Y, Li Z, Li P, Zhang X, Xu Z, Deng W, Zhang H, Li G. Dual-Functional Metal-Organic Framework Freestanding Aerogel Boosts Sulfur Reduction Reaction for Lithium-Sulfur Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:53833-53842. [PMID: 39320155 DOI: 10.1021/acsami.4c11244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Lithium-sulfur (Li-S) technology stands out as a promising energy storage system. However, its journey toward practical implementation is hindered by sluggish sulfur reduction reaction (SRR) kinetics. A free-standing graphene aerogel (GA) combined with a copper-based metal-organic framework (MOF-GA) is fabricated as the sulfur host material for Li-S battery cathodes. The presence of MOF particles assumes a dual role, demonstrating its efficacy not only as a catalyst for the reduction reaction of graphene oxide (GO) but also as an electrochemical catalyst to promote sluggish SRR kinetics. The former amplifies electron transfer kinetics within the electrode, and the latter elevates the overall cell performance. Experimental results and theoretical calculations have proven the catalytic activity of MOF-GA electrodes, leading to a higher sulfur utilization of over 80% and a lower capacity decay of 0.082% per cycle. Under extreme conditions, the Li-S cells show a high initial specific capacity of 1113.0 mAh·g-1 under an elevated loading of 4.25 mg·cm-2 and a high sulfur fraction >70%. This study shows the effectiveness of the synergist effects of MOF particles within the GA framework in promoting the sulfur redox reaction in Li-S batteries.
Collapse
Affiliation(s)
- Yue Fei
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhenfeng Li
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Pengcheng Li
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Xuzi Zhang
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Zhixiao Xu
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Wenjing Deng
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Ge Li
- Department of Mechanical Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
3
|
Šilhavík M, Kumar P, Levinský P, Zafar ZA, Hejtmánek J, Červenka J. Anderson Localization of Phonons in Thermally Superinsulating Graphene Aerogels with Metal-Like Electrical Conductivity. SMALL METHODS 2024; 8:e2301536. [PMID: 38577909 DOI: 10.1002/smtd.202301536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 03/24/2024] [Indexed: 04/06/2024]
Abstract
In the quest to improve energy efficiency and design better thermal insulators, various engineering strategies have been extensively investigated to minimize heat transfer through a material. Yet, the suppression of thermal transport in a material remains elusive because heat can be transferred by multiple energy carriers. Here, the realization of Anderson localization of phonons in a random 3D elastic network of graphene is reported. It is shown that thermal conductivity in a cellular graphene aerogel can be drastically reduced to 0.9 mW m-1 K-1 by the application of compressive strain while keeping a high metal-like electrical conductivity of 120 S m-1 and ampacity of 0.9 A. The experiments reveal that the strain can cause phonon localization over a broad compression range. The remaining heat flow in the material is dominated by charge transport. Conversely, electrical conductivity exhibits a gradual increase with increasing compressive strain, opposite to the thermal conductivity. These results imply that strain engineering provides the ability to independently tune charge and heat transport, establishing a new paradigm for controlling phonon and charge conduction in solids. This approach will enable the development of a new type of high-performance insulation solutions and thermally superinsulating materials with metal-like electrical conductivity.
Collapse
Affiliation(s)
- Martin Šilhavík
- Department of Thin Films and Nanostructures, FZU - Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, Prague, 162 00, Czech Republic
| | - Prabhat Kumar
- Department of Thin Films and Nanostructures, FZU - Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, Prague, 162 00, Czech Republic
| | - Petr Levinský
- Department of Magnetics and Superconductors, FZU - Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, Prague, 162 00, Czech Republic
| | - Zahid Ali Zafar
- Department of Thin Films and Nanostructures, FZU - Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, Prague, 162 00, Czech Republic
| | - Jiří Hejtmánek
- Department of Magnetics and Superconductors, FZU - Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, Prague, 162 00, Czech Republic
| | - Jiří Červenka
- Department of Thin Films and Nanostructures, FZU - Institute of Physics of the Czech Academy of Sciences, Cukrovarnická 10/112, Prague, 162 00, Czech Republic
| |
Collapse
|
4
|
Lázár I, Čelko L, Menelaou M. Aerogel-Based Materials in Bone and Cartilage Tissue Engineering-A Review with Future Implications. Gels 2023; 9:746. [PMID: 37754427 PMCID: PMC10530393 DOI: 10.3390/gels9090746] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023] Open
Abstract
Aerogels are fascinating solid materials known for their highly porous nanostructure and exceptional physical, chemical, and mechanical properties. They show great promise in various technological and biomedical applications, including tissue engineering, and bone and cartilage substitution. To evaluate the bioactivity of bone substitutes, researchers typically conduct in vitro tests using simulated body fluids and specific cell lines, while in vivo testing involves the study of materials in different animal species. In this context, our primary focus is to investigate the applications of different types of aerogels, considering their specific materials, microstructure, and porosity in the field of bone and cartilage tissue engineering. From clinically approved materials to experimental aerogels, we present a comprehensive list and summary of various aerogel building blocks and their biological activities. Additionally, we explore how the complexity of aerogel scaffolds influences their in vivo performance, ranging from simple single-component or hybrid aerogels to more intricate and organized structures. We also discuss commonly used formulation and drying methods in aerogel chemistry, including molding, freeze casting, supercritical foaming, freeze drying, subcritical, and supercritical drying techniques. These techniques play a crucial role in shaping aerogels for specific applications. Alongside the progress made, we acknowledge the challenges ahead and assess the near and far future of aerogel-based hard tissue engineering materials, as well as their potential connection with emerging healing techniques.
Collapse
Affiliation(s)
- István Lázár
- Department of Inorganic and Analytical Chemistry, University of Debrecen, Egyetem tér 1, 4032 Debrecen, Hungary
| | - Ladislav Čelko
- Central European Institute of Technology, Brno University of Technology, Purkynova 656/123, 612 00 Brno, Czech Republic;
| | - Melita Menelaou
- Department of Chemical Engineering, Cyprus University of Technology, 30 Arch. Kyprianos Str., Limassol 3036, Cyprus
| |
Collapse
|
5
|
Liu F, Jiang Y, Feng J, Li L, Feng J. Ultralight elastic Al 2O 3 nanorod-graphene aerogel for pressure sensing and thermal superinsulation. RSC Adv 2023; 13:15190-15198. [PMID: 37213335 PMCID: PMC10193382 DOI: 10.1039/d3ra01070h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/24/2023] [Indexed: 05/23/2023] Open
Abstract
Novel nanorod aerogels have gained tremendous attention owing to their unique structure. However, the intrinsic brittleness of ceramics still severely limits their further functionalization and application. Here, based on the self-assembly between one-dimensional (1D) Al2O3 nanorods and two-dimensional (2D) graphene sheets, lamellar binary Al2O3 nanorod-graphene aerogels (ANGAs) were prepared by the bidirectional freeze-drying technique. Thanks to the synergistic effect of rigid Al2O3 nanorods and high specific extinction coefficient elastic graphene, the ANGAs not only exhibit robust structure and variable resistance under pressure, but also possess superior thermal insulation properties compared to pure Al2O3 nanorod aerogels. Therefore, a series of fascinating features such as ultra-low density (3.13-8.26 mg cm-3), enhanced compressive strength (6 times higher than graphene aerogel), excellent pressure sensing durability (500 cycles at 40% strain) and ultra-low thermal conductivity (0.0196 W m-1 K-1 at 25 °C and 0.0702 W m-1 K-1 at 1000 °C) are integrated in ANGAs. The present work provides fresh insight into the fabrication of ultralight thermal superinsulating aerogels and the functionalization of ceramic aerogels.
Collapse
Affiliation(s)
- Fengqi Liu
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Technology, National University of Defense Technology Changsha 410073 P. R. China
| | - Yonggang Jiang
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Technology, National University of Defense Technology Changsha 410073 P. R. China
| | - Junzong Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Technology, National University of Defense Technology Changsha 410073 P. R. China
| | - Liangjun Li
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Technology, National University of Defense Technology Changsha 410073 P. R. China
| | - Jian Feng
- Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Technology, National University of Defense Technology Changsha 410073 P. R. China
| |
Collapse
|
6
|
Guo H, Fei Q, Lian M, Zhu T, Fan W, Li Y, Sun L, de Jong F, Chu K, Zong W, Zhang C, Liu T. Weaving Aerogels into 3D Ordered Hyperelastic Hybrid Carbon Assemblies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2301418. [PMID: 37099393 DOI: 10.1002/adma.202301418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/21/2023] [Indexed: 06/19/2023]
Abstract
The development of a 3D carbon assembly with a combination of extraordinary electrochemical and mechanical properties is desirable yet challenging. Herein, an ultralight and hyperelastic nanofiber-woven hybrid carbon assembly (NWHCA) is fabricated by nanofiber weaving of isotropic porous and mechanical brittle quasi-aerogels. Upon subsequent pyrolysis, metallogel-derived quasi-aerogel hybridization and nitrogen/phosphorus co-doping are integrated into the NWHCA. Finite element simulation indicates that the 3D lamella-bridge architecture of NWHCA with the quasi-aerogel hybridization contributes to resisting plastic deformation and structural damage under high compression, experimentally demonstrated by complete deformation recovery at 80% compression and unprecedented fatigue resistance (>94% retention after 5000 cycles). Due to the superelasticity and quasi-aerogel integration, the zinc-air battery assembled based on NWHCA shows excellent electrochemical performance and flexibility. A proof-of-concept integrated device is presented, in which the flexible battery powers a piezoresistive sensor, using the NWHCA as the air cathode and the elastic conductor respectively, which can detect full-range and sophisticated motions while attached to human skin. The nanofiber weaving strategy allows the construction of lightweight, superelastic, and multifunctional hybrid carbon assemblies with great potential in wearable and integrated electronics.
Collapse
Affiliation(s)
- Hele Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Qingyang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Meng Lian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Tianyi Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Wei Fan
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Yueming Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Li Sun
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Flip de Jong
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Kaibin Chu
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| | - Wei Zong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chao Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Tianxi Liu
- Key Laboratory of Synthetic and Biological Colloids, Ministry of Education, School of Chemical and Material Engineering, Jiangnan University, Wuxi, 214122, P. R. China
| |
Collapse
|