1
|
Chen L, Sheng X, Li G, Huang F. Mechanically interlocked polymers based on rotaxanes. Chem Soc Rev 2022; 51:7046-7065. [PMID: 35852571 DOI: 10.1039/d2cs00202g] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The nature of mechanically interlocked molecules (MIMs) has continued to encourage researchers to design and construct a variety of high-performance materials. Introducing mechanically interlocked structures into polymers has led to novel polymeric materials, called mechanically interlocked polymers (MIPs). Rotaxane-based MIPs are an important class, where the mechanically interlocked characteristic retains a high degree of structural freedom and mobility of their components, such as the rotation and sliding motions of rotaxane units. Therefore, these MIP materials are known to possess a unique set of properties, including mechanical robustness, adaptability and responsiveness, which endow them with potential applications in many emerging fields, such as protective materials, intelligent actuators, and mechanisorption. In this review, we outline the synthetic strategies, structure-property relationships, and application explorations of various polyrotaxanes, including linear polyrotaxanes, polyrotaxane networks, and rotaxane dendrimers.
Collapse
Affiliation(s)
- Liya Chen
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Xinru Sheng
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China.
| | - Guangfeng Li
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. .,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.
| | - Feihe Huang
- Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou 310027, China. .,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China. .,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
2
|
Kimura Y, Imai S, Takenaka M, Terashima T. Amphiphilic Random Cyclocopolymers as Versatile Scaffolds for Ring-Functionalized and Self-Assembled Materials. Macromolecules 2021. [DOI: 10.1021/acs.macromol.1c00231] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yoshihiko Kimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Sahori Imai
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Mikihito Takenaka
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
- RIKEN Spring-8 Center, Sayo-cho, Sayo-gun, Hyogo 679-5148 Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
3
|
Kimura Y, Terashima T. Cation Template-Assisted RAFT Cyclopolymerization of Hexa(Ethylene Glycol) Di(meth)acrylates to Thermoresponsive Pseudo-Crown Ether Polymers. Macromol Rapid Commun 2021; 42:e2000670. [PMID: 33904208 DOI: 10.1002/marc.202000670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/06/2020] [Indexed: 11/06/2022]
Abstract
Cation template-assisted reversible addition fragmentation/chain transfer (RAFT) cyclopolymerization of hexa(ethylene glycol) diacrylate (PEG6DA) or hexa(ethylene glycol) dimethacrylate (PEG6DMA) is developed as a versatile system to produce large in-chain ring cyclopolymers, thermoresponsive pseudo-crown ether polymers. For an efficient synthesis, potassium hexafluorophosphate (KPF6 ) is employed as a cation template; PEG6DA as well as PEG6DMA recognizes the potassium cation with the hexa(ethylene glycol) spacer to dynamically form a pseudo-cyclic divinyl monomer. Those monomers interacting with the potassium cations are efficiently polymerized with RAFT agents and radical initiators into cyclopolymers comprising 24-membered hexa(ethylene glycol) rings. The cation template-assisted RAFT cyclopolymerization is also effective for the synthesis of amphiphilic random cyclocopolymers bearing hydrophilic hexa(ethylene glycol) rings and hydrophobic butyl groups. Cyclopolymers of PEG6DA and PEG6DMA further show thermoresponsive solubility in water. The cloud point temperature of cyclopoly(PEG6DA)s is higher than that of a cyclopoly(PEG6DMA).
Collapse
Affiliation(s)
- Yoshihiko Kimura
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Takaya Terashima
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
4
|
Hoyas Pérez N, Lewis JEM. Synthetic strategies towards mechanically interlocked oligomers and polymers. Org Biomol Chem 2020; 18:6757-6780. [PMID: 32840554 DOI: 10.1039/d0ob01583k] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mechanically interlocked molecules have fascinated chemists for decades. Initially a tantalising synthetic challenge, interlocked molecules have continued to capture the imagination for their aesthetics and, increasingly, for their potential as molecular machines and use in materials applications. Whilst preliminary statistical attempts to prepare these molecules were exceedingly inefficient, a raft of template-directed strategies have now been realised, providing a vast toolbox from which chemists can access interlocked structures in excellent yields. For many envisaged applications it is desirable to move away from small, discrete interlocked molecules and turn to oligomers and polymers instead, either due to the need for multiple mechanical bonds within the desired material, or to exploit an extended scaffold for the organisation and arrangement of individual mechanically interlocked units. In this tutorial-style review we outline the synthetic strategies that have been employed for the synthesis of mechanically interlocked oligomers and polymers, including oligo-/polymerisation of (pseudo)interlocked precursors, metal-organic self-assembly, the use of orthogonal template motifs, iterative approaches and grafting onto polymer backbones.
Collapse
Affiliation(s)
- Nadia Hoyas Pérez
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, 80 Wood Lane, London W12 0BZ, UK.
| | | |
Collapse
|
5
|
Pasini D, Takeuchi D. Cyclopolymerizations: Synthetic Tools for the Precision Synthesis of Macromolecular Architectures. Chem Rev 2018; 118:8983-9057. [PMID: 30146875 DOI: 10.1021/acs.chemrev.8b00286] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Monomers possessing two functionalities suitable for polymerization are often designed and utilized in syntheses directed to the formation of cross-linked macromolecules. In this review, we give an account of recent developments related to the use of such monomers in cyclopolymerization processes, in order to form linear, soluble macromolecules. These processes can be activated by means of radical, ionic, or transition-metal mediated chain-growth polymerization mechanisms, to achieve cyclic moieties of variable ring size which are embedded within the polymer backbone, driving and tuning peculiar physical properties of the resulting macromolecules. The two functionalities are covalently linked by a "tether", which can be appropriately designed in order to "imprint" elements of chemical information into the polymer backbone during the synthesis and, in some cases, be removed by postpolymerization reactions. The two functionalities can possess identical or even very different reactivities toward the polymerization mechanism involved; in the latter case, consequences and outcomes related to the sequence-controlled, precision synthesis of macromolecules have been demonstrated. Recent advances in new initiating systems and polymerization catalysts enabled the precision syntheses of polymers with regulated cyclic structures by highly regio- and/or stereoselective cyclopolymerization. Cyclopolymerizations involving double cyclization, ring-opening, or isomerization have been also developed, generating unique repeating structures, which can hardly be obtained by conventional polymerization methods.
Collapse
Affiliation(s)
- Dario Pasini
- Department of Chemistry and INSTM Research Unit , University of Pavia , Viale Taramelli , 10-27100 Pavia , Italy
| | - Daisuke Takeuchi
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology , Hirosaki University , 3 Bunkyo-cho , Hirosaki , Aomori , 036-8561 , Japan
| |
Collapse
|
6
|
Kimura Y, Miyabara Y, Terashima T, Sawamoto M. Polyacrylamide pseudo crown ethers via hydrogen bond-assisted cyclopolymerization. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yoshihiko Kimura
- Department of Polymer Chemistry; Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-Ku; Kyoto 615-8510 Japan
| | - Yuichiro Miyabara
- Department of Polymer Chemistry; Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-Ku; Kyoto 615-8510 Japan
| | - Takaya Terashima
- Department of Polymer Chemistry; Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-Ku; Kyoto 615-8510 Japan
| | - Mitsuo Sawamoto
- Department of Polymer Chemistry; Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-Ku; Kyoto 615-8510 Japan
| |
Collapse
|
7
|
Sedláček J, Balcar H. Substituted Polyacetylenes Prepared with Rh Catalysts: From Linear to Network-Type Conjugated Polymers. POLYM REV 2016. [DOI: 10.1080/15583724.2016.1144207] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
Zhang M, Yang Y, Liu L, Chang W, Li J. Pseudo-Cryptand-Containing Copolymers: Cyclopolymerization and Biocompatible Water-Soluble Al3+ Fluorescent Sensor in Vitro. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02340] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
| | | | | | | | - Jing Li
- Collaborative
Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
9
|
Abstract
This review discusses the template-directed preparation of sequence-defined polymers.
Collapse
|
10
|
Wei P, Yan X, Huang F. Reversible formation of a poly[3]rotaxane based on photo dimerization of an anthracene-capped [3]rotaxane. Chem Commun (Camb) 2014; 50:14105-8. [DOI: 10.1039/c4cc07044e] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
11
|
|
12
|
Gibson HW, Wang H, Niu Z, Slebodnick C, Zhakharov LN, Rheingold AL. Rotaxanes from Tetralactams. Macromolecules 2012. [DOI: 10.1021/ma202373x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Harry W. Gibson
- Department of Chemistry, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24060, United States
| | - Hong Wang
- Department of Chemistry, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24060, United States
| | - Zhenbin Niu
- Department of Chemistry, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24060, United States
| | - Carla Slebodnick
- Department of Chemistry, Virginia Polytechnic Institute & State University, Blacksburg, Virginia 24060, United States
| | - Lev N. Zhakharov
- Department
of Chemistry, University of Delaware, Newark,
Delaware 19716, United
States
| | - Arnold L. Rheingold
- Department
of Chemistry, University of Delaware, Newark,
Delaware 19716, United
States
| |
Collapse
|