1
|
Jain S, John A, George CE, Johnson RP. Tyrosine-Derived Polymers as Potential Biomaterials: Synthesis Strategies, Properties, and Applications. Biomacromolecules 2023; 24:531-565. [PMID: 36702743 DOI: 10.1021/acs.biomac.2c01232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Peptide-based polymers are evolving as promising materials for various biomedical applications. Among peptide-based polymers, polytyrosine (PTyr)-based and l-tyrosine (Tyr)-derived polymers are unique, due to their excellent biocompatibility, degradability, and functional as well as engineering properties. To date, different polymerization techniques (ring-opening polymerization, enzymatic polymerization, condensation polymerization, solution-interfacial polymerization, and electropolymerization) have been used to synthesize various PTyr-based and Tyr-derived polymers. Even though the synthesis starts from Tyr, different synthesis routes yield different polymers (polypeptides, polyarylates, polyurethanes, polycarbonates, polyiminocarbonate, and polyphosphates) with unique functional characteristics, and these polymers have been successfully used for various biomedical applications in the past decades. This Review comprehensively describes the synthesis approaches, classification, and properties of various PTyr-based and Tyr-derived polymers employed in drug delivery, tissue engineering, and biosensing applications.
Collapse
Affiliation(s)
- Supriya Jain
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Alona John
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Christina Elizhabeth George
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| | - Renjith P Johnson
- Polymer Nanobiomaterial Research Laboratory, Nanoscience and Microfluidics Division, Yenepoya Research Centre, Yenepoya (Deemed to be University), Mangalore, Karnataka 575018, India
| |
Collapse
|
2
|
Yu L, Li K, Zhang J, Jin H, Saleem A, Song Q, Jia Q, Li P. Antimicrobial Peptides and Macromolecules for Combating Microbial Infections: From Agents to Interfaces. ACS APPLIED BIO MATERIALS 2022; 5:366-393. [PMID: 35072444 DOI: 10.1021/acsabm.1c01132] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bacterial resistance caused by the overuse of antibiotics and the shelter of biofilms has evolved into a global health crisis, which drives researchers to continuously explore antimicrobial molecules and strategies to fight against drug-resistant bacteria and biofilm-associated infections. Cationic antimicrobial peptides (AMPs) are considered to be a category of potential alternative for antibiotics owing to their excellent bactericidal potency and lesser likelihood of inducing drug resistance through their distinctive antimicrobial mechanisms. In this review, the hitherto reported plentiful action modes of AMPs are systematically classified into 15 types and three categories (membrane destructive, nondestructive membrane disturbance, and intracellular targeting mechanisms). Besides natural AMPs, cationic polypeptides, synthetic polymers, and biopolymers enable to achieve tunable antimicrobial properties by optimizing their structures. Subsequently, the applications of these cationic antimicrobial agents at the biointerface as contact-active surface coatings and multifunctional wound dressings are also emphasized here. At last, we provide our perspectives on the development of clinically significant cationic antimicrobials and related challenges in the translation of these materials.
Collapse
Affiliation(s)
- Luofeng Yu
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Kunpeng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jing Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Haoyu Jin
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Atif Saleem
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qing Song
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Qingyan Jia
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Peng Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
3
|
Shingdilwar S, Dolui S, Banerjee S. Facile Fabrication of Functional Mesoporous Polymer Nanospheres for CO 2 Capture. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.1c04580] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Shashikant Shingdilwar
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Subrata Dolui
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Sanjib Banerjee
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| |
Collapse
|
4
|
Kumar D, Mohammad SA, Kumar A, Mane SR, Banerjee S. Amino acid-derived ABCBA-type antifouling biohybrid with multi-stimuli responsivity and contaminant removal capability. Polym Chem 2022. [DOI: 10.1039/d2py00280a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A multi-stimuli (pH/thermo/redox)-responsive amphiphilic poly(cysteine methacrylamide)-block-poly(N,N-dimethylaminoethyl methacrylate)-block-polybutadiene-block-poly(N,N-dimethylaminoethyl methacrylate)-block-poly(cysteine methacrylamide) (PCysMAM-b-PDMAEMA-b-PB-b-PDMAEMA-b-PCysMAM) pentablock copolymer biohybrids, based on hydrophobic PB, ampholytic redox responsive PCysMAM and dual (pH and temperature) stimuli responsive PDMAEMA segments,...
Collapse
|
5
|
Shingdilwar S, Kumar D, Sahu B, Banerjee S. Straightforward synthesis of multifunctional porous polymer nanomaterials for CO 2 capture and removal of contaminants. Polym Chem 2022. [DOI: 10.1039/d2py00067a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward synthesis of multifunctional mesoporous polymer nanomaterials suitable for the removal of contaminants and CO2 capture is reported.
Collapse
Affiliation(s)
- Shashikant Shingdilwar
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Devendra Kumar
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Bhanendra Sahu
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Sanjib Banerjee
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| |
Collapse
|
6
|
Mohammad SA, Dolui S, Kumar D, Mane SR, Banerjee S. l-Histidine-Derived Smart Antifouling Biohybrid with Multistimuli Responsivity. Biomacromolecules 2021; 22:3941-3949. [PMID: 34347452 DOI: 10.1021/acs.biomac.1c00748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel dual pH/thermoresponsive amphiphilic poly(histidine methacrylamide)-block-hydroxyl-terminated polybutadiene-block-poly(histidine methacrylamide) (PHisMAM-b-PB-b-PHisMAM) triblock copolymer biohybrid, composed of hydrophobic PB and ampholytic PHisMAM segments, is developed via direct switching from living anionic polymerization to recyclable nanoparticle catalyst-mediated reversible-deactivation radical polymerization (RDRP). The transformation involved in situ postpolymerization modification of living polybutadiene-based carbanionic species, end-capped with ethylene oxide, into dihydroxyl-terminated polybutadiene and a subsequent reaction with 2-bromo-2-methylpropionyl bromide resulting in a telechelic ATRP macroinitiator (Br-PB-Br). Br-PB-Br was used to mediate RDRP of an l-histidine-derived monomer, HisMAM, yielding a series of PHisMAM-b-PB-b-PHisMAM triblock copolymers. The copolymer's stimuli response was assessed against pH and temperature changes. The copolymer is capable of switching among its zwitterionic, anionic, and cationic forms and exhibited unique antifouling properties in its zwitterionic form. These novel triblock copolymers are expected to be show promising potential in biomedical applications.
Collapse
Affiliation(s)
- Sk Arif Mohammad
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Subrata Dolui
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Devendra Kumar
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| | - Shivshankar R Mane
- Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008, India
| | - Sanjib Banerjee
- Department of Chemistry, Indian Institute of Technology Bhilai, Raipur 492015, Chhattisgarh, India
| |
Collapse
|
7
|
Tsuchiya K, Numata K. Facile terminal functionalization of peptides by protease-catalyzed chemoenzymatic polymerization toward synthesis of polymeric architectures consisting of peptides. Polym Chem 2020. [DOI: 10.1039/c9py01335k] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Terminal functionalized polypeptides were synthesized in one-pot chemoenzymatic polymerization using protease for constructing special polymeric architectures.
Collapse
Affiliation(s)
- Kousuke Tsuchiya
- Biomacromolecules Research Team
- RIKEN Center for Sustainable Resource Science
- Saitama 351-0198
- Japan
| | - Keiji Numata
- Biomacromolecules Research Team
- RIKEN Center for Sustainable Resource Science
- Saitama 351-0198
- Japan
| |
Collapse
|
8
|
Rasines Mazo A, Allison-Logan S, Karimi F, Chan NJA, Qiu W, Duan W, O’Brien-Simpson NM, Qiao GG. Ring opening polymerization of α-amino acids: advances in synthesis, architecture and applications of polypeptides and their hybrids. Chem Soc Rev 2020; 49:4737-4834. [DOI: 10.1039/c9cs00738e] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This review provides a comprehensive overview of the latest advances in the synthesis, architectural design and biomedical applications of polypeptides and their hybrids.
Collapse
Affiliation(s)
- Alicia Rasines Mazo
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Stephanie Allison-Logan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Fatemeh Karimi
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Nicholas Jun-An Chan
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wenlian Qiu
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| | - Wei Duan
- School of Medicine
- Deakin University
- Geelong
- Australia
| | - Neil M. O’Brien-Simpson
- Centre for Oral Health Research
- Melbourne Dental School and the Bio21 Institute of Molecular Science and Biotechnology
- University of Melbourne
- Parkville
- Australia
| | - Greg G. Qiao
- Polymer Science Group
- Department of Chemical Engineering
- University of Melbourne
- Parkville
- Australia
| |
Collapse
|
9
|
Structural Characterization and Digestibility of Curcumin Loaded Octenyl Succinic Nanoparticles. NANOMATERIALS 2019; 9:nano9081073. [PMID: 31357427 PMCID: PMC6723743 DOI: 10.3390/nano9081073] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 11/17/2022]
Abstract
Curcumin displays anti-cancer, anti-inflammatory and anti-obesity properties but its water insolubility limits the wholesome utility. In this study, curcumin has been encapsulated in an amphiphilic biopolymer to enhance its water solubility. This was accomplished through self-assembly of octenyl succinic anhydride-short glucan chains (OSA-SGC) and curcumin. The nanoparticles were prepared with the degree of substitution (DS) of 0.112, 0.286 and 0.342 of OSA. Thus prepared nanoparticles were in the range of 150-200 nm and display high encapsulation efficiency and high loading capacity of curcumin. The Fourier-transform infrared (FTIR) and X-ray diffraction analyses confirmed the curcumin loading in the OSA-SGC nanoparticles. The complexes possessed a V-type starch structure. The thermo gravimetric analysis (TGA) revealed the thermal stability of encapsulated curcumin. The OSA-SGC nanoparticles greatly improved the curcumin release and dissolution, and in-turn promoted the sustained release.
Collapse
|
10
|
Lei L, Liu J, Ma X, Yang H, Lei Z. A novel strategy to synthesize dual-responsive polymeric nanocarriers for investigating the activity and stability of immobilized pectinase. Biotechnol Appl Biochem 2019; 66:376-388. [PMID: 30715751 DOI: 10.1002/bab.1734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
A dual-stimuli-responsive support material for pectinase immobilization through ionic bonding was prepared. Specifically, polystyrene-b-polymethylacrylic (PS-b-PMAA), light- and pH-sensitive polystyrene-(5-propargylether-2-nitrobenzyl bromoisobutyrate)-b-poly(diethylamino)ethyl methacrylate-b-poly(polyethylene glycol methacrylate) (PS-ONB-PDEAEMA-b-PPEGMA) were synthesized through atom transfer radical polymerization, click chemistry, and hydrolysis. The two parts could self-assemble into the micelles in an aqueous solution. The micelles shrunk at a higher pH, and their size reduced under UV irradiation. The stimuli-responsive properties of micelles were characterized by dynamic light scattering and transmission electron microscopy. It has been found that this support was able to adsorb 10 U/mL of immobilized pectinase (approximately 223 mg/g) at pH 5.0 and 60 °C for 60 Min. Meanwhile, the highest relative activity of immobilized pectinase was up to approximately 95% at pH 5.0 and 60 °C. The immobilized pectinase retained more than 50% of the initial activity after eight cycles. The relative activity of the pectinase immobilized on the supports without UV irradiation was approximately 3% lower than that after UV irradiation at 60 °C, indicating that tailoring of enzyme activity was achieved by changing environmental conditions. Apparently, the original enzymatic support material had a great application prospect on enzyme immobilization.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Jiangtao Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, People's Republic of China
| | - Xiao Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Hong Yang
- Basic Experimental Teaching Center, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Zhongli Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, People's Republic of China
| |
Collapse
|
11
|
Lei L, Li F, Zhao H, Wang Y. One-pot synthesis of block copolymers by ring-opening polymerization and ultraviolet light-induced ATRP at ambient temperature. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/pola.28940] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Lin Lei
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education; College of Chemistry and Materials Science, Northwest University; Xi'an 710127 People's Republic of China
| | - Feifei Li
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education; College of Chemistry and Materials Science, Northwest University; Xi'an 710127 People's Republic of China
| | - Haixiu Zhao
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education; College of Chemistry and Materials Science, Northwest University; Xi'an 710127 People's Republic of China
| | - Yuntao Wang
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education; College of Chemistry and Materials Science, Northwest University; Xi'an 710127 People's Republic of China
| |
Collapse
|
12
|
Li Y, Liu J, Zhang K, Lei L, Lei Z. UiO-66-NH2@PMAA: A Hybrid Polymer–MOFs Architecture for Pectinase Immobilization. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b03398] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China
| | - Jiangtao Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China
- College
of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, China
| | - Kehu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China
| | - Lei Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China
| | - Zhongli Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an, 710062, China
| |
Collapse
|
13
|
Bhattacharya S, Mukherjee S, Das Sarma J, Shunmugam R. Metal assisted self-assembled rod like nanostructures for effective cellular internalization. Polym Chem 2018. [DOI: 10.1039/c7py01893b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work describes a metal assisted self-assembled rod like nanostructure which can be used for the delivery of therapeutic agents.
Collapse
Affiliation(s)
- Sourav Bhattacharya
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Saikat Mukherjee
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Jayasri Das Sarma
- Department of Biological Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| | - Raja Shunmugam
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Mohanpur-741246
- India
| |
Collapse
|
14
|
Jana S, Biswas Y, Mandal TK. Methionine-based cationic polypeptide/polypeptide block copolymer with triple-stimuli responsiveness: DNA polyplexation and phototriggered release. Polym Chem 2018. [DOI: 10.1039/c8py00178b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
This work describes the synthesis of a multi-stimuli responsive methionine-based cationic polypeptide and its polypeptide block copolymer, followed by subsequent DNA polyplexation and phototriggered release.
Collapse
Affiliation(s)
- Somdeb Jana
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Yajnaseni Biswas
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| | - Tarun K. Mandal
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata 700 032
- India
| |
Collapse
|
15
|
Chang R, Yang J, Ge S, Zhao M, Liang C, Xiong L, Sun Q. Synthesis and self-assembly of octenyl succinic anhydride modified short glucan chains based amphiphilic biopolymer: Micelles, ultrasmall micelles, vesicles, and lutein encapsulation/release. Food Hydrocoll 2017. [DOI: 10.1016/j.foodhyd.2016.12.023] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
16
|
Dule M, Biswas M, Biswas Y, Mandal K, Jana NR, Mandal TK. Cysteine-based amphiphilic peptide-polymer conjugates via thiol-mediated radical polymerization: Synthesis, self-assembly, RNA polyplexation and N-terminus fluorescent labeling for cell imaging. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
17
|
Zhang Y, Song H, Zhang H, Huang P, Liu J, Chu L, Liu J, Wang W, Cheng Z, Kong D. Fine tuning the assembly and gel behaviors of PEGylated polypeptide conjugates by the copolymerization ofl-alanine and γ-benzyl-l-glutamateN-carboxyanhydrides. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28516] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yumin Zhang
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Huijuan Song
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Hao Zhang
- Ningbo Academy of Agricultural Sciences; Zhejiang 315040 China
| | - Pingsheng Huang
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Liping Chu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine; Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Weiwei Wang
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| | - Zhen Cheng
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology and Bio-X Program; Canary Center at Stanford for Cancer Early Detection, Stanford University; Stanford California 94305 United States
| | - Deling Kong
- Tianjin Key Laboratory of Biomaterial Research; Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College; Tianjin 300192 China
| |
Collapse
|
18
|
Bose A, Jana S, Saha A, Mandal TK. Amphiphilic polypeptide-polyoxazoline graft copolymer conjugate with tunable thermoresponsiveness: Synthesis and self-assembly into various micellar structures in aqueous and nonaqueous media. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.068] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Saha A, Jana S, Mandal TK. Peptide-poly(tert-butyl methacrylate) conjugate into composite micelles in organic solventsversuspeptide-poly(methacrylic acid) conjugate into spherical and worm-like micelles in water: Synthesis and self-assembly. ACTA ACUST UNITED AC 2016. [DOI: 10.1002/pola.28188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Anupam Saha
- Polymer Science Unit, Indian Association for the Cultivation of Science; Jadavpur Kolkata 700 032 India
| | - Somdeb Jana
- Polymer Science Unit, Indian Association for the Cultivation of Science; Jadavpur Kolkata 700 032 India
| | - Tarun K. Mandal
- Polymer Science Unit, Indian Association for the Cultivation of Science; Jadavpur Kolkata 700 032 India
| |
Collapse
|
20
|
Jana S, Saha A, Paira TK, Mandal TK. Synthesis and Self-Aggregation of Poly(2-ethyl-2-oxazoline)-Based Photocleavable Block Copolymer: Micelle, Compound Micelle, Reverse Micelle, and Dye Encapsulation/Release. J Phys Chem B 2016; 120:813-24. [DOI: 10.1021/acs.jpcb.5b10019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Somdeb Jana
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Anupam Saha
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tapas K. Paira
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Tarun K. Mandal
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
21
|
Haldar U, Pan A, Mukherjee I, De P. POSS semitelechelic Aβ17–19 peptide initiated helical polypeptides and their structural diversity in aqueous medium. Polym Chem 2016. [DOI: 10.1039/c6py01399f] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polyhedral oligomeric silsesquioxane (POSS) semitelechelic Aβ17–19 peptide which initiated polymerization of γ-benzyl l-glutamate N-carboxyanhydride (BLG-NCA) was studied to prepare peptide–polypeptide conjugates with α-helical conformation.
Collapse
Affiliation(s)
- Ujjal Haldar
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Abhishek Pan
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Ishita Mukherjee
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| | - Priyadarsi De
- Polymer Research Centre
- Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- India
| |
Collapse
|