1
|
Xue N, Hou X, Qiu XP, Song X, Feng Q, Liu X. Synthesis and solution properties of telechelic poly(2-isopropyl-2-oxazoline) bearing perfluoro end groups. Polym Chem 2022. [DOI: 10.1039/d2py00815g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Telechelic FPIPOZ and its precursor N3PIPOZ films reassembled into discs and short fibers, respectively, when exposed to THF vapor.
Collapse
Affiliation(s)
- Na Xue
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Central Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, China
| | - Xiaoming Hou
- Department of Critical Care Medicine, Tianjin Fifth Central Hospital, Tianjin 300450, China
| | - Xing-Ping Qiu
- Department of Chemistry, University of Montreal, CP6128 Succursale Centre Ville, Montreal, QC H3C 3J7, Canada
| | - Xiaotao Song
- Department of Critical Care Medicine, Tianjin Fifth Central Hospital, Tianjin 300450, China
| | - Qingguo Feng
- Department of Critical Care Medicine, Tianjin Fifth Central Hospital, Tianjin 300450, China
| | - Xiaozhi Liu
- Tianjin Key Laboratory of Epigenetics for Organ Development of Preterm Infants, Central Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, China
| |
Collapse
|
2
|
Wilhelm SA, Maricanov M, Brandt V, Katzenberg F, Tiller JC. Amphiphilic polymer conetworks with ideal and non-ideal swelling behavior demonstrated by small angle X-ray scattering. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124582] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
3
|
Daubian D, Fillion A, Gaitzsch J, Meier W. One-Pot Synthesis of an Amphiphilic ABC Triblock Copolymer PEO- b-PEHOx- b-PEtOz and Its Self-Assembly into Nanoscopic Asymmetric Polymersomes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02301] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Davy Daubian
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Alexandra Fillion
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| | - Jens Gaitzsch
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
- Leibniz-Institut für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - Wolfgang Meier
- Department of Physical Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, 4058 Basel, Switzerland
| |
Collapse
|
4
|
Zhang X, Dai Y, Dai G, Deng C. Advances in PEG-based ABC terpolymers and their applications. RSC Adv 2020; 10:21602-21614. [PMID: 35518773 PMCID: PMC9054495 DOI: 10.1039/d0ra03478a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
ABC terpolymers are a class of very important polymers because of their expansive molecular topologies and extensive architectures. As block A, poly(ethylene glycol) (PEG) is one of the most principal categories owing to good biocompatibility and wide commercial availability. More importantly, the synthetic approaches of ABC terpolymers using PEG as a macroinitiator are facile and varied. PEG-based ABC terpolymers from design and synthesis to applications are highlighted in this review. Linear, 3-miktoarm, and cyclic polymers as the architecture are separated. The synthetic approaches of PEG-based ABC terpolymers mainly include the sequential polymerization or coupling of polymers. PEG-based ABC terpolymers have wide applications in the fields of drug carriers, gene vectors, templates for the fabrication of inorganic hollow nanospheres, and stabilizers of metal nanoparticles.
Collapse
Affiliation(s)
- Xiaojin Zhang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Yu Dai
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences Wuhan 430074 China
| | - Guofei Dai
- Jiangxi Provincial Key Laboratory of Water Resources and Environment of Poyang Lake, Jiangxi Institute of Water Sciences Nanchang 330029 China
| | - Chunhui Deng
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis, Advanced Materials Laboratory, Fudan University Shanghai 200433 China
| |
Collapse
|
5
|
Sahn M, Weber C, Schubert US. Poly(2-oxazoline)-Containing Triblock Copolymers: Synthesis and Applications. POLYM REV 2019. [DOI: 10.1080/15583724.2018.1496930] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Martin Sahn
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Jena, Germany
| |
Collapse
|
6
|
Konishcheva E, Daubian D, Gaitzsch J, Meier W. Synthesis of Linear ABC Triblock Copolymers and Their Self-Assembly in Solution. Helv Chim Acta 2018. [DOI: 10.1002/hlca.201700287] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Evgeniia Konishcheva
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Davy Daubian
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Jens Gaitzsch
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| | - Wolfgang Meier
- Department of Physical Chemistry; University of Basel; Mattenstrasse 24a, BPR 1096 4058 Basel Switzerland
| |
Collapse
|
7
|
Kempe K. Chain and Step Growth Polymerizations of Cyclic Imino Ethers: From Poly(2‐oxazoline)s to Poly(ester amide)s. MACROMOL CHEM PHYS 2017. [DOI: 10.1002/macp.201700021] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Kristian Kempe
- ARC Centre of Excellence in Convergent Bio‐Nano Science & Technology Monash Institute of Pharmaceutical Sciences Monash University Parkville VIC 3052 Australia
| |
Collapse
|
8
|
|
9
|
|
10
|
Kaberov LI, Verbraeken B, Hruby M, Riabtseva A, Kovacik L, Kereïche S, Brus J, Stepanek P, Hoogenboom R, Filippov SK. Novel triphilic block copolymers based on poly(2-methyl-2-oxazoline)–block–poly(2-octyl-2-oxazoline) with different terminal perfluoroalkyl fragments: Synthesis and self-assembly behaviour. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.10.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
Sahn M, Yildirim T, Dirauf M, Weber C, Sungur P, Hoeppener S, Schubert US. LCST Behavior of Symmetrical PNiPAm-b-PEtOx-b-PNiPAm Triblock Copolymers. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01371] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Martin Sahn
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Turgay Yildirim
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Michael Dirauf
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Christine Weber
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Pelin Sungur
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Stephanie Hoeppener
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| |
Collapse
|
12
|
Lempke L, Ernst A, Kahl F, Weberskirch R, Krause N. Sustainable Micellar Gold Catalysis - Poly(2-oxazolines) as Versatile Amphiphiles. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600139] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
13
|
Osawa S, Osada K, Hiki S, Dirisala A, Ishii T, Kataoka K. Polyplex Micelles with Double-Protective Compartments of Hydrophilic Shell and Thermoswitchable Palisade of Poly(oxazoline)-Based Block Copolymers for Promoted Gene Transfection. Biomacromolecules 2015; 17:354-61. [PMID: 26682466 DOI: 10.1021/acs.biomac.5b01456] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Improving the stability of polyplex micelles under physiological conditions is a critical issue for promoting gene transfection efficiencies. To this end, hydrophobic palisade was installed between the inner core of packaged plasmid DNA (pDNA) and the hydrophilic shell of polyplex micelles using a triblock copolymer consisting of hydrophilic poly(2-ethyl-2-oxazoline), thermoswitchable amphiphilic poly(2-n-propyl-2-oxazoline) (PnPrOx) and cationic poly(L-lysine). The two-step preparation procedure, mixing the triblock copolymer with pDNA below the lower critical solution temperature (LCST) of PnPrOx, followed by incubation above the LCST to form a hydrophobic palisade of the collapsed PnPrOx segment, induced the formation of spatially aligned hydrophilic-hydrophobic double-protected polyplex micelles. The prepared polyplex micelles exhibited significant tolerance against attacks from nuclease and polyanions compared to those without hydrophobic palisades, thereby promoting gene transfection. These results corroborated the utility of amphiphilic poly(oxazoline) as a molecular thermal switch to improve the stability of polyplex gene carriers relevant for physiological applications.
Collapse
Affiliation(s)
| | - Kensuke Osada
- Japan Science and Technology Agency, PRESTO, Tokyo, Japan
| | | | | | | | - Kazunori Kataoka
- Division of Clinical Biotechnology, Center for Disease Biology and Integrative Medicine, Graduate School of Medicine, The University of Tokyo , 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan.,Innovation Center of NanoMedicine (iCONM), 3-25-14, Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan
| |
Collapse
|
14
|
Luef KP, Hoogenboom R, Schubert US, Wiesbrock F. Microwave-assisted cationic ring-opening polymerization of 2-oxazolines. ADVANCES IN POLYMER SCIENCE = FORTSCHRITTE DER HOCHPOLYMEREN-FORSCHUNG 2015; 274:183-208. [PMID: 28239203 PMCID: PMC5321602 DOI: 10.1007/12_2015_340] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Unlike any other polymer class, the (co-)poly(2-oxazoline)s have tremendously benefited from the introduction of microwave reactors into chemical laboratories. This review focuses on the research activities in the area of (co-)poly(2-oxazoline)s prepared by microwave-assisted syntheses and, correspondingly, summarizes the current-state-of the-art of the microwave-assisted synthesis of 2-oxazoline monomers and the microwave-assisted ring-opening (co-)polymerization of 2-oxazolines as well as prominent examples of post-polymerization modification of (co-)poly(2-oxazoline)s. Special attention is attributed to the kinetic analysis of the microwave-assisted polymerization of 2-oxazolines and the discussion of non-thermal microwave effects.
Collapse
Affiliation(s)
- Klaus P. Luef
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
- Graz University of Technology, Institute for Chemistry and Technology of Materials, NAWI Graz, Stremayrgasse 9, 8010 Graz, Austria
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281 S4, 9000 Ghent, Belgium
| | - Ulrich S. Schubert
- Laboratory for Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, 07743 Jena, Germany
| | - Frank Wiesbrock
- Polymer Competence Center Leoben GmbH, Roseggerstrasse 12, 8700 Leoben, Austria
| |
Collapse
|
15
|
Kempe K, Wylie RA, Dimitriou MD, Tran H, Hoogenboom R, Schubert US, Hawker CJ, Campos LM, Connal LA. Preparation of non-spherical particles from amphiphilic block copolymers. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/pola.27927] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Kristian Kempe
- Materials Research Laboratory, Materials Department and Department of Chemistry and Biochemistry; University of California; Santa Barbara California 93106
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 Jena 07743 Germany
| | - Ross A. Wylie
- Department of Chemical and Biomolecular Engineering; The University of Melbourne; 3010 Australia
| | - Michael D. Dimitriou
- Materials Research Laboratory, Materials Department and Department of Chemistry and Biochemistry; University of California; Santa Barbara California 93106
| | - Helen Tran
- Department of Chemistry; Columbia University; New York New York 10027
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic Chemistry; Ghent University; Krijgslaan 281 S4 Ghent B-9000 Belgium
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena; Humboldtstr. 10 Jena 07743 Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 Jena 07743 Germany
| | - Craig J. Hawker
- Materials Research Laboratory, Materials Department and Department of Chemistry and Biochemistry; University of California; Santa Barbara California 93106
| | - Luis M. Campos
- Department of Chemistry; Columbia University; New York New York 10027
| | - Luke A. Connal
- Department of Chemical and Biomolecular Engineering; The University of Melbourne; 3010 Australia
| |
Collapse
|
16
|
|
17
|
|
18
|
Kempe K, Rettler EFJ, Paulus RM, Kuse A, Hoogenboom R, Schubert US. A systematic investigation of the effect of side chain branching on the glass transition temperature and mechanical properties of aliphatic (co-)poly(2-oxazoline)s. POLYMER 2013. [DOI: 10.1016/j.polymer.2013.01.016] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Rafiemanzelat F, Khoshfetrat SM, Kolahdoozan M. Fast and eco-friendly synthesis of novel soluble thermally stable poly(amide-imide)s modified with siloxane linkage with reduced dielectric constant under microwave irradiation in TBAB, TBPB and MeBuImCl via isocyanate method. J Appl Polym Sci 2012. [DOI: 10.1002/app.37911] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
20
|
Baumgaertel A, Weber C, Fritz N, Festag G, Altuntaş E, Kempe K, Hoogenboom R, Schubert US. Characterization of poly(2-oxazoline) homo- and copolymers by liquid chromatography at critical conditions. J Chromatogr A 2011; 1218:8370-8. [DOI: 10.1016/j.chroma.2011.09.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 09/15/2011] [Accepted: 09/16/2011] [Indexed: 11/28/2022]
|
21
|
Kempe K, Becer CR, Schubert US. Microwave-Assisted Polymerizations: Recent Status and Future Perspectives. Macromolecules 2011. [DOI: 10.1021/ma2004794] [Citation(s) in RCA: 127] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kristian Kempe
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | - C. Remzi Becer
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands
| | - Ulrich S. Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
- Dutch Polymer Institute (DPI), John F. Kennedylaan 2, 5612 AB Eindhoven, The Netherlands
| |
Collapse
|
22
|
Baumgaertel A, Scheubert K, Pietsch B, Kempe K, Crecelius AC, Böcker S, Schubert US. Analysis of different synthetic homopolymers by the use of a new calculation software for tandem mass spectra. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:1765-1778. [PMID: 21598337 DOI: 10.1002/rcm.5019] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The manual interpretation of tandem mass spectra of synthetic polymers is very time-consuming. Therefore, a new software tool was developed to accelerate the interpretation of spectra obtained without requiring any further knowledge about the polymer class or the fragmentation behavior under high-energy collision-induced dissociation (CID) conditions. The software only requires an alphabetical list of elements and a peak list of the measured substance as an xml file for the evaluation of the chosen mass spectrum. Tandem mass spectra of different homopolymers, like poly(2-oxazoline)s, poly(ethylene glycol) and poly(styrene), were interpreted by the new software tool. This contribution describes a fast and automated software tool for the rapid analysis of homopolymers.
Collapse
Affiliation(s)
- Anja Baumgaertel
- Laboratory of Organic and Macromolecular Chemistry (IOMC) and Jena Center for Soft Mater (JCSM), Friedrich-Schiller-University Jena, Humboldtstr. 10, 07743 Jena, Germany
| | | | | | | | | | | | | |
Collapse
|