1
|
Dang X, Du Y, Wang X, Liu X, Yu Z. New indoleacetic acid-functionalized soluble oxidized starch-based nonionic biopolymers as natural antibacterial materials. Int J Biol Macromol 2023:125071. [PMID: 37245777 DOI: 10.1016/j.ijbiomac.2023.125071] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/22/2023] [Indexed: 05/30/2023]
Abstract
This study aims to develop a new soluble oxidized starch-based nonionic antibacterial polymer (OCSI) featuring high antibacterial activity and non-leachability by grafting indoleacetic acid monomer (IAA) onto the oxidized corn starch (OCS). The synthesized OCSI was characterized analytically by Nuclear magnetic resonance H-spectrometer (1H NMR), Fourier transform infrared spectroscopy (FTIR), Ultraviolet-visible spectroscopy (UV-Vis), X-ray diffractometer (XRD), X-ray Photoelectron Spectroscopy (XPS), Scanning Electronic Microscopy (SEM), Thermogravimetric Analysis (TGA) and Differential Scanning Calorimetry (DSC). The results showed that the synthesized OCSI was endowed with high thermal stability and favorable solubility, and the substitution degree reached 0.6. Besides, the disk diffusion test revealed a lowest OCSI inhibitory concentration of 5 μg disk-1, and showed significant bactericidal activity against Gram-positive bacteria (Staphylococcus aureus) and Gram-negative bacteria (Escherichia coli). Moreover, the antibacterial films (OCSI-PCL), featuring their good compatibility, mechanical properties, antibacterial activity, non-leachability, and low water vapor permeability (WVP), were also successfully prepared by blending OCSI with biodegradable polycaprolactone (PCL). Finally, CCK-8 assay results confirmed the excellent biocompatibility of the OCSI-PCL films. Overall, this very study evidenced the applicability of the obtained oxidized starch-based biopolymers as an eco-friendly non-ionic antibacterial material and confirmed their promising applications in areas including biomedical materials, medical devices, and food packaging.
Collapse
Affiliation(s)
- Xugang Dang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Hubei Provincial Engineering Laboratory for Clean Production and High Value Utilization of Bio-Based Textile Materials, Wuhan Textile University, Wuhan 430200, PR China.
| | - Yongmei Du
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xuechuan Wang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xinhua Liu
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Zhenfu Yu
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| |
Collapse
|
2
|
Aristizábal-Lanza L, Mankar SV, Tullberg C, Zhang B, Linares-Pastén JA. Comparison of the enzymatic depolymerization of polyethylene terephthalate and AkestraTM using Humicola insolens cutinase. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.1048744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The enzymatic depolymerization of synthetic polyesters has become of great interest in recycling plastics. Most of the research in this area focuses on the depolymerization of polyethylene terephthalate (PET) due to its widespread use in various applications. However, the enzymatic activity on other commercial polyesters is less frequently investigated. Therefore, AkestraTM attracted our attention, which is a copolymer derived from PET with a partially biobased spirocyclic acetal structure. In this study, the activity of Humicola insolens cutinase (HiCut) on PET and AkestraTM films and powder was investigated. HiCut showed higher depolymerization activity on amorphous PET films than on Akestra™ films. However, an outstanding performance was achieved on AkestraTM powder, reaching 38% depolymerization in 235h, while only 12% for PET powder. These results are consistent with the dependence of the enzymes on the crystallinity of the polymer since Akestra™ is amorphous while the PET powder has 14% crystallinity. On the other hand, HiCut docking studies and molecular dynamic simulations (MD) suggested that the PET-derived mono (hydroxyethyl)terephthalate dimer (MHET)2 is a hydrolyzable ligand, producing terephthalic acid (TPA), while the Akestra™-derived TPA-spiroglycol ester is not, which is consistent with the depolymerization products determined experimentally. MD studies also suggest ligand-induced local conformational changes in the active site.
Collapse
|
3
|
Li X, İlk S, Liu Y, Raina DB, Demircan D, Zhang B. Nonionic nontoxic antimicrobial polymers: indole-grafted poly(vinyl alcohol) with pendant alkyl or ether groups. Polym Chem 2022. [DOI: 10.1039/d1py01504d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of new nonionic antimicrobial polymers with a biodegradable polyvinyl alcohol (PVA) backbone grafted with indole units and different hydrophobic alkyl or ether groups were synthesized by facile esterification.
Collapse
Affiliation(s)
- Xiaoya Li
- Lund University, Centre for Analysis and Synthesis, Department of Chemistry, P. O. Box 124, SE-22100 Lund, Sweden
| | - Sedef İlk
- Niğde Ömer Halisdemir University, Faculty of Medicine, Department of Immunology, TR-51240, Niğde, Turkey
- KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, SE-10691 Stockholm, Sweden
| | - Yang Liu
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund, Sweden
| | - Deepak Bushan Raina
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, Lund, Sweden
| | - Deniz Demircan
- Lund University, Centre for Analysis and Synthesis, Department of Chemistry, P. O. Box 124, SE-22100 Lund, Sweden
| | - Baozhong Zhang
- Lund University, Centre for Analysis and Synthesis, Department of Chemistry, P. O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|
4
|
Wang P, Zhang B. Sustainable aromatic polyesters with 1,5-disubstituted indole units. RSC Adv 2021; 11:16480-16489. [PMID: 35479171 PMCID: PMC9031847 DOI: 10.1039/d1ra02197d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/26/2021] [Indexed: 01/06/2023] Open
Abstract
This work aims to unravel the impact of disubstitution patterns on the physical properties and processing characteristics of indole-based aromatic polyesters. A series of hydroxyl-carboxylate (AB-type) monomers with 1,5-disubstituted indole and 3-6 methylene units was conveniently synthesized and used in bulk polycondensation to yield the corresponding polyesters with decent molecular weight. These new monomers and polyesters showed enhanced thermal stability compared to the previously reported monomers and polyesters with a 1,3-disubstituted indole structure. According to DSC results, these polyesters showed tunable glass transition temperatures (T g ∼57-80 °C), depending on the length of the aliphatic methylene units. DSC and WAXD measurements revealed that these polymers did not crystalize from melt, but the ones with 3 or 5 methylene units per repeating unit crystalized from solution. Finally, we demonstrated that the new polyesters with 1,5-disubstituted indole units could be crosslinked using sustainable aromatic aldehyde, which could further enhance their thermal properties.
Collapse
Affiliation(s)
- Ping Wang
- Centre of Analysis and Synthesis, Lund University P.O. Box 124 SE-22100 Lund Sweden
| | - Baozhong Zhang
- Centre of Analysis and Synthesis, Lund University P.O. Box 124 SE-22100 Lund Sweden
| |
Collapse
|
5
|
Li X, İlk S, Linares-Pastén JA, Liu Y, Raina DB, Demircan D, Zhang B. Synthesis, Enzymatic Degradation, and Polymer-Miscibility Evaluation of Nonionic Antimicrobial Hyperbranched Polyesters with Indole or Isatin Functionalities. Biomacromolecules 2021; 22:2256-2271. [PMID: 33900740 PMCID: PMC8382248 DOI: 10.1021/acs.biomac.1c00343] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
![]()
Most macromolecular
antimicrobials are ionic and thus lack miscibility/compatibility
with nonionic substrate materials. In this context, nonionic hyperbranched
polyesters (HBPs) with indole or isatin functionality were rationally
designed, synthesized, and characterized. Antimicrobial disk diffusion
assay indicated that these HBPs showed significant antibacterial activity
against 8 human pathogenic bacteria compared to small molecules with
indole or isatin groups. According to DSC measurements, up to 20%
indole-based HBP is miscible with biodegradable polyesters (polyhydroxybutyrate
or polycaprolactone), which can be attributed to the favorable hydrogen
bonding between the N–H moiety of indole and the C=O
of polyesters. HBPs with isatin or methylindole were completely immiscible
with the same matrices. None of the HBPs leaked out from plastic matrix
after being immersed in water for 5 days. The incorporation of indole
into HBPs as well as small molecules facilitated their enzymatic degradation
with PETase from Ideonella sakaiensis, while isatin
had a complex impact. Molecular docking simulations of monomeric molecules
with PETase revealed different orientations of the molecules at the
active site due to the presence of indole or isatin groups, which
could be related to the observed different enzymatic degradation behavior.
Finally, biocompatibility analysis with a mammalian cell line showed
the negligible cytotoxic effect of the fabricated HBPs.
Collapse
Affiliation(s)
- Xiaoya Li
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Sedef İlk
- Faculty of Medicine, Department of Immunology, Niğde Ömer Halisdemir University, 51240 Niǧde, Turkey.,School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, SE-10691 Stockholm, Sweden
| | - Javier A Linares-Pastén
- Division of Biotechnology, Department of Chemistry, Lund University, P.O. Box 124, 22100 Lund, Sweden
| | - Yang Liu
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, 22100 Lund, Sweden
| | - Deepak Bushan Raina
- Faculty of Medicine, Department of Clinical Sciences, Orthopedics, Lund University, 22100 Lund, Sweden
| | - Deniz Demircan
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| | - Baozhong Zhang
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
| |
Collapse
|