1
|
Granadeiro CM, Julião D, Ribeiro SO, Cunha-Silva L, Balula SS. Recent advances in lanthanide-coordinated polyoxometalates: from structural overview to functional materials. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
2
|
Ladikan O, Silyavka E, Mitrofanov A, Laptenkova A, Shilovskikh V, Kolonitckii P, Ivanov N, Remezov A, Fedorova A, Khripun V, Pestova O, Podolskaya EP, Sukhodolov NG, Selyutin AA. Thin Films of Lanthanide Stearates as Modifiers of the Q-Sense Device Sensor for Studying Insulin Adsorption. ACS OMEGA 2022; 7:24973-24981. [PMID: 35910105 PMCID: PMC9330115 DOI: 10.1021/acsomega.1c07300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
This article presents new possibilities of using thin films of lanthanide stearates as sorbent materials. Modification of the Q-sense device resonator with monolayers of lanthanide stearates by the Langmuir-Schaeffer method made it possible to study the process of insulin protein adsorption on the surface of new thin-film sorbents. The resulting films were also characterized by compression isotherms, chemical analysis, scanning electron microscopy, and mass spectrometry. The transition of stearic acid to salt was recorded by IR spectroscopy. Using the LDI MS method, the main component of thin films, lanthanide distearate, was established. The presence of Eu2+ in thin films was revealed. In the case of europium stearate, the maximum value of insulin adsorption was obtained, -1.67·10-10 mole/cm2. The findings suggest the possibility of using thin films of lanthanide stearates as a sorption material for the proteomics determination of the quantitative protein content in complex fluid systems by specific adsorption on modified surfaces and isolation of such proteins from complex mixtures.
Collapse
Affiliation(s)
- Olga Ladikan
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Elena Silyavka
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Andrei Mitrofanov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Str. 6, 01069 Dresden, Germany
| | - Anastasia Laptenkova
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Vladimir Shilovskikh
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Petr Kolonitckii
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Nikita Ivanov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Andrey Remezov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Anna Fedorova
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Vassily Khripun
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Olga Pestova
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| | - Ekaterina P. Podolskaya
- Golikov
Research Center of Toxicology, Bekhtereva Street 1, 192019 St. Petersburg, Russia
- Institute
for Analytical Instrumentation of the Russian Academy of Science, Ivana Chernykh Street 31-33 lit.
A, 198095 St. Petersburg, Russia
| | - Nikolai G. Sukhodolov
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
- Institute
for Analytical Instrumentation of the Russian Academy of Science, Ivana Chernykh Street 31-33 lit.
A, 198095 St. Petersburg, Russia
| | - Artem A. Selyutin
- St.
Petersburg State University, Universitetskaya emb. 7-9, 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Features of the Preparation and Luminescence of Langmuir-Blodgett Films Based on the Tb(III) Complex with 3-Methyl-1-phenyl-4-stearoylpyrazol-5-one and 2,2'-Bipyridine. MATERIALS 2022; 15:ma15031127. [PMID: 35161072 PMCID: PMC8840368 DOI: 10.3390/ma15031127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/16/2022] [Accepted: 01/25/2022] [Indexed: 12/04/2022]
Abstract
In this study, we investigated the effect of terbium ions (Tb3+) on the subphases of the limiting area of the molecule for the complex compound (CC) TbL3∙bipy (where HL is 3-methyl-1-phenyl-4-stearoylpyrazol-5-one and bipy is 2,2′-bipyridine). We examined the Langmuir monolayer and the change in the luminescence properties of TbL3∙bipy-based Langmuir-Blodgett films (LBFs). The analysis of the compression isotherms, infrared, and luminescence spectra of TbL3∙bipy LBFs was performed by varying the concentration of Tb3+ in the subphases. Our results demonstrate the partial dissociation of the CC at concentrations of C(Tb3+) < 5 × 10−4 M.
Collapse
|
4
|
O'Neil AT, Harrison JA, Kitchen JA. Ultra-thin films of amphiphilic lanthanide complexes: multi-colour emission from molecular monolayers. Chem Commun (Camb) 2021; 57:8067-8070. [PMID: 34296228 DOI: 10.1039/d1cc02628c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
We report the synthesis and Langmuir-Blodgett deposition of 4 brightly emissive lanthanide amphiphiles that can be co-deposited to give multi-emissive ultra-thin films where two, three and four distinct lanthanide emission profiles are observed. To the best of our knowledge, this is the first report of a four-component emissive Langmuir-Blodgett film.
Collapse
Affiliation(s)
- Alex T O'Neil
- Chemistry, School of Natural and Computational Sciences, Massey University, Auckland, New Zealand.
| | | | | |
Collapse
|
5
|
Hasegawa M, Ishii A. Thin-film formation for promoting the potential of luminescent lanthanide coordination complexes. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
6
|
Lisa G, Yoshitake Y, Michinobu T. Elucidating the thermal degradation of carbazole‐containing platinum–polyyne polymers. J Appl Polym Sci 2019. [DOI: 10.1002/app.47639] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Gabriela Lisa
- Department of Chemical Engineering, Cristofor Simionescu Faculty of Chemical Engineering and Environmental ProtectionGheorghe Asachi Technical University of Iasi 73 Professor Doctor Docent Dimitrie Mangeron Street, Iasi 700050 Romania
| | - Yoko Yoshitake
- Department of Materials Science and EngineeringTokyo Institute of Technology 2‐12‐1 Ookayama, Meguro‐Ku Tokyo 152‐8552 Japan
| | - Tsuyoshi Michinobu
- Department of Materials Science and EngineeringTokyo Institute of Technology 2‐12‐1 Ookayama, Meguro‐Ku Tokyo 152‐8552 Japan
| |
Collapse
|
7
|
Juvenal F, Bonnot A, Fortin D, Harvey PD. The trans-Bis( p-thioetherphenylacetynyl)bis(phosphine)platinum(II) Ligands: A Step towards Predictability and Crystal Design. ACS OMEGA 2017; 2:7433-7443. [PMID: 31457310 PMCID: PMC6645136 DOI: 10.1021/acsomega.7b01352] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/19/2017] [Indexed: 06/10/2023]
Abstract
Two organometallic ligands L1 (trans-[p-MeSC6H4C≡C-Pt(PR3)2-C≡CC6H4SMe; R = Me]) and L2 (R = Et) react with CuX salts (X = Cl, Br, I) in MeCN to form one-dimensional (1D) or two-dimensional (2D) coordination polymers (CPs). The clusters formed with copper halide can either be step cubane Cu4I4, rhomboids Cu2X2, or simply CuI. The formed CPs with L1, which is less sterically demanding than L2, exhibit a crystallization solvent molecule (MeCN), whereas those formed with L2 do not incorporate MeCN molecules in the lattice. These CPs were characterized by X-ray crystallography, thermogravimetric analysis, IR, Raman, absorption, and emission spectra as well as photophysical measurements in the presence and absence of crystallization MeCN molecules for those CPs with the solvent in the lattice (i.e., [(Cu4I4)L1·MeCN] n (CP1), [(Cu2Br2)L1·2MeCN] n (CP3), and [(Cu2Cl2)L1·MeCN] n (CP5)). The crystallization molecules were removed under vacuum to evaluate the porosity of the materials by Brunauer-Emmett-Teller (N2 at 77 K). The 2D CP shows a reversible type 1 adsorption isotherm for both CO2 and N2, indicative of microporosity, whereas the 1D CPs do not capture more solvent molecules or CO2.
Collapse
|
8
|
Goovaerts V, Stroobants K, Absillis G, Parac-Vogt TN. Eu(III) luminescence and tryptophan fluorescence spectroscopy as a tool for understanding interactions between hen egg white lysozyme and metal-substituted Keggin type polyoxometalates. J Inorg Biochem 2015; 150:72-80. [PMID: 25870147 DOI: 10.1016/j.jinorgbio.2015.03.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 03/17/2015] [Accepted: 03/26/2015] [Indexed: 01/11/2023]
Abstract
The interaction between the lacunary Keggin K7PW11O39, the Eu(III)-substituted Keggin K4EuPW11O39 (Eu-Keggin) and the Ce(IV)-substituted Keggin [Me2NH2]10[Ce(PW11O39)2] (Ce-Keggin) polyoxometalates (POMs), and the proteins hen egg white lysozyme (HEWL) and the structurally homologous α-lactalbumin (α-LA) was studied by steady state and time-resolved Eu(III) luminescence and tryptophan (Trp) fluorescence spectroscopy. The excitation spectrum of Eu-Keggin at lower concentrations ([Eu-Keggin]<100 μM) is dominated by a ligand-to-metal charge transfer band (291 nm). For higher concentrations ([Eu-Keggin]>250 μM) the (5)L6←(7)F0 transition becomes the most intense peak. In the absence of protein, the number of coordinated water molecules to the Eu(III) centre of Eu-Keggin is 4, indicating a 1:1 Eu(III):POM species. In the presence of phosphate buffer this number linearly decreases from 4 to 2 upon increasing phosphate buffer concentration. Upon addition of HEWL, there are no coordinated water molecules, suggesting interaction between Eu-Keggin and the protein surface. In addition, this interaction results in a more than threefold increase of the hypersensitive (5)D0→(7)F2 transition for the Eu-Keggin/HEWL mixture. The calculated association constant amounted to 2.2×10(2) M(-1) for the Eu-Keggin/HEWL complex. Tryptophan fluorescence quenching studies were performed and the quenching constants were calculated to be 9.1×10(4) M(-1), 4×10(4) M(-1) and 4.1×10(5) M(-1) for the lacunary Keggin/HEWL, the Eu-Keggin/HEWL and the Ce-Keggin/HEWL complexes, respectively. The number of bound POM molecules to HEWL was 1.04 for the lacunary Keggin POM, and 1.0 for Eu-Keggin, indicating the formation of a 1:1 POM/HEWL complex. The value of 1.38 for Ce-Keggin might indicate a transition from 1:1 to 1:2 interaction.
Collapse
Affiliation(s)
- Vincent Goovaerts
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Karen Stroobants
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Gregory Absillis
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | | |
Collapse
|
9
|
Ultrathin films of poly(2,5-dicyano- p -phenylene-vinylene)-co-( p -phenylene-vinylene) DCN-PPV/PPV: A Langmuir and Langmuir-Blodgett films study. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2014.11.033] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
10
|
Self-assemblies of luminescent rare earth compounds in capsules and multilayers. Adv Colloid Interface Sci 2014; 207:361-75. [PMID: 24444756 DOI: 10.1016/j.cis.2013.12.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Revised: 11/30/2013] [Accepted: 12/27/2013] [Indexed: 11/22/2022]
Abstract
This review addresses luminescent rare earth compounds assembled in microcapsules as well as in planar films fabricated by the layer-by-layer (LbL) technique, the Langmuir-Blodgett (LB) method and in self-assembled monolayers. Chemical precipitation, electrostatic, van der Waals interactions and covalent bonds are involved in the assembly of these compounds. Self-organized ring patterns of rare earth complexes in Langmuir monolayers and on planar surfaces with stripe patterns, as well as fluorescence enhancement due to donor-acceptor pairs, microcavities, enrichment of rare earth compounds, and shell protection against water are described. Recent information on the tuning of luminescence intensity and multicolors by the excitation wavelength and the ratio of rare earth ions, respectively, are also reviewed. Potential applications of luminescent rare earth complex assemblies serving as biological probes, temperature and gas sensors are pointed out.
Collapse
|
11
|
Ramanathan M, Darling SB. Nanofabrication with metallopolymers - recent developments and future perspectives. POLYM INT 2013. [DOI: 10.1002/pi.4541] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Muruganathan Ramanathan
- Center for Nanophase Materials Sciences (CNMS); Oak Ridge National Laboratory; Oak Ridge TN 37831 USA
| | - Seth B. Darling
- Center for Nanoscale Materials; Argonne National Laboratory; Argonne IL 60439 USA
- Institute for Molecular Engineering; University of Chicago; Chicago IL 60637 USA
| |
Collapse
|
12
|
Gu ZR, Fu H, Liu L, Li FB, Liu SZ, Wang YR, Du ZL, Ho CL, Wong WY. Preparation, Characterization, and Photoelectric Properties of Langmuir–Blodgett Films of Some Europium-Substituted Polyoxometalates and 2-Aminofluorene with Tunable Emission Color. J Inorg Organomet Polym Mater 2013. [DOI: 10.1007/s10904-013-9830-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Han Z, Guo Y, Tsunashima R, Song YF. Color-Tunable Luminescent Films Based on the Hybrid Assemblies of [EuW10O36]9-, Bis(N-methylacridinium) Nitrate, and Layered Double Hydroxide. Eur J Inorg Chem 2013. [DOI: 10.1002/ejic.201201135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
14
|
Preparation, Characterization and Photoelectric Properties of Hybrid Langmuir–Blodgett Films of Alkynylplatinum(II)–Zinc(II) Porphyrinate/Heteropolyoxometalate. J Inorg Organomet Polym Mater 2012. [DOI: 10.1007/s10904-012-9745-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
15
|
Xie LH, Yin CR, Lai WY, Fan QL, Huang W. Polyfluorene-based semiconductors combined with various periodic table elements for organic electronics. Prog Polym Sci 2012. [DOI: 10.1016/j.progpolymsci.2012.02.003] [Citation(s) in RCA: 248] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
16
|
Morimoto T, Ito M, Koike K, Kojima T, Ozeki T, Ishitani O. Dual Emission from Rhenium(I) Complexes Induced by an Interligand Aromatic Interaction. Chemistry 2012; 18:3292-304. [DOI: 10.1002/chem.201102698] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2011] [Indexed: 11/10/2022]
|
17
|
Dual-Emissive Langmuir–Blodgett Films of a 9,9-Bis(4-ethynylphenyl)fluorene Derivative of Gold(I) and Some Europium-Substituted Polyoxometalates: Preparation, Characterization and Photoelectric Properties. J Inorg Organomet Polym Mater 2011. [DOI: 10.1007/s10904-011-9579-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|