1
|
Baker J, Zhang R, Figg CA. Installing a Single Monomer within Acrylic Polymers Using Photoredox Catalysis. J Am Chem Soc 2024; 146:106-111. [PMID: 38128915 PMCID: PMC10785814 DOI: 10.1021/jacs.3c12221] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/22/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023]
Abstract
Incorporating exactly one monomer at a defined position during a chain polymerization is exceptionally challenging due to the statistical nature of monomer addition. Herein, photoinduced electron/energy transfer (PET) enables the incorporation of exactly one vinyl ether into polyacrylates synthesized via reversible addition-fragmentation chain transfer (RAFT) polymerization. Near-quantitative addition (>96%) of a single vinyl ether is achieved while retaining >99% of the thiocarbonylthio chain ends. Kinetic studies reveal that performing the reactions at 2 °C limits unwanted chain breaking events. Finally, the syntheses of diblock copolymers are reported where molecular weights and dispersities are well-controlled on either side of the vinyl ether. Overall, this report introduces an approach to access acrylic copolymers containing exactly one chemical handle at a defined position, enabling novel macromolecular architectures to probe structure-function properties, introduce sites for de/reconstruction, store information, etc.
Collapse
Affiliation(s)
- Jared
G. Baker
- Department of Chemistry and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Richard Zhang
- Department of Chemistry and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - C. Adrian Figg
- Department of Chemistry and Macromolecules
Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
2
|
Yu C, Song J, Kim TI, Lee Y, Kwon Y, Kim J, Park J, Choi J, Doh J, Min SK, Cho S, Kwon MS. Silver Sulfide Nanocrystals as a Biocompatible and Full-Spectrum Photocatalyst for Efficient Light-Driven Polymerization under Aqueous and Ambient Conditions. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Changhoon Yu
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jaejung Song
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Tae In Kim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Yungyeong Lee
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Yonghwan Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jongkyoung Kim
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Jeehun Park
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinho Choi
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Junsang Doh
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| | - Seung Kyu Min
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Seungho Cho
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Sang Kwon
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
3
|
Precision Polymer Synthesis by Controlled Radical Polymerization: Fusing the progress from Polymer Chemistry and Reaction Engineering. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101555] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
4
|
Zhang L, Lin S, Xu J. Stereochemistry-Induced Discrimination in Reaction Kinetics of Photo-RAFT Initialization. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Lei Zhang
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Shiyang Lin
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design, School of Chemical Engineering, UNSW, Sydney, NSW 2052, Australia
| |
Collapse
|
5
|
Allegrezza ML, Konkolewicz D. PET-RAFT Polymerization: Mechanistic Perspectives for Future Materials. ACS Macro Lett 2021; 10:433-446. [PMID: 35549229 DOI: 10.1021/acsmacrolett.1c00046] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In the past decade, photochemistry has emerged as a growing area in organic and polymer chemistry. Use of light to drive polymerization has advantages by imparting spatial and temporal control over the reaction. Photoinduced electron/energy transfer reversible addition-fragmentation chain transfer polymerization (PET-RAFT) has emerged as an excellent technique for developing well-defined polymers from a variety of functional monomers. However, the mechanism, of electron versus energy transfer is debated in the literature, with conflicting reports on the underlying process. This perspective focuses on the mechanistic aspects of PET-RAFT, in particular, the electron versus energy transfer pathways. The different mechanisms are evaluated, including evidence for one versus the other mechanisms. The current literature has not reached a consensus across all PET-RAFT processes, but rather, each catalytic system has unique characteristics.
Collapse
Affiliation(s)
- Michael L. Allegrezza
- Department of Chemistry and Biochemmistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| | - Dominik Konkolewicz
- Department of Chemistry and Biochemmistry, Miami University, 651 East High Street, Oxford, Ohio 45056, United States
| |
Collapse
|
6
|
Grishin DF, Grishin ID. Modern trends in controlled synthesis of functional polymers: fundamental aspects and practical applications. RUSSIAN CHEMICAL REVIEWS 2021. [DOI: 10.1070/rcr4964] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Major trends in controlled radical polymerization (CRP) or reversible-deactivation radical polymerization (RDRP), the most efficient method of synthesis of well-defined homo- and copolymers with specified parameters and properties, are critically analyzed. Recent advances associated with the three classical versions of CRP: nitroxide mediated polymerization, reversible addition-fragmentation chain transfer polymerization and atom transfer radical polymerization, are considered. Particular attention is paid to the prospects for the application of photoinitiation and photocatalysis in CRP. This approach, which has been intensively explored recently, brings synthetic methods of polymer chemistry closer to the light-induced processes of macromolecular synthesis occurring in living organisms. Examples are given of practical application of CRP techniques to obtain industrially valuable, high-tech polymeric products.
The bibliography includes 429 references.
Collapse
|
7
|
Zhang L, Liu R, Huang Z, Xu J. How does the single unit monomer insertion technique promote kinetic analysis of activation and initiation in photo-RAFT processes? Polym Chem 2021. [DOI: 10.1039/d0py01413c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The single unit monomer insertion technique provides a simple platform for the kinetic investigation of early stage of photo-RAFT process that comprises photo-activation of initial RAFT agents and addition of RAFT leaving radicals to the monomers.
Collapse
Affiliation(s)
- Lei Zhang
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Ruizhe Liu
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Zixuan Huang
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| | - Jiangtao Xu
- Centre for Advanced Macromolecular Design
- School of Chemical Engineering
- UNSW Sydney
- Australia
| |
Collapse
|
8
|
Doerr AM, Burroughs JM, Gitter SR, Yang X, Boydston AJ, Long BK. Advances in Polymerizations Modulated by External Stimuli. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03802] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alicia M. Doerr
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Justin M. Burroughs
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| | - Sean R. Gitter
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Xuejin Yang
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Andrew J. Boydston
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Chemical and Biological Engineering and Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brian K. Long
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37996-1600, United States
| |
Collapse
|
9
|
Olson RA, Korpusik AB, Sumerlin BS. Enlightening advances in polymer bioconjugate chemistry: light-based techniques for grafting to and from biomacromolecules. Chem Sci 2020; 11:5142-5156. [PMID: 34122971 PMCID: PMC8159357 DOI: 10.1039/d0sc01544j] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 04/28/2020] [Indexed: 12/30/2022] Open
Abstract
Photochemistry has revolutionized the field of polymer-biomacromolecule conjugation. Ligation reactions necessitate biologically benign conditions, and photons have a significant energy advantage over what is available thermally at ambient temperature, allowing for rapid and unique reactivity. Photochemical reactions also afford many degrees of control, specifically, spatio-temporal control, light source tunability, and increased oxygen tolerance. Light-initiated polymerizations, in particular photo-atom-transfer radical polymerization (photo-ATRP) and photoinduced electron/energy transfer reversible addition-fragmentation chain transfer polymerization (PET-RAFT), have been used for grafting from proteins, DNA, and cells. Additionally, the spatio-temporal control inherent to light-mediated chemistry has been utilized for grafting biomolecules to hydrogel networks for many applications, such as 3-D cell culture. While photopolymerization has clear advantages, there are factors that require careful consideration in order to obtain optimal control. These factors include the photocatalyst system, light intensity, and wavelength. This Perspective aims to discuss recent advances of photochemistry for polymer biomacromolecule conjugation and potential considerations while tailoring these systems.
Collapse
Affiliation(s)
- Rebecca A Olson
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida USA
| | - Angie B Korpusik
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida USA
| | - Brent S Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida Gainesville Florida USA
| |
Collapse
|
10
|
Parkatzidis K, Truong NP, Antonopoulou MN, Whitfield R, Konkolewicz D, Anastasaki A. Tailoring polymer dispersity by mixing chain transfer agents in PET-RAFT polymerization. Polym Chem 2020. [DOI: 10.1039/d0py00823k] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Here we report a simple and versatile batch methodology to tailor polymer dispersity utilizing PET-RAFT polymerization.
Collapse
Affiliation(s)
- Kostas Parkatzidis
- Laboratory of Polymeric Materials
- Department of Materials
- Zurich
- Switzerland
| | - Nghia P. Truong
- Laboratory of Polymeric Materials
- Department of Materials
- Zurich
- Switzerland
| | | | - Richard Whitfield
- Laboratory of Polymeric Materials
- Department of Materials
- Zurich
- Switzerland
| | | | - Athina Anastasaki
- Laboratory of Polymeric Materials
- Department of Materials
- Zurich
- Switzerland
| |
Collapse
|