1
|
Vanparijs N, Nuhn L, De Geest BG. Transiently thermoresponsive polymers and their applications in biomedicine. Chem Soc Rev 2018; 46:1193-1239. [PMID: 28165097 DOI: 10.1039/c6cs00748a] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The focus of this review is on the class of transiently thermoresponsive polymers. These polymers are thermoresponsive, but gradually lose this property upon chemical transformation - often a hydrolysis reaction - in the polymer side chain or backbone. An overview of the different approaches used for the design of these polymers along with their physicochemical properties is given. Their amphiphilic properties and degradability into fully soluble compounds make this class of responsive polymers attractive for drug delivery and tissue engineering applications. Examples of these are also provided in this review.
Collapse
Affiliation(s)
- Nane Vanparijs
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Lutz Nuhn
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
2
|
Zhao X, Sun H, Zhang X, Ren J, Shao F, Liu K, Li W, Zhang A. OEGylated collagen mimetic polypeptides with enhanced supramolecular assembly. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.07.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
3
|
Fisher AL, Schollick JMH, Aarts DGAL, Grossel MC. Synthesis and gelation properties of poly(2-alkyl-2-oxazoline) based thermo-gels. RSC Adv 2016. [DOI: 10.1039/c6ra06781f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel thermo-gelling polymers based on poly(2-alkyl-2-oxazoline)s grafted onto a polar carboxymethylcellulose backbone gel are reported which have potential applications in areas such as drug delivery and tissue engineering.
Collapse
Affiliation(s)
- Adam L. Fisher
- Department of Chemistry
- University of Southampton
- Southampton
- UK
| | | | | | | |
Collapse
|
4
|
Li Y, Rodrigues J, Tomás H. Injectable and biodegradable hydrogels: gelation, biodegradation and biomedical applications. Chem Soc Rev 2012; 41:2193-221. [PMID: 22116474 DOI: 10.1039/c1cs15203c] [Citation(s) in RCA: 972] [Impact Index Per Article: 81.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Injectable hydrogels with biodegradability have in situ formability which in vitro/in vivo allows an effective and homogeneous encapsulation of drugs/cells, and convenient in vivo surgical operation in a minimally invasive way, causing smaller scar size and less pain for patients. Therefore, they have found a variety of biomedical applications, such as drug delivery, cell encapsulation, and tissue engineering. This critical review systematically summarizes the recent progresses on biodegradable and injectable hydrogels fabricated from natural polymers (chitosan, hyaluronic acid, alginates, gelatin, heparin, chondroitin sulfate, etc.) and biodegradable synthetic polymers (polypeptides, polyesters, polyphosphazenes, etc.). The review includes the novel naturally based hydrogels with high potential for biomedical applications developed in the past five years which integrate the excellent biocompatibility of natural polymers/synthetic polypeptides with structural controllability via chemical modification. The gelation and biodegradation which are two key factors to affect the cell fate or drug delivery are highlighted. A brief outlook on the future of injectable and biodegradable hydrogels is also presented (326 references).
Collapse
Affiliation(s)
- Yulin Li
- CQM-Centro de Química da Madeira, MMRG, Universidade da Madeira, Campus da Penteada 9020-105 Funchal, Portugal.
| | | | | |
Collapse
|
5
|
Kang EY, Yeon B, Moon HJ, Jeong B. PEG-l-PAF and PEG-d-PAF: Comparative Study on Thermogellation and Biodegradation. Macromolecules 2012. [DOI: 10.1021/ma202809c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Eun Young Kang
- Department of Bioinspired Science
(WCU), Department of Chemistry and Nano Science, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu,
Seoul, 120-750, Korea
| | - Bora Yeon
- Department of Bioinspired Science
(WCU), Department of Chemistry and Nano Science, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu,
Seoul, 120-750, Korea
| | - Hyo Jung Moon
- Department of Bioinspired Science
(WCU), Department of Chemistry and Nano Science, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu,
Seoul, 120-750, Korea
| | - Byeongmoon Jeong
- Department of Bioinspired Science
(WCU), Department of Chemistry and Nano Science, Ewha Womans University, 52, Ewhayeodae-gil, Seodaemun-gu,
Seoul, 120-750, Korea
| |
Collapse
|
6
|
Moon HJ, Ko DY, Park MH, Joo MK, Jeong B. Temperature-responsive compounds as in situ gelling biomedical materials. Chem Soc Rev 2012; 41:4860-83. [DOI: 10.1039/c2cs35078e] [Citation(s) in RCA: 334] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Dai M, Haghpanah J, Singh N, Roth EW, Liang A, Tu RS, Montclare JK. Artificial Protein Block Polymer Libraries Bearing Two SADs: Effects of Elastin Domain Repeats. Biomacromolecules 2011; 12:4240-6. [DOI: 10.1021/bm201083d] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Min Dai
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
| | - Jennifer Haghpanah
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
| | - Navjot Singh
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
| | - Eric W. Roth
- Skirball Institute Image Core
Facility, New York University Medical Center, New York, New York 10016, United States
| | - Alice Liang
- Skirball Institute Image Core
Facility, New York University Medical Center, New York, New York 10016, United States
| | - Raymond S. Tu
- Department of Chemical Engineering, City College of New York, New York, New York 10031,
United States
| | - Jin Kim Montclare
- Department
of Chemical and Biological
Sciences, Polytechnic Institute of NYU,
Brooklyn, New York 11201, United States
- Department
of Biochemistry, SUNY Downstate Medical Center, Brooklyn, New York 11203,
United States
| |
Collapse
|
8
|
Koyama N, Okubo Y, Nakao K, Osawa K, Bessho K. Experimental study of osteoinduction using a new material as a carrier for bone morphogenetic protein-2. Br J Oral Maxillofac Surg 2011; 49:314-8. [DOI: 10.1016/j.bjoms.2010.05.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 05/14/2010] [Indexed: 10/19/2022]
|
9
|
|
10
|
Badi N, Lutz JF. PEG-based thermogels: Applicability in physiological media. J Control Release 2009; 140:224-9. [DOI: 10.1016/j.jconrel.2009.04.012] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 04/10/2009] [Indexed: 01/16/2023]
|
11
|
Jeong Y, Joo MK, Bahk KH, Choi YY, Kim HT, Kim WK, Jeong Lee H, Sohn YS, Jeong B. Enzymatically degradable temperature-sensitive polypeptide as a new in-situ gelling biomaterial. J Control Release 2009; 137:25-30. [DOI: 10.1016/j.jconrel.2009.03.008] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Revised: 03/09/2009] [Accepted: 03/15/2009] [Indexed: 11/26/2022]
|
12
|
Ju XJ, Xie R, Yang L, Chu LY. Biodegradable ‘intelligent’ materials in response to physical stimuli for biomedical applications. Expert Opin Ther Pat 2009; 19:493-507. [DOI: 10.1517/13543770902771282] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
13
|
Tanihara M, Kajiwara K, Ida K, Suzuki Y, Kamitakahara M, Ogata SI. The biodegradability of poly(Pro-Hyp-Gly) synthetic polypeptide and the promotion of a dermal wound epithelialization using a poly(Pro-Hyp-Gly) sponge. J Biomed Mater Res A 2008; 85:133-9. [PMID: 17688259 DOI: 10.1002/jbm.a.31496] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Collagens are widely used in medical applications, but animal-derived collagens have several drawbacks, such as low thermal stability, nonspecific cell attachment, and susceptibility to contamination by infectious pathogens, such as prions, which may transfect humans. We have previously reported the chemical synthesis of polypeptides consisting of a Pro-Hyp-Gly sequence and the high thermostability of their triple-helical structure. To clarify the biomaterial characteristics of the poly(Pro-Hyp-Gly) polypeptide, we assessed its biodegradability and its capability for skin regeneration. Eight weeks after implantation, a poly(Pro-Hyp-Gly) freeze-dried sponge embedded subcutaneously into a rat dorsal area degraded at the same rate as Terudermis, which is made from bovine type I atelocollagen and is used as an artificial dermis. Surprisingly, compared with Terudermis, the poly(Pro-Hyp-Gly) sponge significantly promoted epithelialization of a full-thickness wound on a rabbit's ear pad. This chemically synthesized polypeptide may be useful as a scaffold for tissue engineering and tissue regeneration.
Collapse
Affiliation(s)
- Masao Tanihara
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama, Ikoma, Nara 630-0192, Japan.
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
A concentrated fish soup could be gelled in the winter and re-solled upon heating. In contrast, some synthetic copolymers exhibit an inverse sol-gel transition with spontaneous physical gelation upon heating instead of cooling. If the transition in water takes place below the body temperature and the chemicals are biocompatible and biodegradable, such gelling behavior makes the associated physical gels injectable biomaterials with unique applications in drug delivery and tissue engineering etc. Various therapeutic agents or cells can be entrapped in situ and form a depot merely by a syringe injection of their aqueous solutions at target sites with minimal invasiveness and pain. This tutorial review summarizes and comments on this soft matter, especially thermogelling poly(ethylene glycol)-(biodegradable polyester) block copolymers. The main types of injectable hydrogels are also briefly introduced, including both physical gels and chemical gels.
Collapse
Affiliation(s)
- Lin Yu
- Department of Macromolecular Science, Key Laboratory of Molecular Engineering of Polymers of Ministry of Education, Advanced Materials Laboratory, Fudan University, Shanghai, China
| | | |
Collapse
|
15
|
|
16
|
Xu N, Du FS, Li ZC. Synthesis of poly(L-lysine)-graft-polyesters through Michael addition and their self-assemblies in aqueous solutions. ACTA ACUST UNITED AC 2007. [DOI: 10.1002/pola.21949] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
17
|
Ibarboure E, Rodríguez-Hernández J, Papon E. Thermotropic liquid crystal behavior on PBLG-PDMS-PBLG triblock copolymers. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/pola.21559] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Iijima M, Nagasaki Y. Synthesis of poly[N-isopropylacrylamide-g-poly(ethylene glycol)] with a reactive group at the poly(ethylene glycol) end and its thermosensitive self-assembling character. ACTA ACUST UNITED AC 2006. [DOI: 10.1002/pola.21264] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|