1
|
Cheng J, Yu Q, Tu K, Wang J, Zhang L, Cheng Z. Hierarchical Self-Assembly of Triphilic Main-Chain-Type Semifluorinated Alternating Graft Copolymers in Aqueous Solution. Macromol Rapid Commun 2023; 44:e2200570. [PMID: 36104160 DOI: 10.1002/marc.202200570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 09/01/2022] [Indexed: 01/26/2023]
Abstract
Fluorinated copolymers can self-assemble in solution and form micelles with rare properties due to the peculiar behavior of fluorinated groups. However, the process description of the self-assembly is still largely phenomenological and difficult to explain due to the tendency of the fluorinated segments to segregate from both the hydrophilic and lipophilic segments, which can result in various morphologies. Herein, the controlled formation of ellipsoidal micelles, disklike micelles, and sheets by hierarchical self-assembly of triphilic main-chain-type semifluorinated alternating graft copolymers (AB)n A-g-mOEG is presented (where A represents unit of α,ω-diiodoperfluoroalkane, B represents the unit of α,ω-unconjugated diene, and mOEG represents methoxy oligo(ethylene glycol)), which are synthesized by step transfer-addition and radical-termination (START) polymerization and azide-alkyne click chemistry. Furthermore, the possible self-assembly mechanism of these micron-level aggregates is proposed, which is ascribed to the hierarchical self-assembly, crowding effect of hydrophilic chains and the interfacial tension between the fluoroalkane and alkane segments. This study can provide a facile and highly efficient approach to the synthesis of main-chain-type fluorinated graft copolymers and expand the research field for the solution self-assembly of fluorinated copolymers.
Collapse
Affiliation(s)
- Jiannan Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Qing Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Kai Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Jinying Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Gayathri V, Jaisankar SN, Samanta D. Temperature and pH responsive polymers: sensing applications. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2021. [DOI: 10.1080/10601325.2021.1988636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Varnakumar Gayathri
- Polymer Science & Technology division, CSIR-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Sellamuthu Nagappan Jaisankar
- Polymer Science & Technology division, CSIR-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| | - Debasis Samanta
- Polymer Science & Technology division, CSIR-Central Leather Research Institute, Chennai, India
- Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh, India
| |
Collapse
|
3
|
Umar M, Son D, Arif S, Kim M, Kim S. Multistimuli-Responsive Optical Hydrogel Nanomembranes to Construct Planar Color Display Boards for Detecting Local Environmental Changes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:55231-55242. [PMID: 33232110 DOI: 10.1021/acsami.0c15195] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Planar metal-insulator-metal (MIM) optical cavities are attractive for biochemical and environmental sensing applications, as they offer a cost-effective cavity platform with acceptable performances. However, localized detection and scope of expansion of applicable analytes are still challenging. Here, we report a stimuli-responsive color display board that can exhibit local spectral footprints, for locally applied heat and alcohol presence. A thermoresponsive, optically applicable, and patternable copolymer, poly(N-isopropylacrylamide-r-glycidyl methacrylate), is synthesized and used with a photosensitive cross-linker to produce a responsive insulating layer. This layer is then sandwiched between two nanoporous silver membranes to yield a thermoresponsive MIM cavity. The resonant spectral peak is blue-shifted as the environmental temperature increases, and the dynamic range of the resonant peak is largely affected by the composition and structure of the cross-linker and the copolymer. The localized temperature increase of silk particles with gold nanoparticles by laser heating can be measured by reading the spectral shift. In addition, a free-standing color board can be transferred onto a curved biological tissue sample, allowing us to simultaneously read the temperature of the tissue sample and the concentration of ethanol. The stimuli-responsive MIM provides a new way to optically sense localized environmental temperature and ethanol concentration fluctuations.
Collapse
Affiliation(s)
- Muhammad Umar
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Dongwan Son
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sara Arif
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
| | - Myungwoong Kim
- Department of Chemistry and Chemical Engineering, Inha University, Incheon 22212, Republic of Korea
| | - Sunghwan Kim
- Department of Energy Systems Research, Ajou University, Suwon 16499, Republic of Korea
- Department of Physics, Ajou University, Suwon 16499, Republic of Korea
| |
Collapse
|
4
|
Wu M, Gong M, Zhou D, Wang R, Chen D. Effect of grafting density on the self-assembly of side-chain discotic liquid crystalline polymers with triphenylene discogens. SOFT MATTER 2020; 16:375-382. [PMID: 31803877 DOI: 10.1039/c9sm02097g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The self-assembly of triphenylene (TP)-based side-chain discotic liquid crystalline polymers (SDLCPs) with different grafting densities was investigated by using the dissipative particle dynamics (DPD) method. We explored the coupling effect between the main chain and the side-chain TP discogens with various length alkyl tails, and how the rigidity of the main chain, grafting density and spacer lengths affect the self-assembled morphologies of SDLCPs. By changing the above factors, we have obtained nine phases. It is deduced that a moderate grafting density, a polymer backbone with sufficient length and alkyl tails with medium length ensure SDLCPs form ordered columnar mesophases. It is worth noting that double columnar phases (Colne-Col and Colh-Col) were obtained with high grafting densities and sufficiently long backbones. All these results provide an effective basis and helpful guidance for the in-depth research of such kinds of fascinating organic semiconducting materials, SDLCPs, from the perspective of grafting density.
Collapse
Affiliation(s)
- Mei Wu
- Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Key Laboratory of High Performance Polymer Material and Technology of Ministry of Education, State Key Laboratory of Coordination Chemistry and Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210023, China.
| | | | | | | | | |
Collapse
|
5
|
Kulikov OV, Siriwardane DA, Budhathoki-Uprety J, McCandless GT, Mahmood SF, Novak BM. The secondary structures of PEG-functionalized random copolymers derived from (R)- and (S)- families of alkyne polycarbodiimides. Polym Chem 2018. [DOI: 10.1039/c8py00282g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Macromolecular micelles: a hydrophobic polyamidine backbone surrounded by hydrophilic PEG chains.
Collapse
Affiliation(s)
- Oleg V. Kulikov
- Department of Chemistry
- Massachusetts Institute of Technology
- Cambridge
- USA
| | | | | | | | | | | |
Collapse
|
6
|
Atanase L, Desbrieres J, Riess G. Micellization of synthetic and polysaccharides-based graft copolymers in aqueous media. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.06.001] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Wang S, Liu C, Zhou H, Gao C, Zhang W. An efficient route to synthesize thermoresponsive molecular bottlebrushes of poly[o-aminobenzyl alcohol-graft-poly(N-isopropylacrylamide)]. Polym Chem 2017. [DOI: 10.1039/c6py02188c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The thermoresponsive molecular bottlebrushes of poly[o-aminobenzyl alcohol-graft-poly(N-isopropylacrylamide)] [P(oABA-g-PNIPAM)] were synthesized and their characteristic thermoresponse was demonstrated.
Collapse
Affiliation(s)
- Shuang Wang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chonggao Liu
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Heng Zhou
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Chengqiang Gao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| | - Wangqing Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education
- Institute of Polymer Chemistry
- Nankai University
- Tianjin 300071
- China
| |
Collapse
|
8
|
Wang LL, Wu JJ, Zhang ZB, Zhou J, He XC, Yu HY, Gu JS. Methoxypolyethylene glycol grafting on polypropylene membrane for enhanced antifouling characteristics – Effect of pendant length and grafting density. Sep Purif Technol 2016. [DOI: 10.1016/j.seppur.2016.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Regularly grafted polymer brush with degradable PCL backbone by ring-opening polymerization and “click” reaction: synthesis and self-assembly. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-0925-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
10
|
Li M, Song X, Zhang T, Zeng L, Xing J. Aggregation induced emission controlled by a temperature-sensitive organic–inorganic hybrid polymer with a particular LCST. RSC Adv 2016. [DOI: 10.1039/c6ra16244d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fluorescence intensity change of TPE encapsulated in POSS–PNIPAM with a particular LCST (37.5 °C) with the temperature change.
Collapse
Affiliation(s)
- Mengmeng Li
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Xiaoyan Song
- College of Material Science and Engineering
- Tianjin Polytechnic University
- Tianjin
- China
| | - Tingbin Zhang
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| | - Lintao Zeng
- School of Chemistry and Chemical Engineering
- Tianjin University of Technology
- China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology
- Tianjin University
- Tianjin
- China
| |
Collapse
|
11
|
Wu J, Liu W, Han H, Sun R, Xie M, Liao X. Hyperbranched poly(triazole) with thermal and metal ion dual stimuli-responsiveness. Polym Chem 2015. [DOI: 10.1039/c5py00710k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hyperbranched poly(triazole) bearing oligo(ethylene glycol) terminal groups is dual stimuli-responsive to thermal conditions and metal ions and is capable for the selective absorption of Ag+ ion on tuning temperature.
Collapse
Affiliation(s)
- Jianhua Wu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Wenmei Liu
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Huijing Han
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Ruyi Sun
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Meiran Xie
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| | - Xiaojuan Liao
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
- China
| |
Collapse
|
12
|
Liu K, Pan P, Bao Y. Synthesis, micellization, and thermally-induced macroscopic micelle aggregation of poly(vinyl chloride)-g-poly(N-isopropylacrylamide) amphiphilic copolymer. RSC Adv 2015. [DOI: 10.1039/c5ra16726d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
PVC-g-PNIPAM amphiphilic copolymers with controlled graft lengths and densities are synthesized, which form unique macroscopic aggregates with well-defined 3D shapes in dilute aqueous solution above the LCST.
Collapse
Affiliation(s)
- Keyong Liu
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Pengju Pan
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| | - Yongzhong Bao
- State Key Laboratory of Chemical Engineering
- College of Chemical and Biological Engineering
- Zhejiang University
- Hangzhou 310027
- China
| |
Collapse
|