Marbach J, Höfer T, Bornholdt N, Luinstra GA. Catalytic Chain Transfer Copolymerization of Propylene Oxide and CO
2 using Zinc Glutarate Catalyst.
ChemistryOpen 2019;
8:828-839. [PMID:
31304076 PMCID:
PMC6604238 DOI:
10.1002/open.201900135]
[Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/12/2019] [Indexed: 11/06/2022] Open
Abstract
Oligo and poly(propylene ether carbonate)-polyols with molecular weights from 0.8 to over 50 kg/mol and with 60-92 mol % carbonate linkages were synthesized by chain transfer copolymerization of carbon dioxide (CO2) and propylene oxide (PO) mediated by zinc glutarate. Online-monitoring of the polymerization revealed that the CTA controlled copolymerization has an induction time which is resulting from reversible catalyst deactivation by the CTA. Latter is neutralized after the first monomer additions. The outcome of the chain transfer reaction is a function of the carbonate content, i. e. CO2 pressure, most likely on account of differences in mobility (diffusion) of the various polymers. Melt viscosities of poly(ether carbonate)diols with a carbonate content between 60 and 92 mol % are reported as function of the molecular weight, showing that the mobility is higher when the ether content is higher. The procedure of PO/CO2 catalytic chain copolymerization allows tailoring the glass temperature and viscosity.
Collapse