1
|
Efficient solution polymerization of vinyl monomers using iron nanoparticle grafted carbon nano-granules. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03344-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
2
|
Zerk TJ, Gahan LR, Krenske EH, Bernhardt PV. The fate of copper catalysts in atom transfer radical chemistry. Polym Chem 2019. [DOI: 10.1039/c8py01688g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pathway of atom transfer radical polymerisation (ATRP) is influenced by the nature of the alkyl bromide initiator (RBr) to the extent that reactions between the radical R˙ and the original copper(i) catalyst can divert the reaction toward different products.
Collapse
Affiliation(s)
- Timothy J. Zerk
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane 4072
- Australia
| | - Lawrence R. Gahan
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane 4072
- Australia
| | - Elizabeth H. Krenske
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane 4072
- Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences
- University of Queensland
- Brisbane 4072
- Australia
| |
Collapse
|
3
|
Redox-coupled structural changes in copper chemistry: Implications for atom transfer catalysis. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2017.11.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
4
|
Yeow J, Chapman R, Gormley AJ, Boyer C. Up in the air: oxygen tolerance in controlled/living radical polymerisation. Chem Soc Rev 2018; 47:4357-4387. [PMID: 29718038 PMCID: PMC9857479 DOI: 10.1039/c7cs00587c] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The requirement for deoxygenation in controlled/living radical polymerisation (CLRP) places significant limitations on its widespread implementation by necessitating the use of large reaction volumes, sealed reaction vessels as well as requiring access to specialised equipment such as a glove box and/or inert gas source. As a result, in recent years there has been intense interest in developing strategies for overcoming the effects of oxygen inhibition in CLRP and therefore remove the necessity for deoxygenation. In this review, we highlight several strategies for achieving oxygen tolerant CLRP including: "polymerising through" oxygen, enzyme mediated deoxygenation and the continuous regeneration of a redox-active catalyst. In order to provide further clarity to the field, we also establish some basic parameters for evaluating the degree of "oxygen tolerance" that can be achieved using a given oxygen scrubbing strategy. Finally, we propose some applications that could most benefit from the implementation of oxygen tolerant CLRP and provide a perspective on the future direction of this field.
Collapse
Affiliation(s)
- Jonathan Yeow
- Centre for Advanced Macromolecular Design (CAMD), UNSW Australia, Sydney, NSW 2052, Australia.
| | | | | | | |
Collapse
|
5
|
Nishiura C, Williams V, Matyjaszewski K. Iron and copper based catalysts containing anionic phenolate ligands for atom transfer radical polymerization. Macromol Res 2017. [DOI: 10.1007/s13233-017-5118-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
6
|
Wu J, Zhang L, Cheng Z, Zhu X. Photocatalyzed iron-based ATRP of methyl methacrylate using 1,3-dimethyl-2-imidazolidinone as both solvent and ligand. RSC Adv 2017. [DOI: 10.1039/c6ra27307f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A simple photocatalyzed Fe-based ATRP of MMA was conducted under UV irradiation using the “green” solvent DMI as both the solvent and ligand.
Collapse
Affiliation(s)
- Jian Wu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
| | - Lifen Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
| | - Zhenping Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- Department of Polymer Science and Engineering
- College of Chemistry
| |
Collapse
|
7
|
Wu J, Jiang X, Zhang L, Cheng Z, Zhu X. Iron-Mediated Homogeneous ICAR ATRP of Methyl Methacrylate under ppm Level Organometallic Catalyst Iron(III) Acetylacetonate. Polymers (Basel) 2016; 8:E29. [PMID: 30979123 PMCID: PMC6432569 DOI: 10.3390/polym8020029] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2015] [Revised: 01/09/2016] [Accepted: 01/19/2016] [Indexed: 02/07/2023] Open
Abstract
Atom Transfer Radical Polymerization (ATRP) is an important polymerization process in polymer synthesis. However, a typical ATRP system has some drawbacks. For example, it needs a large amount of transition metal catalyst, and it is difficult or expensive to remove the metal catalyst residue in products. In order to reduce the amount of catalyst and considering good biocompatibility and low toxicity of the iron catalyst, in this work, we developed a homogeneous polymerization system of initiators for continuous activator regeneration ATRP (ICAR ATRP) with just a ppm level of iron catalyst. Herein, we used oil-soluble iron (III) acetylacetonate (Fe(acac)₃) as the organometallic catalyst, 1,1'-azobis (cyclohexanecarbonitrile) (ACHN) with longer half-life period as the thermal initiator, ethyl 2-bromophenylacetate (EBPA) as the initiator, triphenylphosphine (PPh₃) as the ligand, toluene as the solvent and methyl methacrylate (MMA) as the model monomer. The factors related with the polymerization system, such as concentration of Fe(acac)₃ and ACHN and polymerization kinetics, were investigated in detail at 90 °C. It was found that a polymer with an acceptable molecular weight distribution (Mw/Mn = 1.43 at 45.9% of monomer conversion) could be obtained even with 1 ppm of Fe(acac)₃, making it needless to remove the residual metal in the resultant polymers, which makes such an ICAR ATRP process much more industrially attractive. The "living" features of this polymerization system were further confirmed by chain-extension experiment.
Collapse
Affiliation(s)
- Jian Wu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiaowu Jiang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Lifen Zhang
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Zhenping Cheng
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Xiulin Zhu
- Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
8
|
Proietti Silvestri I, Cellesi F. AGET ATRP of Poly[poly(ethylene glycol) methyl ether methacrylate] Catalyzed by Hydrophobic Iron(III)-Porphyrins. MACROMOL CHEM PHYS 2015. [DOI: 10.1002/macp.201500277] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- I. Proietti Silvestri
- Fondazione CEN - European Centre for Nanomedicine; Piazza Leonardo da Vinci 32 20133 Milan Italy
- Dipartimento di Chimica; Materiali ed Ingegneria Chimica “G. Natta,” Politecnico di Milano; Via Mancinelli 7 20131 Milan Italy
| | - F. Cellesi
- Fondazione CEN - European Centre for Nanomedicine; Piazza Leonardo da Vinci 32 20133 Milan Italy
- Dipartimento di Chimica; Materiali ed Ingegneria Chimica “G. Natta,” Politecnico di Milano; Via Mancinelli 7 20131 Milan Italy
| |
Collapse
|
9
|
Fujimura K, Ouchi M, Sawamoto M. Ferrocene Cocatalysis for Iron-Catalyzed Living Radical Polymerization: Active, Robust, and Sustainable System under Concerted Catalysis by Two Iron Complexes. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00836] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Kojiro Fujimura
- Department of Polymer Chemistry,
Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Makoto Ouchi
- Department of Polymer Chemistry,
Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Mitsuo Sawamoto
- Department of Polymer Chemistry,
Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
10
|
Preparation and properties of fluorinated amphiphilic copolymers via iron-mediated AGET ATRP. IRANIAN POLYMER JOURNAL 2015. [DOI: 10.1007/s13726-014-0303-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
11
|
Abstract
This article reviews the preparation of polymers using iron-catalyzed atom transfer radical polymerization.
Collapse
Affiliation(s)
- Zhigang Xue
- Key Laboratory for Large-Format Battery Materials and Systems
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| | - Dan He
- Key Laboratory of Optoelectronic Chemical Materials and Devices of Ministry of Education
- School of Chemical and Environmental Engineering
- Jianghan University
- Wuhan 430056
- China
| | - Xiaolin Xie
- Key Laboratory for Large-Format Battery Materials and Systems
- Ministry of Education
- School of Chemistry and Chemical Engineering
- Huazhong University of Science and Technology
- Wuhan 430074
| |
Collapse
|
12
|
Bai L, Wang W, Chen H, Zhang L, Cheng Z, Zhu X. Facile iron(iii)-mediated ATRP of MMA with phosphorus-containing ligands in the absence of any additional initiators. RSC Adv 2015. [DOI: 10.1039/c5ra10317g] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Fe(iii)-mediated ATRP using phosphorus reagents was studied without any additional initiator and reducing agent. The polymerization was demonstrated as reverse ATRP, in which phosphorus reagents acted as both ligand and thermal radical initiator.
Collapse
Affiliation(s)
- Liangjiu Bai
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Wenxiang Wang
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Hou Chen
- School of Chemistry and Materials Science
- Ludong University
- Yantai 264025
- China
| | - Lifen Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Zhenping Cheng
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| | - Xiulin Zhu
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
| |
Collapse
|
14
|
Hsiao CY, Han HA, Lee GH, Peng CH. AGET and SARA ATRP of styrene and methyl methacrylate mediated by pyridyl-imine based copper complexes. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2013.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|