1
|
Supej MJ, McLoughlin EA, Hsu JH, Fors BP. Reversible redox controlled acids for cationic ring-opening polymerization. Chem Sci 2021; 12:10544-10549. [PMID: 34447548 PMCID: PMC8356742 DOI: 10.1039/d1sc03011f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 07/02/2021] [Indexed: 11/25/2022] Open
Abstract
Advancements in externally controlled polymerization methodologies have enabled the synthesis of novel polymeric structures and architectures, and they have been pivotal to the development of new photocontrolled lithographic and 3D printing technologies. In particular, the development of externally controlled ring-opening polymerization (ROP) methodologies is of great interest, as these methods provide access to novel biocompatible and biodegradable block polymer structures. Although ROPs mediated by photoacid generators have made significant contributions to the fields of lithography and microelectronics development, these methodologies rely upon catalysts with poor stability and thus poor temporal control. Herein, we report a class of ferrocene-derived acid catalysts whose acidity can be altered through reversible oxidation and reduction of the ferrocenyl moiety to chemically and electrochemically control the ROP of cyclic esters.
Collapse
Affiliation(s)
- Michael J Supej
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Elizabeth A McLoughlin
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Jesse H Hsu
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| | - Brett P Fors
- Department of Chemistry and Chemical Biology, Cornell University Ithaca New York 14853 USA
| |
Collapse
|
2
|
Isse AA, Gennaro A. Electrochemistry for Atom Transfer Radical Polymerization. CHEM REC 2021; 21:2203-2222. [PMID: 33750023 DOI: 10.1002/tcr.202100028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 12/31/2022]
Abstract
Atom Transfer Radical Polymerization (ATRP) is the most powerful and most employed technology of Controlled Radical Polymerization (CRP) to produce polymers with well-defined architecture, that is, composition, topology, and functionality. Several hundreds of papers are published every year on ATRP processes, mainly based on empiric experimental procedures. Electrochemistry powerfully entered in the field of ATRP about 10 years ago, providing important contributions both to the further development of the process and to a better understanding of its mechanism. Five main issues took advantage of electrochemistry and/or its synergism with ATRP: i) understanding the mechanism of ATRP activation; ii) determination of thermodynamic parameters; iii) determination of activation and deactivation rate constants; iv) the SARA ATRP vs SET-LRP dispute: the role of Cu0 ; v) electrochemically-mediated ATRP.
Collapse
Affiliation(s)
- Abdirisak Ahmed Isse
- Department of Chemical Sciences-University of Padova, Via Marzolo, 1-35131, Padova, Italy
| | - Armando Gennaro
- Department of Chemical Sciences-University of Padova, Via Marzolo, 1-35131, Padova, Italy
| |
Collapse
|
3
|
Strover LT, Postma A, Horne MD, Moad G. Anthraquinone-Mediated Reduction of a Trithiocarbonate Chain-Transfer Agent to Initiate Electrochemical Reversible Addition–Fragmentation Chain Transfer Polymerization. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c02392] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Almar Postma
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| | | | - Graeme Moad
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia
| |
Collapse
|
4
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
5
|
Supej MJ, Peterson BM, Fors BP. Dual Stimuli Switching: Interconverting Cationic and Radical Polymerizations with Electricity and Light. Chem 2020. [DOI: 10.1016/j.chempr.2020.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
6
|
De Bon F, Marenzi S, Isse AA, Durante C, Gennaro A. Electrochemically Mediated Aqueous Atom Transfer Radical Polymerization of
N
,
N
‐Dimethylacrylamide. ChemElectroChem 2020. [DOI: 10.1002/celc.202000131] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Francesco De Bon
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
- Present address: Department of Chemical Engineering University of Coimbra Rua Silvio Lima, Polo II 3030-790 Coimbra Portugal
| | - Sofia Marenzi
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Abdirisak A. Isse
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Christian Durante
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| | - Armando Gennaro
- Department of Chemical Sciences University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
7
|
Zhou YN, Li JJ, Wu YY, Luo ZH. Role of External Field in Polymerization: Mechanism and Kinetics. Chem Rev 2020; 120:2950-3048. [PMID: 32083844 DOI: 10.1021/acs.chemrev.9b00744] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The past decades have witnessed an increasing interest in developing advanced polymerization techniques subjected to external fields. Various physical modulations, such as temperature, light, electricity, magnetic field, ultrasound, and microwave irradiation, are noninvasive means, having superb but distinct abilities to regulate polymerizations in terms of process intensification and spatial and temporal controls. Gas as an emerging regulator plays a distinctive role in controlling polymerization and resembles a physical regulator in some cases. This review provides a systematic overview of seven types of external-field-regulated polymerizations, ranging from chain-growth to step-growth polymerization. A detailed account of the relevant mechanism and kinetics is provided to better understand the role of each external field in polymerization. In addition, given the crucial role of modeling and simulation in mechanisms and kinetics investigation, an overview of model construction and typical numerical methods used in this field as well as highlights of the interaction between experiment and simulation toward kinetics in the existing systems are given. At the end, limitations and future perspectives for this field are critically discussed. This state-of-the-art research progress not only provides the fundamental principles underlying external-field-regulated polymerizations but also stimulates new development of advanced polymerization methods.
Collapse
Affiliation(s)
- Yin-Ning Zhou
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Jin-Jin Li
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi-Yang Wu
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zheng-Hong Luo
- Department of Chemical Engineering, School of Chemistry and Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
8
|
Zheng X, Liu Q, Li M, Feng W, Yang H, Kong J. Dual atom transfer radical polymerization for ultrasensitive electrochemical DNA detection. Bioelectrochemistry 2020; 133:107462. [PMID: 32058273 DOI: 10.1016/j.bioelechem.2020.107462] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 01/16/2020] [Accepted: 01/16/2020] [Indexed: 12/13/2022]
Abstract
Atom transfer radical polymerization as a form of controlled/living radical polymerization is particularly attractive. In this work, dual atom transfer radical polymerization (ATRP) is reported for ultrasensitive DNA detection. Firstly, a peptide nucleic acid (PNA) modified with a thiol group was self-assembled on an electrode surface to capture target DNA (TDNA). The initiator of the first ATRP (ATRP-1), α-bromoisobutyric acid (BIBA), was linked to forming PNA/DNA heteroduplexes via coordination of Zr4+. The polymer chain formed by the monomer of ATRP-1 (2-(2-bromoisobutyryloxy) ethyl methacrylate, BIEM) was also one of initiators of the second ATRP (eATRP-2). The other initiator of eATRP-2 was additional BIBA. ATRP-1 involves activator regeneration by electron transfer (ARGET) ATRP, regulated via excess reducing agent. eATRP-2 is electrochemically mediated ATRP which can control the polymerization via an appropriate applied potential. Compared with one ATRP, more monomers of eATRP-2 modified with ferrocene are attached to electrode surface. Under optimal conditions, this dual ATRP strategy provides a low limit of detection (25 aM, ~150 molecules) with satisfactory selectivity and stability. Importantly, this strategy presents a useful prospect for the field of biomolecule detection.
Collapse
Affiliation(s)
- Xiaoke Zheng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Qianrui Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Manman Li
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Weisheng Feng
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China.
| | - Huaixia Yang
- Pharmacy College, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Jinming Kong
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
9
|
De Bon F, Ribeiro DCM, Abreu CMR, Rebelo RAC, Isse AA, Serra AC, Gennaro A, Matyjaszewski K, Coelho JFJ. Under pressure: electrochemically-mediated atom transfer radical polymerization of vinyl chloride. Polym Chem 2020. [DOI: 10.1039/d0py00995d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Electrochemically mediated ATRP (eATRP) of vinyl chloride (VC), a less activated monomer, was successfully achieved. It is the first report on eATRP of a gaseous monomer under pressure.
Collapse
Affiliation(s)
- Francesco De Bon
- University of Coimbra
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- Rua Sílvio Lima-Polo II
| | - Diana C. M. Ribeiro
- University of Coimbra
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- Rua Sílvio Lima-Polo II
| | - Carlos M. R. Abreu
- University of Coimbra
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- Rua Sílvio Lima-Polo II
| | - Rafael A. C. Rebelo
- University of Coimbra
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- Rua Sílvio Lima-Polo II
| | - Abdirisak A. Isse
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | - Arménio C. Serra
- University of Coimbra
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- Rua Sílvio Lima-Polo II
| | - Armando Gennaro
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| | | | - Jorge F. J. Coelho
- University of Coimbra
- Centre for Mechanical Engineering
- Materials and Processes
- Department of Chemical Engineering
- Rua Sílvio Lima-Polo II
| |
Collapse
|
10
|
Zaborniak I, Chmielarz P, Flejszar M, Surmacz K, Ostatek R. Preparation of hydrophobic tannins‐inspired polymer materials via low‐ppm ATRP methods. POLYM ADVAN TECHNOL 2019. [DOI: 10.1002/pat.4825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Izabela Zaborniak
- Department of Physical Chemistry, Faculty of ChemistryRzeszów University of Technology Rzeszów Poland
| | - Paweł Chmielarz
- Department of Physical Chemistry, Faculty of ChemistryRzeszów University of Technology Rzeszów Poland
| | - Monika Flejszar
- Department of Physical Chemistry, Faculty of ChemistryRzeszów University of Technology Rzeszów Poland
| | - Karolina Surmacz
- Doctoral School of Engineering and Technical SciencesRzeszów University of Technology Rzeszów Poland
| | - Robert Ostatek
- Spectroscopy Laboratory, Faculty of ChemistryRzeszów University of Technology Rzeszów Poland
| |
Collapse
|
11
|
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213 United States
| | - Krzysztof Matyjaszewski
- Department of Chemistry Carnegie Mellon University 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213 United States
| |
Collapse
|
12
|
Strover LT, Cantalice A, Lam JYL, Postma A, Hutt OE, Horne MD, Moad G. Electrochemical Behavior of Thiocarbonylthio Chain Transfer Agents for RAFT Polymerization. ACS Macro Lett 2019; 8:1316-1322. [PMID: 35651172 DOI: 10.1021/acsmacrolett.9b00598] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Electrochemical activation of thiocarbonylthio reversible addition-fragmentation chain transfer (RAFT) agents (S=C(Z)S-R) is explored as a potential method for initiating RAFT polymerization under mild conditions without producing initiator-derived byproducts. Herein we apply cyclic voltammetry to establish a predominant reduction mechanism, where electrochemical reduction is coupled to an irreversible first-order chemical reaction. Structure-dependent trends in cyclic voltammograms (CVs), and comparison to absorption spectra, clarify the role of R- and Z-groups in determining reduction processes. The major reduction peak moves to more cathodic potentials in the series dithiobenzoates > trithiocarbonates > heteroaromatic dithiocarbamates > xanthates ∼ N-alkyl-N-aryldithiocarbamates, due to the Z-group influence on thiocarbonyl bond reactivity. More active (electron-withdrawing, radical stabilizing) R-groups shift the reduction peak anodically, in part due to their influence on the rate of the coupled chemical reaction. Analysis of CVs across a range of scan rates revealed that kinetic control over the reduction mechanism is influenced by both the charge transfer rate and chemical reaction rate.
Collapse
Affiliation(s)
| | - Alexis Cantalice
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
- Chimie ParisTech, Paris 75005, France
| | - Jeff Y. L. Lam
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
- Department of Chemistry, Faculty of Natural Sciences, Imperial College London, London SW7 2AZ, U.K
| | - Almar Postma
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | | | | | - Graeme Moad
- CSIRO Manufacturing, Clayton, VIC 3168, Australia
| |
Collapse
|
13
|
De Bon F, Isse AA, Gennaro A. Electrochemically Mediated Atom Transfer Radical Polymerization of Methyl Methacrylate: The Importance of Catalytic Halogen Exchange. ChemElectroChem 2019. [DOI: 10.1002/celc.201900192] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Francesco De Bon
- Department of Chemical SciencesUniversity of Padova Via Marzolo 1 35131 Padova Italy
| | - Abdirisak A. Isse
- Department of Chemical SciencesUniversity of Padova Via Marzolo 1 35131 Padova Italy
| | - Armando Gennaro
- Department of Chemical SciencesUniversity of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
14
|
Lorandi F, Fantin M, Shanmugam S, Wang Y, Isse AA, Gennaro A, Matyjaszewski K. Toward Electrochemically Mediated Reversible Addition–Fragmentation Chain-Transfer (eRAFT) Polymerization: Can Propagating Radicals Be Efficiently Electrogenerated from RAFT Agents? Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00112] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Francesca Lorandi
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Marco Fantin
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Sivaprakash Shanmugam
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Yi Wang
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| | - Abdirisak A. Isse
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova 35131, Italy
| | - Armando Gennaro
- Department of Chemical Sciences, University of Padova, via Marzolo 1, Padova 35131, Italy
| | - Krzysztof Matyjaszewski
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|