1
|
Jiang J, Nikbin E, Liu Y, Lei S, Ye G, Howe JY, Manners I, Winnik MA. Defect-Induced Secondary Crystals Drive Two-Dimensional to Three-Dimensional Morphological Evolution in the Co-Self-Assembly of Polyferrocenylsilane Block Copolymer and Homopolymer. J Am Chem Soc 2023; 145:28096-28110. [PMID: 38088827 DOI: 10.1021/jacs.3c09791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Bottom-up fabrication protocols for uniform 3D hierarchical structures in solution are rare. We report two different approaches to fabricate uniform 3D spherulites and their precursors using mixtures of poly(ferrocenyldimethylsilane) (PFS) block copolymer (BCP) and PFS homopolymer (HP). Both protocols are designed to promote defects in 2D assemblies that serve as intermediate structures. In a multistep seeded growth protocol, we add the BCP/HP mixture to (1D) rod-like PFS micelles in a selective solvent as first-generation seeds. This leads to 2D platelet structures. If this step is conducted at a high supersaturation, secondary crystals form on the basal surface of these platelets. Co-crystallization and rapid crystallization of BCP/HP promote the formation of defects that act as nucleation sites for secondary crystals, resulting in multilayer platelets. This is the key step. The multilayer platelets serve as second-generation seeds upon subsequent addition of BCP/HP blends and, with increasing supersaturation, lead to the sequential formation of uniform (3D) hedrites, sheaves, and spherulites. Similar structures can also be obtained by a simple one-pot direct self-assembly (heating-cooling-aging) protocol of PFS BCP/HP blends. In this case, for a carefully chosen but narrow temperature range, PFS HPs nucleate formation of uniform structures, and the annealing temperature regulates the supersaturation level. In both protocols, the competitive crystallization kinetics of HP/BCP affects the morphology. Both protocols exhibit broad generality. We believe the morphological transformation from 2D to 3D structures, regulated by defect formation, co-crystallization, and supersaturation levels, could apply to various semicrystalline polymers. Moreover, the 3D structures are sufficiently robust to serve as recoverable carriers for nanoparticle catalysts, exhibiting valuable catalytic activity and opening new possibilities for applications requiring exquisite 3D structures.
Collapse
Affiliation(s)
- Jingjie Jiang
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ehsan Nikbin
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| | - Yang Liu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Shixing Lei
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Gang Ye
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing, 100084, China
| | - Jane Y Howe
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8P 5C2, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Department of Material Science and Engineering, University of Toronto, Toronto, Ontario M5S 3E4, Canada
| |
Collapse
|
2
|
Song S, Jiang J, Nikbin E, Howe JY, Manners I, Winnik MA. The role of cooling rate in crystallization-driven block copolymer self-assembly. Chem Sci 2022; 13:396-409. [PMID: 35126972 PMCID: PMC8729813 DOI: 10.1039/d1sc05937h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/26/2022] Open
Abstract
Self-assembly of crystalline-coil block copolymers (BCPs) in selective solvents is often carried out by heating the mixture until the sample appears to dissolve and then allowing the solution to cool back to room temperature. In self-seeding experiments, some crystallites persist during sample annealing and nucleate the growth of core-crystalline micelles upon cooling. There is evidence in the literature that the nature of the self-assembled structures formed is independent of the annealing time at a particular temperature. There are, however, no systematic studies of how the rate of cooling affects self-assembly. We examine three systems based upon poly(ferrocenyldimethylsilane) BCPs that generated uniform micelles under typical conditions where cooling took pace on the 1–2 h time scale. For example, several of the systems generated elongated 1D micelles of uniform length under these slow cooling conditions. When subjected to rapid cooling (on the time scale of a few minutes or faster), branched structures were obtained. Variation of the cooling rate led to a variation in the size and degree of branching of some of the structures examined. These changes can be explained in terms of the high degree of supersaturation that occurs when unimer solutions at high temperature are suddenly cooled. Enhanced nucleation, seed aggregation, and selective growth of the species of lowest solubility contribute to branching. Cooling rate becomes another tool for manipulating crystallization-driven self-assembly and controlling micelle morphologies. In the self-assembly of crystalline-coil block copolymers in solution, heating followed by different cooling rates can lead to different structures.![]()
Collapse
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495
| | - Jingjie Jiang
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495
| | - Ehsan Nikbin
- Department of Materials Science and Engineering, University of Toronto, 184 College Street Toronto Ontario M5S 3E4 Canada
| | - Jane Y Howe
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495.,Department of Materials Science and Engineering, University of Toronto, 184 College Street Toronto Ontario M5S 3E4 Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto Ontario M5S 3E2 Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria Victoria British Columbia V8P 5C2 Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto Toronto Ontario M5S 3H6 Canada +1-416-978-6495.,Department of Chemical Engineering and Applied Chemistry, University of Toronto Toronto Ontario M5S 3E2 Canada
| |
Collapse
|
3
|
Song S, Liu X, Nikbin E, Howe JY, Yu Q, Manners I, Winnik MA. Uniform 1D Micelles and Patchy & Block Comicelles via Scalable, One-Step Crystallization-Driven Block Copolymer Self-Assembly. J Am Chem Soc 2021; 143:6266-6280. [PMID: 33856800 DOI: 10.1021/jacs.1c02395] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fiber-like (1D) core-crystalline micelles of uniform length can be obtained in protocols involving multiple steps from block copolymers (BCPs) in which crystallization of the core-forming polymer drives the self-assembly. Here we report a systematic study that shows that adding small amounts (<5 w/w%) of a homopolymer corresponding to the core-forming block of the BCP enables uniform 1D micelles (mean lengths Ln = 0.6 to 9.7 μm) to be obtained in a single step, simply by heating the mixture in a selective solvent followed by slow cooling. A series of poly(ferrocenyldimethylsilane) (PFS) BCPs with different corona-forming blocks and different compositions as well as PFS homopolymers of different lengths were examined. Dye labeling and confocal fluorescence microscopy showed that the homopolymer ends up in the center of the micelle, signaling that it served as the initial seed for epitaxial micelle growth. The rate of unimer addition was strongly enhanced by the length of the PFS block, and this enabled more complex structures to be formed in one-pot self-assembly experiments from mixtures of two or three BCPs with different PFS block lengths. Furthermore, BCP mixtures that included PFS-b-PI (PI = polyisoprene) and PFS-b-PDMS with similar PFS block lengths resulted in simultaneous addition to growing micelles, resulting in a patchy block that could be visualized by staining the vinyl groups of the PI with Pt nanoparticles. This approach also enabled scale up, so that uniform 1D micelles of controlled architecture can be obtained at concentrations of 10 w/w % solids or more.
Collapse
Affiliation(s)
- Shaofei Song
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Xuemin Liu
- School of Materials Science and Engineering, South China University of Technology, Guangzhou 510640, P. R. China
| | - Ehsan Nikbin
- Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada
| | - Jane Y Howe
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.,Department of Materials Science and Engineering, University of Toronto, 184 College Street, Toronto, Ontario M5S 3E4, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| | - Qing Yu
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ian Manners
- Department of Chemistry, University of Victoria, Victoria, British Columbia V8W 3 V6, Canada
| | - Mitchell A Winnik
- Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada.,Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E2, Canada
| |
Collapse
|
4
|
Paul A, Borrelli R, Bouyanfif H, Gottis S, Sauvage F. Tunable Redox Potential, Optical Properties, and Enhanced Stability of Modified Ferrocene-Based Complexes. ACS OMEGA 2019; 4:14780-14789. [PMID: 31552317 PMCID: PMC6751539 DOI: 10.1021/acsomega.9b01341] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 07/24/2019] [Indexed: 05/20/2023]
Abstract
We report a series of ferrocene-based derivatives and their corresponding oxidized forms in which the introduction of simple electron donating groups like methyl or tert-butyl units on cyclopentadienyl-rings afford great tunability of Fe+III/Fe+II redox potentials from +0.403 V down to -0.096 V versus saturated calomel electrode. The spin forbidden d-d transitions of ferrocene derivatives shift slightly toward the blue region with an increasing number of electron-donating groups on the cyclopentadienyl-rings with very little change in absorptivity values, whereas the ligand-to-metal transitions of the corresponding ferricinium salts move significantly to the near-IR region. The electron-donating groups also contribute in the strengthening of electron density of Fe+III d-orbitals, which therefore improves the chemical stability against the oxygen reaction. Further, density functional theory calculations show a reducing trend in outer shell reorganization energy with an increasing number of the electron donating units.
Collapse
Affiliation(s)
- Avishek Paul
- Laboratoire
de Réactivité et Chimie des Solides CNRS
UMR 7314 and Laboratoire de Physique de la Matière Condensée (EA2081), Université de Picardie Jules Verne, 33 Rue Saint Leu, Amiens 80039, France
| | - Raffaele Borrelli
- Dipartimento
di Scienze Agrarie, Forestali e Alimentari, Università di Torino, Largo Paolo Braccini, 2, Grugliasco I-10095, Turin, Italy
| | - Houssny Bouyanfif
- Laboratoire
de Réactivité et Chimie des Solides CNRS
UMR 7314 and Laboratoire de Physique de la Matière Condensée (EA2081), Université de Picardie Jules Verne, 33 Rue Saint Leu, Amiens 80039, France
| | - Sébastien Gottis
- Laboratoire
de Réactivité et Chimie des Solides CNRS
UMR 7314 and Laboratoire de Physique de la Matière Condensée (EA2081), Université de Picardie Jules Verne, 33 Rue Saint Leu, Amiens 80039, France
| | - Frédéric Sauvage
- Laboratoire
de Réactivité et Chimie des Solides CNRS
UMR 7314 and Laboratoire de Physique de la Matière Condensée (EA2081), Université de Picardie Jules Verne, 33 Rue Saint Leu, Amiens 80039, France
- E-mail:
| |
Collapse
|
5
|
Wang Y, Astruc D, Abd-El-Aziz AS. Metallopolymers for advanced sustainable applications. Chem Soc Rev 2019; 48:558-636. [PMID: 30506080 DOI: 10.1039/c7cs00656j] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since the development of metallopolymers, there has been tremendous interest in the applications of this type of materials. The interest in these materials stems from their potential use in industry as catalysts, biomedical agents in healthcare, energy storage and production as well as climate change mitigation. The past two decades have clearly shown exponential growth in the development of many new classes of metallopolymers that address these issues. Today, metallopolymers are considered to be at the forefront for discovering new and sustainable heterogeneous catalysts, therapeutics for drug-resistant diseases, energy storage and photovoltaics, molecular barometers and thermometers, as well as carbon dioxide sequesters. The focus of this review is to highlight the advances in design of metallopolymers with specific sustainable applications.
Collapse
Affiliation(s)
- Yanlan Wang
- Liaocheng University, Department of Chemistry and Chemical Engineering, 252059, Liaocheng, China.
| | | | | |
Collapse
|
6
|
Sun H, Liu X, Yu B, Feng Z, Ning N, Hu GH, Tian M, Zhang L. Simultaneously improved dielectric and mechanical properties of silicone elastomer by designing a dual crosslinking network. Polym Chem 2019. [DOI: 10.1039/c8py01763h] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A homogenous silicone dielectric elastomer with simultaneously improved dielectric and mechanical properties is synthesized by designing a dual crosslinking network.
Collapse
Affiliation(s)
- Haibin Sun
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Xueying Liu
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Bing Yu
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Zhanbin Feng
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Nanying Ning
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Guo-Hua Hu
- Laboratory of Reactions and Process Engineering (LRGP)
- CNRS UMR 7274
- ENSIC
- University of Lorraine
- Nancy
| | - Ming Tian
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Liqun Zhang
- Key Laboratory of Carbon Fiber and Functional Polymers
- Ministry of Education
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
7
|
Affiliation(s)
- Didier Astruc
- ISM, UMR CNRS 5255; Univ. Bordeaux; 33405 Talence Cedex France
| |
Collapse
|
8
|
Bruña S, Martínez-Montero I, González-Vadillo AM, Martín-Fernández C, Montero-Campillo MM, Mó O, Cuadrado I. Ferrocene and Silicon-Containing Oxathiacrown Macrocycles and Linear Oligo-Oxathioethers Obtained via Thiol–Ene Chemistry of a Redox-Active Bifunctional Vinyldisiloxane. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01683] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Sonia Bruña
- Departamento de Química Inorgánica, Facultad de Ciencias and ‡Departamento
de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ignacio Martínez-Montero
- Departamento de Química Inorgánica, Facultad de Ciencias and ‡Departamento
de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Ana M González-Vadillo
- Departamento de Química Inorgánica, Facultad de Ciencias and ‡Departamento
de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Carlos Martín-Fernández
- Departamento de Química Inorgánica, Facultad de Ciencias and ‡Departamento
de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - M. Merced Montero-Campillo
- Departamento de Química Inorgánica, Facultad de Ciencias and ‡Departamento
de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Otilia Mó
- Departamento de Química Inorgánica, Facultad de Ciencias and ‡Departamento
de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| | - Isabel Cuadrado
- Departamento de Química Inorgánica, Facultad de Ciencias and ‡Departamento
de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|