1
|
Mariani A, Malucelli G. Polymer Hydrogels and Frontal Polymerization: A Winning Coupling. Polymers (Basel) 2023; 15:4242. [PMID: 37959922 PMCID: PMC10647350 DOI: 10.3390/polym15214242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 11/15/2023] Open
Abstract
Polymer hydrogels are 3D networks consisting of hydrophilic crosslinked macromolecular chains, allowing them to swell and retain water. Since their invention in the 1960s, they have become an outstanding pillar in the design, development, and application of engineered polymer systems suitable for biomedical and pharmaceutical applications (such as drug or cell delivery, the regeneration of hard and soft tissues, wound healing, and bleeding prevention, among others). Despite several well-established synthetic routes for developing polymer hydrogels based on batch polymerization techniques, about fifteen years ago, researchers started to look for alternative methods involving simpler reaction paths, shorter reaction times, and lower energy consumption. In this context, frontal polymerization (FP) has undoubtedly become an alternative and efficient reaction model that allows for the conversion of monomers into polymers via a localized and propagating reaction-by means of exploiting the formation and propagation of a "hot" polymerization front-able to self-sustain and propagate throughout the monomeric mixture. Therefore, the present work aims to summarize the main research outcomes achieved during the last few years concerning the design, preparation, and application of FP-derived polymeric hydrogels, demonstrating the feasibility of this technique for the obtainment of functional 3D networks and providing the reader with some perspectives for the forthcoming years.
Collapse
Affiliation(s)
- Alberto Mariani
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, Via Vienna 2, 07100 Sassari, Italy;
- Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali, INSTM, Via Giusti 9, 50121 Firenze, Italy
| | - Giulio Malucelli
- Consorzio Interuniversitario per la Scienza e Tecnologia dei Materiali, INSTM, Via Giusti 9, 50121 Firenze, Italy
- Department of Applied Science and Technology, Politecnico di Torino, Viale Teresa Michel 5, 15121 Alessandria, Italy
| |
Collapse
|
2
|
Martínez-Serrano RD, Cuétara-Guadarrama F, Vonlanthen M, Illescas J, Zhu XX, Rivera E. Facile Obtainment of Fluorescent PEG Hydrogels Bearing Pyrene Groups by Frontal Polymerization. Polymers (Basel) 2023; 15:polym15071687. [PMID: 37050301 PMCID: PMC10097409 DOI: 10.3390/polym15071687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/31/2023] Open
Abstract
Frontal polymerization (FP) was used to prepare poly(ethylene glycol) methyl ether acrylate (PEGMA) fluorescent polymer hydrogels containing pyrenebutyl pendant groups as fluorescent probes. The polymerization procedure was carried out under solvent-free conditions, with different molar quantities of pyrenebutyl methyl ether methacrylate (PybuMA) and PEGMA, in the presence of tricaprylmethylammonium (Aliquat 336®) persulfate as a radical initiator. The obtained PEGPy hydrogels were characterized by FT-IR spectroscopy, confirming the effective incorporation of the PybuMA monomer into the polymer backbone. The thermal properties of the hydrogels were determined using thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). After immersing the hydrogels in deionized water at 25 °C and pH = 7, their swelling behavior was investigated by mass gain at different pH and temperature values. The introduction of PybuMA comonomer into the hydrogel resulted in a decreased swelling ability due to the hydrophobicity of PybuMA. The optical properties of PEGPy were determined by UV-visible absorption and fluorescence spectroscopies. Both monomer and excimer emission bands were observed at 379–397 and 486 nm, respectively, and the fluorescence spectra of the PEGPy hydrogel series were recorded in different solvents to explore the coexistence of monomer and excimer emissions.
Collapse
|
3
|
Suslick BA, Hemmer J, Groce BR, Stawiasz KJ, Geubelle PH, Malucelli G, Mariani A, Moore JS, Pojman JA, Sottos NR. Frontal Polymerizations: From Chemical Perspectives to Macroscopic Properties and Applications. Chem Rev 2023; 123:3237-3298. [PMID: 36827528 PMCID: PMC10037337 DOI: 10.1021/acs.chemrev.2c00686] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
The synthesis and processing of most thermoplastics and thermoset polymeric materials rely on energy-inefficient and environmentally burdensome manufacturing methods. Frontal polymerization is an attractive, scalable alternative due to its exploitation of polymerization heat that is generally wasted and unutilized. The only external energy needed for frontal polymerization is an initial thermal (or photo) stimulus that locally ignites the reaction. The subsequent reaction exothermicity provides local heating; the transport of this thermal energy to neighboring monomers in either a liquid or gel-like state results in a self-perpetuating reaction zone that provides fully cured thermosets and thermoplastics. Propagation of this polymerization front continues through the unreacted monomer media until either all reactants are consumed or sufficient heat loss stalls further reaction. Several different polymerization mechanisms support frontal processes, including free-radical, cat- or anionic, amine-cure epoxides, and ring-opening metathesis polymerization. The choice of monomer, initiator/catalyst, and additives dictates how fast the polymer front traverses the reactant medium, as well as the maximum temperature achievable. Numerous applications of frontally generated materials exist, ranging from porous substrate reinforcement to fabrication of patterned composites. In this review, we examine in detail the physical and chemical phenomena that govern frontal polymerization, as well as outline the existing applications.
Collapse
Affiliation(s)
- Benjamin A Suslick
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Julie Hemmer
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Brecklyn R Groce
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 United States
| | - Katherine J Stawiasz
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Philippe H Geubelle
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Giulio Malucelli
- Department of Applied Science and Technology, Politecnico di Torino, 15121 Alessandria, Italy
| | - Alberto Mariani
- Department of Chemical, Physical, Mathematical and Natural Sciences, University of Sassari, 07100 Sassari, Italy
- National Interuniversity Consortium of Materials Science and Technology, 50121 Firenze, Italy
| | - Jeffrey S Moore
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - John A Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803 United States
| | - Nancy R Sottos
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
4
|
Novel porphyrin-containing hydrogels obtained by frontal polymerization: Synthesis, characterization and optical properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Li Q, Shen HX, Liu C, Wang CF, Zhu L, Chen S. Advances in Frontal Polymerization Strategy: from Fundamentals to Applications. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101514] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Shen H, Wang HP, Wang CF, Zhu L, Li Q, Chen S. Rapid Fabrication of Patterned Gels via Microchannel-Conformal Frontal Polymerization. Macromol Rapid Commun 2021; 42:e2100421. [PMID: 34347322 DOI: 10.1002/marc.202100421] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/28/2021] [Indexed: 11/10/2022]
Abstract
From the perspective of both fundamental and applied science, it is extremely advisable to develop a facile and feasible strategy for fabricating gels with defined structures. Herein, the authors report the rapid synthesis of patterned gels by conducting frontal polymerization (FP) at millimeter-scale (2 mm), where a series of microchannels, including linear-, parallel-, divergent-, snakelike-, circular- and concentric circular channels, were used. They have investigated the effect of various factors (monomer mass ratio, channel size, initiator concentration, and solvent content) on FP at millimeter-scale, along with the propagating rule of the front during FP in these microchannels. In addition, we developed a new microfluidic-assisted FP (MFP) strategy by combining the FP and microfluidic technique. Interestingly, the MFP can realize the production of hollow-structured gel in a rapid and continuous fashion, which have never been reported. Our work not only offers an effective pathway towards patterned gels by the microchannel-conformal FP, but also gives new insight into the continuous production of hollow-structured materials. Such a method will be beneficial for fabricating vessel and scaffold materials in a flexible, easy-to-perform, time and energy saving way.
Collapse
Affiliation(s)
- Haixia Shen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing, 210009, P. R. China
| | - Hao-Peng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing, 210009, P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing, 210009, P. R. China
| | - Liangliang Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing, 210009, P. R. China
| | - Qing Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing, 210009, P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials, Nanjing Tech University, No. 5 Xin Mofan Road, Nanjing, 210009, P. R. China
| |
Collapse
|
7
|
Gao Y, Shaon F, Kumar A, Bynum S, Gary D, Sharp D, Pojman JA, Geubelle PH. Rapid frontal polymerization achieved with thermally conductive metal strips. CHAOS (WOODBURY, N.Y.) 2021; 31:073113. [PMID: 34340327 DOI: 10.1063/5.0052821] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/21/2021] [Indexed: 06/13/2023]
Abstract
Frontal polymerization, which involves a self-propagating polymerizing reaction front, has been considered as a rapid, energy-efficient, and environmentally friendly methodology to manufacture lightweight, high-performance thermoset polymers, and composites. Previous work has reported that the introduction of thermally conductive elements can enhance the front velocity. As follow-up research, the present work investigates this problem more systemically using both numerical and experimental approaches by investigating the front shape, front width, and heat exchange when aluminum and cooper metal strips are embedded in the resin. The study reveals that the enhancement in the front velocity is mainly due to a preheating effect associated with the conductive element. Moreover, the numerical parametric study for the system size shows that the front speed increases as the system size decreases, ultimately approaching a prediction provided by a homogenized model for polymer-metal composites.
Collapse
Affiliation(s)
- Yuan Gao
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, USA
| | - Fahima Shaon
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Aditya Kumar
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, USA
| | - Samuel Bynum
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Daniel Gary
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - David Sharp
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - John A Pojman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Philippe H Geubelle
- Beckman Institute for Advanced Science and Technology, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
8
|
Kollár J, Mrlík M, Moravčíková D, Iván B, Mosnáček J. Effect of monomer content and external stimuli on properties of renewable Tulipalin A-based superabsorbent hydrogels. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.03.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Bynum S, Tullier M, Morejon‐Garcia C, Guidry J, Runnoe E, Pojman JA. The effect of acrylate functionality on frontal polymerization velocity and temperature. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/pola.29352] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Samuel Bynum
- Department of Chemistry and the Macromolecular Studies Group Louisiana State University Baton Rouge Louisiana 70803
| | - Michael Tullier
- Department of Chemistry and the Macromolecular Studies Group Louisiana State University Baton Rouge Louisiana 70803
| | - Catherine Morejon‐Garcia
- Department of Chemistry and the Macromolecular Studies Group Louisiana State University Baton Rouge Louisiana 70803
| | - Jesse Guidry
- Department of Chemistry and the Macromolecular Studies Group Louisiana State University Baton Rouge Louisiana 70803
| | - Emma Runnoe
- Department of Chemistry and the Macromolecular Studies Group Louisiana State University Baton Rouge Louisiana 70803
| | - John A. Pojman
- Department of Chemistry and the Macromolecular Studies Group Louisiana State University Baton Rouge Louisiana 70803
| |
Collapse
|
10
|
Free-radical polymerizations of and in deep eutectic solvents: Green synthesis of functional materials. Prog Polym Sci 2018. [DOI: 10.1016/j.progpolymsci.2017.09.005] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Mariani A, Nuvoli L, Sanna D, Alzari V, Nuvoli D, Rassu M, Malucelli G. Semi-interpenetrating polymer networks based on crosslinked poly(N
-isopropyl acrylamide) and methylcellulose prepared by frontal polymerization. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Alberto Mariani
- Department of Chemistry and Pharmacy; University of Sassari, and INSTM, via Vienna 2; Sassari 07100 Italy
| | - Luca Nuvoli
- Department of Chemistry and Pharmacy; University of Sassari, and INSTM, via Vienna 2; Sassari 07100 Italy
| | - Davide Sanna
- Department of Chemistry and Pharmacy; University of Sassari, and INSTM, via Vienna 2; Sassari 07100 Italy
| | - Valeria Alzari
- Department of Chemistry and Pharmacy; University of Sassari, and INSTM, via Vienna 2; Sassari 07100 Italy
| | - Daniele Nuvoli
- Department of Chemistry and Pharmacy; University of Sassari, and INSTM, via Vienna 2; Sassari 07100 Italy
| | - Mariella Rassu
- Department of Chemistry and Pharmacy; University of Sassari, and INSTM, via Vienna 2; Sassari 07100 Italy
| | - Giulio Malucelli
- Department of Applied Science and Technology; Local INSTM Unit, Viale T. Michel 5; Alessandria 15121 Italy
| |
Collapse
|
12
|
Feng Q, Zhao Y, Li H, Zhang Y, Xia X, Yan Q. Frontal polymerization and characterization of interpenetrating polymer networks composed of poly(N-isopropylacrylamide) and polyvinylpyrrolidone. Colloid Polym Sci 2017. [DOI: 10.1007/s00396-017-4215-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
13
|
Fazende KF, Phachansitthi M, Mota-Morales JD, Pojman JA. Frontal Polymerization of Deep Eutectic Solvents Composed of Acrylic and Methacrylic Acids. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28873] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Kylee F. Fazende
- Department of Chemistry; 232 Choppin Hall, Louisiana State University; Baton Rouge Louisiana 70803
| | - Manysa Phachansitthi
- Department of Chemistry; 232 Choppin Hall, Louisiana State University; Baton Rouge Louisiana 70803
| | - Josué D. Mota-Morales
- Centro de Física Aplicada y Tecnología Avanzada, Universidad Nacional Autónoma de México, Boulevard Juriquilla No. 3001; Querétaro QRO 76230 México
| | - John A. Pojman
- Department of Chemistry; 232 Choppin Hall, Louisiana State University; Baton Rouge Louisiana 70803
| |
Collapse
|
14
|
Rassu M, Alzari V, Nuvoli D, Nuvoli L, Sanna D, Sanna V, Malucelli G, Mariani A. Semi-interpenetrating polymer networks of methyl cellulose and polyacrylamide prepared by frontal polymerization. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28498] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mariella Rassu
- Dipartimento di Chimica e Farmacia, Università di Sassari; INSTM, Via Vienna 2 Sassari 07100 Italy
| | - Valeria Alzari
- Dipartimento di Chimica e Farmacia, Università di Sassari; INSTM, Via Vienna 2 Sassari 07100 Italy
| | - Daniele Nuvoli
- Dipartimento di Chimica e Farmacia, Università di Sassari; INSTM, Via Vienna 2 Sassari 07100 Italy
| | - Luca Nuvoli
- Dipartimento di Chimica e Farmacia, Università di Sassari; INSTM, Via Vienna 2 Sassari 07100 Italy
| | - Davide Sanna
- Dipartimento di Chimica e Farmacia, Università di Sassari; INSTM, Via Vienna 2 Sassari 07100 Italy
| | - Vanna Sanna
- Dipartimento di Chimica e Farmacia, Università di Sassari; INSTM, Via Vienna 2 Sassari 07100 Italy
| | - Giulio Malucelli
- Politecnico di Torino, INSTM; Dipartimento di Scienza Applicata e Tecnologia; Viale Teresa Michel 5 Alessandria 15121 Italy
| | - Alberto Mariani
- Dipartimento di Chimica e Farmacia, Università di Sassari; INSTM, Via Vienna 2 Sassari 07100 Italy
| |
Collapse
|
15
|
Nuvoli D, Alzari V, Nuvoli L, Rassu M, Sanna D, Mariani A. Synthesis and characterization of poly(2-hydroxyethylacrylate)/β-cyclodextrin hydrogels obtained by frontal polymerization. Carbohydr Polym 2016; 150:166-71. [DOI: 10.1016/j.carbpol.2016.05.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/05/2016] [Accepted: 05/06/2016] [Indexed: 02/06/2023]
|
16
|
Kollár J, Mrlík M, Moravčíková D, Kroneková Z, Liptaj T, Lacík I, Mosnáček J. Tulips: A Renewable Source of Monomer for Superabsorbent Hydrogels. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00467] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jozef Kollár
- Polymer
Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Miroslav Mrlík
- Centre
of Polymer Systems, University Institute, Tomas Bata University in Zlin, Trida T. Bati 5678, 760 01 Zlin, Czech Republic
| | - Daniela Moravčíková
- Polymer
Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Zuzana Kroneková
- Polymer
Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Tibor Liptaj
- Faculty
of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812
37 Bratislava, Slovakia
| | - Igor Lacík
- Polymer
Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| | - Jaroslav Mosnáček
- Polymer
Institute, Slovak Academy of Sciences, Dubravska cesta 9, 845 41 Bratislava, Slovakia
| |
Collapse
|