1
|
Doyle B, Madden LA, Pamme N, Jones HS. Immobilised-enzyme microreactors for the identification and synthesis of conjugated drug metabolites. RSC Adv 2023; 13:27696-27704. [PMID: 37727313 PMCID: PMC10506384 DOI: 10.1039/d3ra03742h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 09/08/2023] [Indexed: 09/21/2023] Open
Abstract
The study of naturally circulating drug metabolites has been a focus of interest, since these metabolites may have different therapeutic and toxicological effects compared to the parent drug. The synthesis of metabolites outside of the human body is vital in order to conduct studies into the pharmacological activities of drugs and bioactive compounds. Current synthesis methods require significant purification and separation efforts or do not provide sufficient quantities for use in pharmacology experiments. Thus, there is a need for simple methods yielding high conversions whilst bypassing the requirement for a separation. Here we have developed and optimised flow chemistry methods in glass microfluidic reactors utilising surface-immobilised enzymes for sulfonation (SULT1a1) and glucuronidation (UGT1a1). Conversion occurs in flow, the precursor and co-factor are pumped through the device, react with the immobilised enzymes and the product is then simply collected at the outlet with no separation from a complex biological matrix required. Conversion only occurred when both the correct co-factor and enzyme were present within the microfluidic system. Yields of 0.97 ± 0.26 μg were obtained from the conversion of resorufin into resorufin sulfate over 2 h with the SULT1a1 enzyme and 0.47 μg of resorufin glucuronide over 4 h for UGT1a1. This was demonstrated to be significantly more than static test tube reactions at 0.22 μg (SULT1a1) and 0.19 μg (UGT1a1) over 4 h. With scaling out and parallelising, useable quantities of hundreds of micrograms for use in pharmacology studies can be synthesised simply.
Collapse
Affiliation(s)
- Bradley Doyle
- School of Natural Sciences, University of Hull HU6 7RX UK
| | | | - Nicole Pamme
- School of Natural Sciences, University of Hull HU6 7RX UK
- Department of Materials and Environmental Chemistry, Stockholm University 106 91 Stockholm Sweden
| | - Huw S Jones
- Institute of Cancer Therapeutics, University of Bradford BD7 1DP UK
| |
Collapse
|
2
|
Mathews HF, Pieper MI, Jung SH, Pich A. Compartmentalized Polyampholyte Microgels by Depletion Flocculation and Coacervation of Nanogels in Emulsion Droplets. Angew Chem Int Ed Engl 2023; 62:e202304908. [PMID: 37387670 DOI: 10.1002/anie.202304908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 06/16/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
In pH-responsive drug carriers, the distribution of charges has been proven to affect delivery efficiency but is difficult to control and verify. Herein, we fabricate polyampholyte nanogel-in-microgel colloids (NiM-C) and show that the arrangement of the nanogels (NG) can easily be manipulated by adapting synthesis conditions. Positively and negatively charged pH-responsive NG are synthesized by precipitation polymerization and labelled with different fluorescent dyes. The obtained NG are integrated into microgel (MG) networks by subsequent inverse emulsion polymerization in droplet-based microfluidics. By confocal laser scanning microscopy (CLSM), we verify that depending on NG concentration, pH value and ionic strength, NiM-C with different NG arrangements are obtained, including Janus-like phase-separation of NG, statistical distribution of NG, and core-shell arrangements. Our approach is a major step towards uptake and release of oppositely charged (drug) molecules.
Collapse
Affiliation(s)
- Hannah F Mathews
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Maria I Pieper
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Se-Hyeong Jung
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 1-5/10, 8093, Zürich, Switzerland
| | - Andrij Pich
- DWI-Leibniz Institute for Interactive Materials, RWTH Aachen University, Forckenbeckstr. 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
- Aachen Maastricht Institute for Biobased Materials (AMIBM), Brightlands Chemelot Campus, Maastricht University, 6167 RD, Geleen, The Netherlands
| |
Collapse
|
3
|
Farooqi ZH, Vladisavljević GT, Pamme N, Fatima A, Begum R, Irfan A, Chen M. Microfluidic Fabrication and Applications of Microgels and Hybrid Microgels. Crit Rev Anal Chem 2023; 54:2435-2449. [PMID: 36757081 DOI: 10.1080/10408347.2023.2177097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
Smart microgels have gained much attention because of their wide range of applications in the field of biomedical, environmental, nanotechnological and catalysis sciences. Most of the applications of microgels are strongly affected by their morphology, size and size distribution. Various methodologies have been adopted to obtain polymer microgel particles. Droplet microfluidic techniques have been widely reported for the fabrication of highly monodisperse microgel particles to be used for various applications. Monodisperse microgel particles of required size and morphology can be achieved via droplet microfluidic techniques by simple polymerization of monomers in the presence of suitable crosslinker or by gelation of high molecular weight polymers. This report gives recent research progress in fabrication, characterization, properties and applications of microgel particles synthesized by microfluidic methods.
Collapse
Affiliation(s)
- Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| | | | - Nicole Pamme
- Department for Materials and Environmental Chemistry, Stockholm University, Stockholm, Sweden
- Department of Chemistry and Biochemistry, University of Hull, Hull, United Kingdom
| | - Arooj Fatima
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, College of Science, King Khalid University, Abha, Saudi Arabia
| | - Minjun Chen
- Department of Chemical Engineering, Loughborough University, Loughborough, UK
| |
Collapse
|
4
|
Kamlow MA, Holt T, Spyropoulos F, Mills T. Release and co-release of model hydrophobic and hydrophilic actives from 3D printed kappa-carrageenan emulsion gels. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
5
|
Tang X, Duan W, Yang M, Xu K, Zheng C. Construction and degradation mechanism of polylactic acid-pH-responsive microgel composite system plugging system. J DISPER SCI TECHNOL 2022. [DOI: 10.1080/01932691.2022.2106996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Xiaoli Tang
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People's Republic of China
| | - Wenmeng Duan
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People's Republic of China
| | - Min Yang
- Budget management department of PetroChina Tarim Oilfield Company, Xinjiang, The People's Republic of China
| | - Ke Xu
- PetroChina Research Institute of Petroleum Exploration & Development, Beijing, The People's Republic of China
| | - Cunchuan Zheng
- School of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu, The People's Republic of China
| |
Collapse
|
6
|
Fabrication of pH-degradable supramacromolecular microgels with tunable size and shape via droplet-based microfluidics. J Colloid Interface Sci 2022; 617:409-421. [DOI: 10.1016/j.jcis.2022.02.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 12/25/2022]
|
7
|
Dimitriou P, Li J, Tornillo G, McCloy T, Barrow D. Droplet Microfluidics for Tumor Drug-Related Studies and Programmable Artificial Cells. GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000123. [PMID: 34267927 PMCID: PMC8272004 DOI: 10.1002/gch2.202000123] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/19/2021] [Indexed: 05/11/2023]
Abstract
Anticancer drug development is a crucial step toward cancer treatment, that requires realistic predictions of malignant tissue development and sophisticated drug delivery. Tumors often acquire drug resistance and drug efficacy, hence cannot be accurately predicted in 2D tumor cell cultures. On the other hand, 3D cultures, including multicellular tumor spheroids (MCTSs), mimic the in vivo cellular arrangement and provide robust platforms for drug testing when grown in hydrogels with characteristics similar to the living body. Microparticles and liposomes are considered smart drug delivery vehicles, are able to target cancerous tissue, and can release entrapped drugs on demand. Microfluidics serve as a high-throughput tool for reproducible, flexible, and automated production of droplet-based microscale constructs, tailored to the desired final application. In this review, it is described how natural hydrogels in combination with droplet microfluidics can generate MCTSs, and the use of microfluidics to produce tumor targeting microparticles and liposomes. One of the highlights of the review documents the use of the bottom-up construction methodologies of synthetic biology for the formation of artificial cellular assemblies, which may additionally incorporate both target cancer cells and prospective drug candidates, as an integrated "droplet incubator" drug assay platform.
Collapse
Affiliation(s)
- Pantelitsa Dimitriou
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Jin Li
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - Giusy Tornillo
- Hadyn Ellis BuildingCardiff UniversityMaindy RoadCardiffCF24 4HQUK
| | - Thomas McCloy
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| | - David Barrow
- Applied Microfluidic LaboratorySchool of EngineeringCardiff UniversityCardiffCF24 3AAUK
| |
Collapse
|
8
|
Xia HM, Wu JW, Zheng JJ, Zhang J, Wang ZP. Nonlinear microfluidics: device physics, functions, and applications. LAB ON A CHIP 2021; 21:1241-1268. [PMID: 33877234 DOI: 10.1039/d0lc01120g] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The microfluidic flow is typically laminar due to the dominant viscous effects. At Reynolds numbers far below 1 (Re ≪ 1), the fluid inertia can be neglected. For the steady flow of incompressible Newtonian fluids, it approaches linear Stokes flow. At intermediate Re, there exists a weak-inertia flow regime where secondary flows such as Dean vortices are accessible for microfluidic manipulations. Apart from the fluid inertia, other nonlinear factors such as the non-Newtonian fluid properties, concurrent flow of dissimilar fluids, compliant fluidic structures and stimuli-responsive materials can also cause intriguing flow behaviours. Through proper designs, they can be applied for a variety of microfluidic components including mixers, valves, oscillators, stabilizers and auto-regulators etc., greatly enriching the microfluidic flow control and manipulation strategies. Due to its unique working characteristics and advantages, nonlinear microfluidics has increasingly attracted extensive attention. This review presents a systematic survey on this subject. The designs of typical nonlinear microfluidic devices, their working mechanisms, key applications, and the perspective of their future developments will be discussed. The nonlinear microfluidic techniques are believed to play an essential role in the next generation of highly-integrated, automated, and intelligent microfluidics.
Collapse
Affiliation(s)
- H M Xia
- School of Mechanical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P. R. China.
| | | | | | | | | |
Collapse
|
9
|
Dual physically and chemically cross-linked polyelectrolyte nanohydrogels: Compositional and pH-dependent behavior studies. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2019.109398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Ashrafizadeh M, Tam KC, Javadi A, Abdollahi M, Sadeghnejad S, Bahramian A. Synthesis and physicochemical properties of dual-responsive acrylic acid/butyl acrylate cross-linked nanogel systems. J Colloid Interface Sci 2019; 556:313-323. [PMID: 31454623 DOI: 10.1016/j.jcis.2019.08.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 12/22/2022]
Abstract
HYPOTHESIS A cross-linked amphiphilic nanogel containing a high mole% of hydrophilic pH-responsive moiety can provide enhanced functionality regarding stimuli-responsiveness, water-dispersibility, hydrophobic substance loading, and structural stability under harsh environmental conditions. These nanogels could be synthesized using a one-pot procedure for large-scale applications. Moreover, the interplay of various interaction forces in these colloidal systems is being investigated. EXPERIMENTS Model nanogels consisting of acrylic acid-butyl acrylate-ethylene glycoldimethacrylate were synthesized using an emulsion copolymerization via a seeded semi-batch process under an acidic condition. The structures were assessed by Fourier transform infrared spectroscopy and potentiometric-conductometric titrations. Zeta potential, field-emission scanning electron microscopy, and transmission electron microscopy were used to evaluate the dispersion stability, size distribution, and structural distribution, respectively. Their stimuli-responsive behavior was studied by combining static and dynamic light scattering and titration analyses. FINDINGS Monodisperse nanospheres of approximately 150 nm were successfully prepared by implementing a one-pot practical pathway. These nanogels displayed a dual thermo- and pH-responsive behavior, reflecting the high efficiency of physical cross-linking make it ideal for drug delivery and oil industry applications. Moreover, a novel symmetric pH-activated morphology transformation behavior was revealed. Accordingly, a compositional distribution was proposed and assessed by exploring the polymerization process.
Collapse
Affiliation(s)
- Marjan Ashrafizadeh
- Department of Chemical Engineering, College of Engineering, University of Tehran, 11155/4563 Tehran, Iran.
| | - Kam Chiu Tam
- Department of Chemical Engineering, Waterloo Institute for Nanotechnology, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada.
| | - Aliyar Javadi
- Department of Chemical Engineering, College of Engineering, University of Tehran, 11155/4563 Tehran, Iran; Max Planck Institute of Colloids and Interfaces Potsdam/Golm, Germany.
| | - Mahdi Abdollahi
- Department of Polymer Reaction Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, 14115-114 Tehran, Iran.
| | - Saeid Sadeghnejad
- Department of Petroleum Engineering, Faculty of Chemical Engineering, Tarbiat Modares University, 14115-114 Tehran, Iran.
| | - Alireza Bahramian
- Department of Chemical Engineering, College of Engineering, University of Tehran, 11155/4563 Tehran, Iran.
| |
Collapse
|
11
|
Gumerov RA, Filippov SA, Richtering W, Pich A, Potemkin II. Amphiphilic microgels adsorbed at oil-water interfaces as mixers of two immiscible liquids. SOFT MATTER 2019; 15:3978-3986. [PMID: 31025694 DOI: 10.1039/c9sm00389d] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Amphiphilic microgels adsorbed at an oil-water interface were studied by means of dissipative particle dynamics (DPD) simulations. The hydrophobic (A) and hydrophilic (B) monomer units in the polymer network are considered to be randomly distributed. Effects of the crosslinking density, interfacial tension between the liquids, their selectivity as solvents towards species A and B, and the degree of incompatibility between the A and B units on the internal microgel structure and distribution of the liquids are considered. The most important predictions are that (i) two immiscible liquids can homogeneously be mixed within the microgels and (ii) the adsorbed microgels contain a high fraction of the liquids (they are swollen at the interface). Simultaneous fulfillment of these two conditions can have a high impact on the design of new and efficient catalytic systems. In particular, such microgels can mix immiscible reactants dissolved in water and oil and trigger chemical reactions in the presence of a catalyst embedded into the microgel.
Collapse
Affiliation(s)
- Rustam A Gumerov
- Physics Department, Lomonosov Moscow State University, Moscow 119991, Russian Federation.
| | | | | | | | | |
Collapse
|
12
|
Tuček J, Slouka Z, Přibyl M. Electric field assisted transport of dielectric droplets dispersed in aqueous solutions of ionic surfactants. Electrophoresis 2018; 39:2997-3005. [DOI: 10.1002/elps.201800176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/26/2018] [Accepted: 07/26/2018] [Indexed: 11/08/2022]
Affiliation(s)
- Jakub Tuček
- Department of Chemical EngineeringUniversity of Chemistry and Technology Prague
| | - Zdeněk Slouka
- Department of Chemical EngineeringUniversity of Chemistry and Technology Prague
| | - Michal Přibyl
- Department of Chemical EngineeringUniversity of Chemistry and Technology Prague
| |
Collapse
|
13
|
Agrawal G, Agrawal R. Functional Microgels: Recent Advances in Their Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801724. [PMID: 30035853 DOI: 10.1002/smll.201801724] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2018] [Revised: 06/11/2018] [Indexed: 06/08/2023]
Abstract
Here, a spotlight is shown on aqueous microgel particles which exhibit a great potential for various biomedical applications such as drug delivery, cell imaging, and tissue engineering. Herein, different synthetic methods to develop microgels with desirable functionality and properties along with degradable strategies to ensure their renal clearance are briefly presented. A special focus is given on the ability of microgels to respond to various stimuli such as temperature, pH, redox potential, magnetic field, light, etc., which helps not only to adjust their physical and chemical properties, and degradability on demand, but also the release of encapsulated bioactive molecules and thus making them suitable for drug delivery. Furthermore, recent developments in using the functional microgels for cell imaging and tissue regeneration are reviewed. The results reviewed here encourage the development of a new class of microgels which are able to intelligently perform in a complex biological environment. Finally, various challenges and possibilities are discussed in order to achieve their successful clinical use in future.
Collapse
Affiliation(s)
- Garima Agrawal
- Department of Polymer and Process Engineering, Indian Institute of Technology Roorkee, Saharanpur Campus, Paper Mill Road, Saharanpur, 247001, Uttar Pradesh, India
| | - Rahul Agrawal
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, 20892-1500, USA
| |
Collapse
|
14
|
Gruber A, Işık D, Fontanezi BB, Böttcher C, Schäfer-Korting M, Klinger D. A versatile synthetic platform for amphiphilic nanogels with tunable hydrophobicity. Polym Chem 2018. [DOI: 10.1039/c8py01123k] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Functionalization of reactive precursor particles allows the preparation of amphiphilic nanogel libraries with tunable network hydrophobicity and comparable colloidal features.
Collapse
Affiliation(s)
- Alexandra Gruber
- Institute of Pharmacy (Pharmaceutical Chemistry)
- Freie Universität Berlin
- Berlin D-14195
- Germany
| | - Doğuş Işık
- Institute of Pharmacy (Pharmaceutical Chemistry)
- Freie Universität Berlin
- Berlin D-14195
- Germany
| | - Bianca Bueno Fontanezi
- Institute of Pharmacy (Pharmacology and Toxicology)
- Freie Universität Berlin
- Berlin D-14195
- Germany
| | - Christoph Böttcher
- Research Center of Electron Microscopy and Core Facility
- BioSupraMol
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin D-14195
| | - Monika Schäfer-Korting
- Institute of Pharmacy (Pharmacology and Toxicology)
- Freie Universität Berlin
- Berlin D-14195
- Germany
| | - Daniel Klinger
- Institute of Pharmacy (Pharmaceutical Chemistry)
- Freie Universität Berlin
- Berlin D-14195
- Germany
| |
Collapse
|